Model for Inverting the Leaf Area Index of Green Plums by Integrating IoT Environmental Monitoring Data and Leaf Relative Content of Chlorophyll Values
Abstract
:1. Introduction
- (1)
- This paper aims to identify the key environmental factors affecting the leaf area index (LAI) of green plums, considering various complex conditions. We used statistical methods to evaluate the linear relationships between twelve environmental factors and selected the six with the highest correlation to the green plum LAI for further study.
- (2)
- Additionally, using these six factors and SPAD values, we constructed two LAI inversion models: one based on environmental factors (EFs−PM) and the other on SPAD (SPAD−PM).
- (3)
- This study introduces a multi−source decision fusion model based on the adjusted , utilizing an optimized weight allocation strategy to integrate multi−source data from green plum orchards. Compared to Chen [29], who used spectral transformations with a random forest regression to assess LAIs in small areas, our model improved the by 0.11. Compared to Shao [30], who quantified LAI estimations using deep learning segmentation methods, our model improved the by 0.064 and reduced the by 0.009. The MDF−ADRS fusion model surpasses classic models in both robustness and accuracy, enabling faster and more precise green plum LAI estimation.
2. Materials and Methods
2.1. Study Area and Study Design
2.2. Data Collection and Dataset Construction
2.2.1. Data Collection
2.2.2. Dataset Construction
2.3. LAI Inversion Model Based on Environmental Characteristic Factors (EFs−PM)
2.3.1. Environmental Characteristic Factor Analysis
2.3.2. EFs−PM Model Construction Method
2.4. SPAD−Based LAI Inversion Model for Plum Trees (SPAD−PM)
2.5. Multi−Source Decision Fusion Model Based on Adjusted Coefficient of Determination (MDF−ADRS)
3. Results
3.1. Analysis of EFs Results
3.2. Analysis of EFs−PM Model Results
3.3. Analysis of SPAD−PM Model Results
3.4. MDF−ADRS Model Evaluation
4. Discussion
4.1. Limitations and Future Directions
4.2. The Application and Challenges of Models in Agricultural Practice
- (1)
- The initial steps involve setting up the necessary infrastructure and deploying data collection systems within agricultural production areas, including systems for gathering environmental, SPAD, and LAI data. This will ensure that the MDF−ADRS model receives high−quality, real−time data support.
- (2)
- After data collection, a data management and processing platform is needed. This platform will clean, calibrate, and standardize the collected data, ensuring consistency and accuracy.
- (3)
- Farmers or agricultural technicians will undergo training to learn how to operate the model, interpret its outputs, and translate the model’s recommendations into practical agricultural management decisions.
5. Conclusions
- (1)
- In the analysis of key environmental factors, the six critical factors most correlated with plum tree LAIs were selected by comprehensively evaluating linear relationships using statistical methods, including Pearson, Spearman, and Kendall correlation analyses. These factors include environmental temperature (ET), soil temperature (Soil−T), environmental humidity (EH), soil moisture (Soil−M), carbon dioxide concentration (CO), and light intensity (LI). These factors significantly influence the LAI at different growth stages and are fundamental to constructing high−precision models.
- (2)
- During model construction, two separate models were developed: the Environmental Features-based Model (EFs−PM) and the SPAD−based Model (SPAD−PM). The EFs−PM model used the selected key environmental factors and the PLSR algorithm to capture macro−environmental effects on crop growth. The EFs−PM model achieved an of 0.69 and a root mean square error (RMSE) of 0.55 on the validation set. The SPAD−PM model, on the other hand, used SPAD data and PLSR to handle the complex relationship between SPAD and the LAI, achieving an of 0.62 and an RMSE of 0.61 on the validation set.
