Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mutant Lines Involved in the Experiment
2.2. Determining the Lignin Content of the Stems
2.3. Determining the Rigidity of the Stems Using 3-Point Bending Fracture
2.4. Gene Expression
2.5. Statistical Analysis
3. Results
3.1. Comparative Analysis of Lignin Content and Breaking Value
3.2. Difference in Expression Levels of the Genes Playing a Role in Lignin Biosynthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Koukounaras, A. Advanced greenhouse horticulture: New technologies and cultivation practices. Horticulturae 2020, 7, 1. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Tah, J. Mutagenesis—A potential approach for crop improvement. In Crop Improvement New Approaches and Modern Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 149–187. [Google Scholar] [CrossRef]
- Gautam, R.; Singh, P.K.; Kumar, P.; Selvakumar, R.; Singh, M.C.; Dhital, S.; Rani, M.; Sharma, V.K.; Jnapika, K.H.; Kumar, J. Advances in soilless cultivation technology of horticultural crops: Review. Indian J. Agric. Sci. 2021, 91, 503–508. [Google Scholar] [CrossRef]
- Xin, T.; Tian, H.; Ma, Y.; Wang, S.; Yang, L.; Li, X.; Zhang, M.; Chen, C.; Wang, H.; Li, H.; et al. Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Hortic. Res. 2022, 9, uhab086. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Mori, Y.; Ishikawa, S.; Furuta, T.; Gamuyao, R.; Niimi, Y.; Hobo, T.; Fukuda, M.; Kojima, M.; Takebayashi, Y.; et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 2020, 584, 109–114. [Google Scholar] [CrossRef]
- Leroux, O. Collenchyma: A versatile mechanical tissue with dynamic cell walls. Ann. Bot. 2020, 110, 1083–1098. [Google Scholar] [CrossRef]
- Zhong, R.; Taylor, J.J.; Ye, Z.H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 1997, 9, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Driesen, E.; De Proft, M.; Saeys, W. Soil moisture levels affect the anatomy and mechanical properties of basil stems (Ocimum basilicum L.). Plants 2021, 10, 1320. [Google Scholar] [CrossRef]
- Kanahama, T.; Tsugawa, S.; Sato, M. Rigidity control mechanism by turgor pressure in plants. Sci. Rep. 2023, 13, 2063. [Google Scholar] [CrossRef]
- Dunn, G.J.; Briggs, K.G. Variation in culm anatomy among barley cultivars differing in lodging resistance. Can. J. Bot. 1989, 67, 1838–1843. [Google Scholar] [CrossRef]
- Huber, H.; de Brouwer, J.; von Wettberg, E.J.; During, H.J.; Anten, N.P.R. More cells, bigger cells or simply reorganization? Alternative mechanisms leading to changed internode architecture under contrasting stress regimes. New Phytol. 2014, 201, 193–204. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Kim, J.I.; Tobimatsu, Y.; Ciesielski, P.N.; Anderson, N.A.; Ximenes, E.; Maeda, J.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; et al. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 2014, 509, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A. Plant growth hormones in plants under low-temperature stress: A Review. In Physiological Processes in Plants under Low Temperature Stress; Springer: Berlin/Heidelberg, Germany, 2022; pp. 517–627. [Google Scholar] [CrossRef]
- Neutelings, G. Lignin variability in plant cell walls: Contribution of new models. Plant Sci. 2011, 181, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Ennos, A.R.; Turner, S.R. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. Plant J. 2001, 26, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Frei, M. Lignin: Characterization of a multifaceted crop component. Sci. World J. 2013, 2013, 436517. [Google Scholar] [CrossRef] [PubMed]
- Sewalt, V.J.; Ni, W.; Blount, J.W.; Jung, H.G.; Masoud, S.A.; Howles, P.A.; Dixon, R.A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 1997, 115, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Si, J.; Cui, X.; Peng, H.; Chen, X.; Xing, H.; Dou, D. The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regul. 2019, 88, 139–149. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, R.; Liang, L.; Zang, X.; Lin, J.; Wang, Q.; Wang, L.; Wang, W.; Li, Z.; Ren, P. 4-Coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum. Gene 2024, 899, 148147. [Google Scholar] [CrossRef]
