Miller, T.; Mikiciuk, G.; Kisiel, A.; Mikiciuk, M.; Paliwoda, D.; Sas-Paszt, L.; Cembrowska-Lech, D.; Krzemińska, A.; Kozioł, A.; Brysiewicz, A.
Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture. Agriculture 2023, 13, 1622.
https://doi.org/10.3390/agriculture13081622
AMA Style
Miller T, Mikiciuk G, Kisiel A, Mikiciuk M, Paliwoda D, Sas-Paszt L, Cembrowska-Lech D, Krzemińska A, Kozioł A, Brysiewicz A.
Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture. Agriculture. 2023; 13(8):1622.
https://doi.org/10.3390/agriculture13081622
Chicago/Turabian Style
Miller, Tymoteusz, Grzegorz Mikiciuk, Anna Kisiel, Małgorzata Mikiciuk, Dominika Paliwoda, Lidia Sas-Paszt, Danuta Cembrowska-Lech, Adrianna Krzemińska, Agnieszka Kozioł, and Adam Brysiewicz.
2023. "Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture" Agriculture 13, no. 8: 1622.
https://doi.org/10.3390/agriculture13081622
APA Style
Miller, T., Mikiciuk, G., Kisiel, A., Mikiciuk, M., Paliwoda, D., Sas-Paszt, L., Cembrowska-Lech, D., Krzemińska, A., Kozioł, A., & Brysiewicz, A.
(2023). Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture. Agriculture, 13(8), 1622.
https://doi.org/10.3390/agriculture13081622