- (3)
- This study introduced a multi−source decision fusion model based on the adjusted (MDF−ADRS), which effectively combined the strengths of both the EFs−PM and SPAD−PM models. By incorporating a weight optimization allocation method, the model flexibly adjusts the weights of environmental features and SPAD data for LAI prediction based on different environmental conditions, significantly improving its accuracy and robustness. The MDF−ADRS model achieved an of 0.88 and an RMSE of 0.39 on the validation set, demonstrating its superior performance under complex environmental conditions compared to that of single−source models.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, X.P.; Tang, Y.; Song, Y.Y.; Du, G.; Li, J. Comprehensive review of phytochemical constituents, pharmacological properties, and clinical applications of Prunus mume. Front. Pharmacol. 2021, 12, 679378. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Wu, C.; Huang, J.; Zhou, R.; Jin, Y. Characteristics and valorization potential of fermentation waste of greengage (Prunus mume). Appl. Sci. 2021, 11, 8296. [Google Scholar] [CrossRef]
- Malavolta, M.; Mocchegiani, E. (Eds.) Trace Elements and Minerals in Health and Longevity; Springer International Publishing: Cham, Switzerland, 2018; Volume 8. [Google Scholar]
- Shen, L.; Wang, H.; Liu, Y.; Liu, Y.; Zhang, X.; Fei, Y. Prediction of soluble solids content in green plum by using a sparse autoencoder. Appl. Sci. 2020, 10, 3769. [Google Scholar] [CrossRef]
- Xu, C. Greengage mau: Green branches full of fruit, growers’ income makes you happy. Shanwei J. 2023, 3. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yasutake, D.; Hirota, T.; Nomura, K. Nondestructive Measurement Method of Leaf Area Index Using Near-infrared Radiation and Photosynthetically Active Radiation Transmitted through a Leafy Vegetable Canopy. HortScience 2022, 58, 16–22. [Google Scholar] [CrossRef]
- Weraduwage, S.M.; Chen, J.; Anozie, F.C.; Morales, A.; Weise, S.E.; Sharkey, T.D. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Hui, W.; Zhao, F.; Wang, P.; Su, C.; Gong, W. Physiology of plant responses to water stress and related genes: A review. Forests 2022, 13, 324. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D. Prediction of rice crop yield using MODIS EVI–LAI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Gao, X.; Wang, L.; Wu, D.; Fu, S.; Wu, Q.; Huang, J. Crop yield prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: A case study for winter wheat in Hebei, China during 2009–2013. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102668. [Google Scholar] [CrossRef]
- Yamanura, R.M.K.; Patil, B. NDVI derived LAI model: A novel tool for crop monitoring. J. Crop Weed. 2021, 17, 49–54. [Google Scholar] [CrossRef]
- Pokovai, K.; Fodor, N. Adjusting ceptometer data to improve leaf area index measurements. Agronomy 2019, 9, 866. [Google Scholar] [CrossRef]