- Song, J.L.; Wang, Z.Y.; Wang, Y.H.; Du, J.; Wang, C.Y.; Zhang, X.Q.; Chen, S.; Huang, X.L.; Xie, X.M.; Zhong, T.X. Overexpression of Pennisetum purpureum CCoAOMT contributes to lignin deposition and drought tolerance by promoting the accumulation of flavonoids in transgenic tobacco. Front. Plant Sci. 2022, 13, 884456. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huh, G.H. Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis. Vitr. Cell. Dev. Biol. Plant 2019, 55, 172–179. [Google Scholar] [CrossRef]
- Bakeer, B.; Taha, I.; El-Mously, H.; Shehata, S.A. On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng. J. 2013, 4, 265–271. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Kito, K. Effects of pressures on the mechanical properties of corn straw bio-board. Eng. Agric. Environ. Food 2015, 8, 123–129. [Google Scholar] [CrossRef]
- Chandio, F.A.; Changying, J.; Tagar, A.A.; Mari, I.A.; Guangzhao, T.; Cuong, D.M. Comparison of mechanical properties of wheat and rice straw influenced by loading rates. Afr. J. Biotechnol. 2013, 12, 1068–1077. [Google Scholar]
- Jiang, P.; Li, Y.; Li, J.; Meng, H.; Peng, X.; Zhang, B.; He, J.; Kan, Z. Experimental research on the bending and fracture characteristics of cotton stalk. Trans. ASABE 2021, 64, 1771–1779. [Google Scholar] [CrossRef]
- Galedar, M.N.; Jafari, A.; Mohtasebi, S.S.; Tabatabaeefar, A.; Sharifi, A.; O’dogherty, M.J.; Rafiee, S.; Richard, G. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst. Eng. 2008, 101, 199–208. [Google Scholar] [CrossRef]
- Ismail, M.R.; Yassen, A.A.; Afify, M.S. Mechanical properties of rice straw fiber-reinforced polymer composites. Fibers Polym. 2011, 12, 648–656. [Google Scholar] [CrossRef]
- Gokul, K.; Prabhu, T.R.; Rajasekaran, T. Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Trans. Indian Inst. Met. 2017, 70, 2537–2546. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Xu, Y.; Li, P.; Chen, C.; Wu, S. Mechanical Testing of Tomato Plant Stem in Relation to Structural Composition. Agric. Res. 2016, 5, 236–245. [Google Scholar] [CrossRef]
- Ertsey-Peregi, K.; Füstös, Z.; Palotás, G.; Csilléry, G. Morphological and anatomical characterisation of the fragile plant-frx pepper mutant. In Proceedings of the XVIth EUCARPIA Capsicum and Eggplant Working Group Meeting in Memoriam Dr. Alain Palloix, Kecskemét, Hungary, 12–14 September 2016; Diamond Congress Ltd.: Budapest, Hungary, 2016; pp. 415–419. [Google Scholar]
- Csilléry, G. Alkalmasak-e a tti és a Pcx Mutánsok a Döntött Szárú Paprikatermesztésre? In XXVII. Növénynemesítési Tudományos Napok; Karsai, I., Bóna, L., Veisz, O., Polgár, Z., Mihály, R., Balla, K., Eds.; Összefoglaló Kötet; ELKH Agrártudományi Kutatóközpont Mezőgazdasági Intézet: Martonvásár, Hungary, 2021; pp. 1–66. [Google Scholar]
- Bergh, B.O.; Lippert, L.F. Six new mutant genes in the pepper: Capsicum annuum L. J. Hered. 1964, 55, 296–300. [Google Scholar] [CrossRef]
- Moreira-Vilar, F.C.; Siqueira-Soares, R.D.C.; Finger-Teixeira, A.; de Oliveira, D.M.D.; Ferro, A.P.; da Rocha, G.J.; Ferrarese, M.L.L.; Santos, W.D.; Ferrarese-Filho, O. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS ONE 2014, 9, e110000. [Google Scholar] [CrossRef]
- Kokubo, A.; Kuraishi, S.; Sakurai, N. Culm Strength of Barley: Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 1989, 91, 876–882. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kamimura, N.; Tokue, Y.; Nakata, M.T.; Yamamoto, M.; Hu, S.; Masai, E.; Mitsuda, N.; Kajita, S. Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnol. Biofuels 2020, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Lignin structure and morphological distribution in plant cell walls. In Lignin biodegradation: Microbiology, Chemistry, and Potential Applications; CRC Press: Boca Raton, FL, USA, 2018; pp. 2–19. [Google Scholar] [CrossRef]