- Mudi, S.; Paramanik, S.; Behera, M.D.; Prakash, A.J.; Deep, N.R.; Kale, M.P.; Kumar, S.; Sharma, N.; Pradhan, P.; Chavan, M.; et al. Moderate resolution LAI prediction using Sentinel-2 satellite data and indirect field measurements in Sikkim Himalaya. Environ. Monit. Assess. 2022, 194, 897. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Lei, S.; Numata, I.; Tian, L. Accuracy assessment and impact factor analysis of GEDI leaf area index product in temperate forest. Remote Sens. 2023, 15, 1535. [Google Scholar] [CrossRef]
- Frazer, G.W.; Trofymow, J.A.; Lertzman, K.P. A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques; Pacific Forestry Centre: Victoria, BC, Canada, 1997; Volume 373. [Google Scholar]
- Zhang, J.; Wang, J.; Khromykh, V.; Li, J. Global leaf area index research over the past 75 years: A comprehensive review and bibliometric analysis. Sustainability 2023, 15, 3072. [Google Scholar] [CrossRef]
- Lee, H.; Cho, H. Chlorophyll fluorescence imaging for environmental stress diagnosis in crops. Sensors 2024, 24, 1442. [Google Scholar] [CrossRef]
- Li, W.; Pan, K.; Liu, W.; Xiao, W.; Ni, S.; Shi, P.; Chen, X. Monitoring maize canopy chlorophyll content throughout the growth stages based on UAV MS and RGB feature fusion. Agriculture 2024, 14, 1265. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crop. Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Feng, Y.; Sui, X.; Tang, J.; Liu, R.; Ling, X.; Liang, W.; Wei, X. Responses of belowground fine root biomass and morphology in Robinia pseudoacacia L. plantations to aboveground environmental factors. Glob. Ecol. Conserv. 2024, 50, e02863. [Google Scholar] [CrossRef]
- Tao, T.Y.; He, F.; Fan, H.Y. Research progress and comprehensive control of litchi downy mildew. Chin. Trop. Agric. 2008, 2008, 51–52. [Google Scholar]
- Xu, D.; Deng, Y.; Xi, P.; Zhu, Z.; Kong, X.; Wan, L.; Situ, J.; Li, M.; Gao, L.; Jiang, Z. Biological activity of pterostilbene against Peronophythora litchii, the litchi downy blight pathogen. Postharvest Biol. Technol. 2018, 144, 29–35. [Google Scholar] [CrossRef]
- Kinane, S.M.; Montes, C.R.; Zapata, M.; Bullock, B.P.; Cook, R.L.; Mishra, D.R. Influence of environmental variables on leaf area index in loblolly pine plantations. For. Ecol. Manag. 2022, 523, 120445. [Google Scholar] [CrossRef]
- Karimi, S.; Nazemi, A.H.; Sadraddini, A.A.; Xu, T.R.; Bateni, S.M.; Fard, A.F. Estimation of forest leaf area index using meteorological data: Assessment of heuristic models. J. Environ. Inform. 2020, 36, 119–132. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Zhang, D.; Han, X.; Lin, F.; Du, S.; Zhang, G.; Hong, Q. Estimation of winter wheat LAI based on multi-source UAV image feature fusion. Trans. Chin. Soc. Agric. Eng. 2022, 38, 171–179. [Google Scholar]