- Zhong, R.; Cui, D.; Ye, Z.H. Secondary cell wall biosynthesis. New Phytol. 2019, 221, 1703–1723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, M.; Luo, Y.; Chang, Y.; Zhu, J.; Li, Y.; Wang, Z. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res. 2022, 282, 108518. [Google Scholar] [CrossRef]
- Andersson-Gunnerås, S.; Mellerowicz, E.J.; Love, J.; Segerman, B.; Ohmiya, Y.; Coutinho, P.M.; Nilsson, P.; Henrissat, B.; Moritz, T.; Sundberg, B. Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006, 45, 144–165. [Google Scholar] [CrossRef]
- Pedersen, J.F.; Vogel, K.P.; Funnell, D.L. Impact of reduced lignin on plant fitness. Crop Sci. 2005, 45, 812–819. [Google Scholar] [CrossRef]
- Shen, Y.; Adnan, M.; Ma, F.; Kong, L.; Wang, M.; Jiang, F.; Hu, Q.; Yao, W.; Zhou, Y.; Zhang, M.; et al. A high-throughput phenotyping method for sugarcane rind penetrometer resistance and breaking force characterization by near-infrared spectroscopy. Plant Methods 2023, 19, 101. [Google Scholar] [CrossRef]
- Sabina, S.; Jithesh, M.N. Mechanical rubbing of tomato internode influence stem growth, improve tensile strength but negatively impact flavonoid levels. Adv. Hortic. Sci. 2020, 34, 373–380. [Google Scholar]
- Kamran, M.; Cui, W.; Ahmad, I.; Meng, X.; Zhang, X.; Su, W.; Chen, J.; Ahmad, S.; Fahad, S.; Han, Q.; et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul. 2018, 84, 317–332. [Google Scholar] [CrossRef]
- Zhang, C.B.; Chen, L.H.; Jiang, J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology 2014, 206, 196–202. [Google Scholar] [CrossRef]
- Köhler, L.; Spatz, H.C. Micromechanics of plant tissues beyond the linear-elastic range. Planta 2002, 215, 33–40. [Google Scholar] [CrossRef]
Primer | Sequence | TM (°C) | Expected Fragment Size |
---|---|---|---|
CaPAL Fw | gcagagtcattgaaaggtagcc | 55.9 °C | 168 bp |
CaPAL R | tgcatcctcagataactccact | 55.4 °C | |
CaC4H Fw | attatcctagcgctgccaattc | 56 °C | 219 bp |
CaC4H R | tatcagatttctccagagcccc | 55.3 °C | |
Ca4CL Fw | acctgatgtgaaaatccagcct | 56.7 °C | 178 bp |
Ca4CL R | gcaacacatcaacacgtcttca | 56.1 °C | |
CaCCoAMOT Fw | gttggtggactgattggctatg | 55.9 °C | 160 bp |
CaCCoAMOT R | gaagctggcagatttcgattct | 55.4 °C | |
CaCAD Fw | cgatgttaagcgcttcaaagtt | 54.1 °C | 157 bp |
CaCAD R | agtaactgtaccatccgtgtct | 55.2 °C |
Sample | Place | Lignin [% DW] | Breaking Force [N] |
---|---|---|---|
’Garai Fehér’ | Bottom | 8.06 ± 0.40 a | 24.85 ± 2.42 a |
Middle | 8.08 ± 0.23 a | 20.38 ± 1.96 a | |
Top | 10.31 ± 0.52 b | 11.29 ± 1.20 b | |
frx | Bottom | 3.17 ± 0.29 a | 7.63 ± 0.53 a |
Middle | 2.53 ± 0.25 a | 11.51 ± 1.17 b | |
Top | 3.05 ± 0.30 a | 5.88 ± 0.37 a | |
tti | Bottom | 7.98 ± 0.27 a | 11.65 ± 1.12 a |
Middle | 8.49 ± 0.33 a | 8.76 ± 0.80 a | |
Top | 8.36 ± 0.46 a | 3.89 ± 0.35 b | |
pfi | Bottom | 4.33 ± 0.37 a | 4.50 ± 0.36 a |
Middle | 4.63 ± 0.37 a | 2.32 ± 0.14 b | |
Top | 7.39 ± 0.26 b | 1.15 ± 0.10 c |
Lignin [% DW] | Breaking Force [N] | |
---|---|---|
Genotype (G) | 186.112 | 109.031 |
Stem region (Sr) | 20.851 | 38.400 |
G × Sr | 6.081 | 6.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pápai, B.; Kovács, Z.; Tóth-Lencsés, K.A.; Bedő, J.; Chan, K.N.; Kovács-Weber, M.; Pap, T.I.; Csilléry, G.; Szőke, A.; Veres, A. Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture 2024, 14, 1771. https://doi.org/10.3390/agriculture14101771
Pápai B, Kovács Z, Tóth-Lencsés KA, Bedő J, Chan KN, Kovács-Weber M, Pap TI, Csilléry G, Szőke A, Veres A. Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture. 2024; 14(10):1771. https://doi.org/10.3390/agriculture14101771
Chicago/Turabian StylePápai, Bánk, Zsófia Kovács, Kitti Andrea Tóth-Lencsés, Janka Bedő, Khin Nyein Chan, Mária Kovács-Weber, Tibor István Pap, Gábor Csilléry, Antal Szőke, and Anikó Veres. 2024. "Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems" Agriculture 14, no. 10: 1771. https://doi.org/10.3390/agriculture14101771
APA StylePápai, B., Kovács, Z., Tóth-Lencsés, K. A., Bedő, J., Chan, K. N., Kovács-Weber, M., Pap, T. I., Csilléry, G., Szőke, A., & Veres, A. (2024). Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture, 14(10), 1771. https://doi.org/10.3390/agriculture14101771