- Deng, S.Q.; Zhao, Y.; Bai, X.Y.; Li, X.; Sun, Z.D.; Liang, J.; Sun, Z.H.; Cheng, S. Inversion of chlorophyll and leaf area index of winter wheat based on UAV image segmentation. Trans. Chin. Soc. Agric. Eng. 2022, 38, 136–145. [Google Scholar]
- Chen, R.; Feng, H.; Yang, F.; Li, C.; Yang, G.; Pei, H.; Pan, L.; Chen, P. Estimation of leaf area index of winter wheat based on UAV hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 40–49. [Google Scholar]
- Shao, M.; Nie, C.; Zhang, A.; Shi, L.; Zha, Y.; Xu, H.; Yang, H.; Yu, X.; Bai, Y.; Liu, S.; et al. Quantifying effect of maize tassels on LAI estimation based on multispectral imagery and machine learning methods. Comput. Electron. Agric. 2023, 211, 108029. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Coops, N.C. Lidar boosts 3D ecological observations and modelings: A review and perspective. IEEE Geosci. Remote Sens. Mag. 2020, 9, 232–257. [Google Scholar] [CrossRef]
- Garrido-Carretero, M.S.; Borque-Arancón, M.J.; Ruiz-Armenteros, A.M.; Moreno-Guerrero, R.; Gil-Cruz, A.J. Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement 2019, 137, 168–178. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- De Winter, J.C.F.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H. The Kendall rank correlation coefficient. In Encyclopedia of Measurement and Statistics; Sage Publications: Thousand Oaks, CA, USA, 2007; Volume 2, pp. 508–510. [Google Scholar]
- Murtagh, F.; Heck, A. Multivariate Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 131. [Google Scholar]
- Abdi, H.; Williams, L.J. Partial least squares methods: Partial least squares correlation and partial least square regression. In Computational Toxicology: Volume II; Springer: Berlin/Heidelberg, Germany, 2013; pp. 549–579. [Google Scholar]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: New York, NY, USA, 2015; pp. 67–80. [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Tranmer, M.; Elliot, M. Multiple linear regression. Cathie Marsh Cent. Census Surv. Res. (CCSR) 2008, 5, 1–57. [Google Scholar]
- Williams, C.; Rasmussen, C. Gaussian processes for regression. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1995; Volume 8. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Ma, J.; Chen, P.; Wang, L. A comparison of different data fusion strategies’ effects on maize leaf area index prediction using multisource data from unmanned aerial vehicles (UAVs). Drones 2023, 7, 605. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, F.; Xiao, X.; Hu, L.; Wang, X.; Yan, Y.; Lan, Y. Summer maize growth estimation based on near-surface multi-source data. Agronomy 2023, 13, 532. [Google Scholar] [CrossRef]
- Akossou, A.Y.J.; Palm, R. Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput. 2013, 20, 84–93. [Google Scholar]
- Su, W.; Wu, J.-Y.; Wang, X.-S.; Xie, Z.-X.; Zhang, Y.; Tao, W.-C.; Jian, T. Retrieving corn canopy leaf area index based on Sentinel-2 image and PROSAIL model parameter calibration. Spectrosc. Spectr. Anal. 2021, 41, 1891–1897. [Google Scholar]
- Shi, Z.; Shi, S.; Gong, W.; Xu, L.; Wang, B.; Sun, J.; Chen, B.; Xu, Q. LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery. Front. Plant Sci. 2023, 14, 1237988. [Google Scholar] [CrossRef]
Sample | East | South | West | North | Ave | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
1 | 2.41 | 1.73 | 1.76 | 2.4 | 3.6 | 2.72 | 3 | 2.54 | 3.16 | 3.41 | 2.08 | 2.3 | 2.59 |
2 | 3.11 | 3.11 | 2.2 | 2.04 | 2.26 | 1.9 | 2.16 | 2.68 | 2.41 | 1.88 | 2.61 | 3.31 | 2.47 |
3 | 1.48 | 1.5 | 2.61 | 1.84 | 1.98 | 2.18 | 2.01 | 2.07 | 1.6 | 1.92 | 2.22 | 2.07 | 1.96 |
4 | 2.67 | 2.31 | 1.89 | 1.3 | 1.8 | 1.8 | 1.48 | 2.83 | 2.02 | 1.58 | 1.81 | 1.33 | 1.9 |
5 | 2.77 | 2.13 | 2.16 | 1.91 | 1.78 | 2.55 | 2.38 | 3.45 | 2.59 | 2.49 | 1.65 | 1.65 | 2.29 |
6 | 2.78 | 2.72 | 2.85 | 2.41 | 2.21 | 2.72 | 1.81 | 1.74 | 2.72 | 2.34 | 2.34 | 2.77 | 2.45 |
7 | 1.98 | 2.93 | 2.55 | 3.02 | 2.3 | 1.95 | 2.09 | 2.61 | 2.88 | 3.19 | 2.3 | 2.75 | 2.55 |
8 | 3.37 | 1.74 | 3.02 | 2.67 | 2.07 | 1.96 | 1.96 | 2.71 | 2.68 | 1.64 | 1.7 | 2.34 | 2.54 |
9 | 1.9 | 2.27 | 2.3 | 2.23 | 2.67 | 2.89 | 2.88 | 2.72 | 3 | 3.33 | 2.62 | 3.12 | 2.66 |
10 | 2.12 | 2.78 | 3.32 | 2.54 | 2.89 | 2.22 | 1.95 | 1.79 | 2.43 | 2.67 | 2.24 | 2.26 | 2.52 |
11 | 3.01 | 3.1 | 2.62 | 2.42 | 2.3 | 2 | 2.18 | 2.7 | 2.51 | 1.92 | 2.58 | 3.02 | 2.53 |
12 | 2.82 | 2.4 | 2.31 | 1.95 | 1.89 | 2.72 | 2.4 | 3.32 | 2.6 | 2.5 | 1.88 | 1.87 | 2.39 |
13 | 2.48 | 2.05 | 2.29 | 2.64 | 2.34 | 2.79 | 2.42 | 2.42 | 2.42 | 2.41 | 2.38 | 2.71 | 2.45 |
14 | 2.49 | 2.51 | 2.91 | 2.37 | 3.08 | 2.98 | 2.54 | 2.74 | 2.67 | 2.44 | 2.04 | 2.43 | 2.6 |
Sample | East | South | West | North | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Up | Mid | Down | Up | Mid | Down | Up | Mid | Down | Up | Mid | Down | |
1 | 28.2 | 33.3 | 23.6 | 29.6 | 29.9 | 29.6 | 32.8 | 37.8 | 28.1 | 31.3 | 30 | 33.5 |
2 | 29.1 | 30.6 | 19.5 | 28.2 | 33.8 | 37 | 32.6 | 28.8 | 33 | 28.7 | 28.1 | 29 |
3 | 28.6 | 32.7 | 26.3 | 33.7 | 30.1 | 20.9 | 36.1 | 23.9 | 31.3 | 37.8 | 31.9 | 25.3 |
4 | 25.2 | 35.3 | 32.8 | 26.8 | 31.2 | 30.8 | 26.3 | 34.1 | 27.4 | 24.6 | 29.1 | 31.8 |
5 | 30.4 | 28.8 | 29.6 | 36.4 | 31 | 36.6 | 32.4 | 25.1 | 23.7 | 24.1 | 29.1 | 23.7 |
6 | 39 | 29.7 | 31.6 | 36.3 | 33.8 | 35.2 | 33.7 | 29.7 | 29.5 | 24.5 | 33 | 23.7 |
7 | 39 | 37.8 | 31.7 | 38.5 | 32.6 | 36 | 36.5 | 40.2 | 36.5 | 35 | 40 | 33 |
8 | 26.5 | 30.9 | 24.3 | 31.9 | 32.8 | 29.5 | 20.5 | 19.9 | 25.1 | 29.5 | 28.2 | 31.9 |
9 | 26.7 | 31.2 | 29.6 | 32.3 | 33.8 | 28.9 | 21.2 | 23.2 | 25.8 | 29.7 | 27.3 | 32.8 |
10 | 27.5 | 30.4 | 31.6 | 32.5 | 34.4 | 30.6 | 25.4 | 26.7 | 32.1 | 28.8 | 27.4 | 31.4 |
11 | 28.4 | 29.5 | 32.7 | 31.3 | 34.8 | 30.2 | 27.7 | 30.4 | 29.8 | 35.2 | 34.8 | 38.3 |
12 | 38.3 | 35.4 | 34.2 | 36.5 | 32.7 | 35.1 | 33.3 | 30.2 | 29.1 | 33.4 | 35.4 | 35.6 |
13 | 27.2 | 31.3 | 30.2 | 32.7 | 33.9 | 30.5 | 21.6 | 23.9 | 31.7 | 29.5 | 27.6 | 31.1 |
14 | 29.3 | 33.6 | 37.5 | 26.9 | 43.9 | 34.5 | 36.9 | 36.1 | 32.6 | 37 | 39.2 | 26 |
ET | EH | Soil−T | Soil−M | CO | LI | Collection Time |
---|---|---|---|---|---|---|
18.6 | 64.9 | 16.8 | 36.18 | 552.9 | 13,086 | 20 March 2024-9:00:02 |
20.3 | 54.2 | 16.7 | 36.08 | 558.0 | 9009 | 20 March 2024-9:30:02 |
21.9 | 49.2 | 16.7 | 36.06 | 550.9 | 11,919 | 20 March 2024-10:00:00 |
22.4 | 48.9 | 16.6 | 36.14 | 544.8 | 15,644 | 20 March 2024-10:30:01 |
24.0 | 46.5 | 16.6 | 36.03 | 538.8 | 16,503 | 20 March 2024-11:00:02 |
24.0 | 44.1 | 16.4 | 35.94 | 533.6 | 13,563 | 20 March 2024-11:30:02 |
25.4 | 44.1 | 16.3 | 35.95 | 524.4 | 15,171 | 20 March 2024-12:00:01 |
25.4 | 43.7 | 16.8 | 35.87 | 552.9 | 15,522 | 20 March 2024-12:30:01 |
25.2 | 43.7 | 16.8 | 35.77 | 515.9 | 16,948 | 20 March 2024-13:00:01 |
25.2 | 43.7 | 17.0 | 35.70 | 512.3 | 10,526 | 20 March 2024-13:30:01 |
Sample | Numbers | Max | Min | Mean | Med | Std |
---|---|---|---|---|---|---|
LAI | 182 | 5.175 | 0.961 | 2.941 | 3.151 | 1.03 |
SPAD | 182 | 35.14 | 17.725 | 25.709 | 25.383 | 4.621 |
ET | 182 | 29.92 | 11.3 | 18.364 | 17.55 | 4.03 |
EH | 182 | 93.5 | 62.82 | 80.285 | 80.425 | 5.242 |
Soil−T | 182 | 24.25 | 12.4 | 18.24 | 18.26 | 2.927 |
Soil−M | 182 | 72 | 20.37 | 40.11 | 40.2 | 12.867 |
LI | 182 | 17,902 | 447 | 5127 | 4840 | 3477 |
CO | 182 | 557 | 492 | 524.6 | 524 | 19.496 |
pH | 182 | 8.26 | 7.7 | 8 | 7.895 | 0.177 |
DPT | 182 | 23 | 8.53 | 15.207 | 14.11 | 4.389 |
PAR | 182 | 11.73 | 2.5 | 5.367 | 4.68 | 2.386 |
AP | 182 | 1016 | 967 | 999.1 | 1001 | 9.816 |
WS | 182 | 0.65 | 0.002 | 0.164 | 0.145 | 0.138 |
PM | 182 | 4.83 | 0.01 | 0.338 | 0.01 | 0.964 |
Algorithm | Modeling | Validation | ||
---|---|---|---|---|
MLR [40] | 0.76 | 0.51 | 0.56 | 0.69 |
SVMR [38] | 0.79 | 0.47 | 0.60 | 0.62 |
RF [39] | 0.70 | 0.54 | 0.53 | 0.75 |
GPR [41] | 0.83 | 0.39 | 0.67 | 0.59 |
PLSR [37] | 0.88 | 0.37 | 0.69 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Tong, H.; Huang, D.; Lu, J.; Huang, J.; Zhou, D.; Zheng, J. Model for Inverting the Leaf Area Index of Green Plums by Integrating IoT Environmental Monitoring Data and Leaf Relative Content of Chlorophyll Values. Agriculture 2024, 14, 2076. https://doi.org/10.3390/agriculture14112076
Yu C, Tong H, Huang D, Lu J, Huang J, Zhou D, Zheng J. Model for Inverting the Leaf Area Index of Green Plums by Integrating IoT Environmental Monitoring Data and Leaf Relative Content of Chlorophyll Values. Agriculture. 2024; 14(11):2076. https://doi.org/10.3390/agriculture14112076
Chicago/Turabian StyleYu, Caili, Haiyang Tong, Daoyi Huang, Jianqiang Lu, Jiewei Huang, Dejing Zhou, and Jiaqi Zheng. 2024. "Model for Inverting the Leaf Area Index of Green Plums by Integrating IoT Environmental Monitoring Data and Leaf Relative Content of Chlorophyll Values" Agriculture 14, no. 11: 2076. https://doi.org/10.3390/agriculture14112076
APA StyleYu, C., Tong, H., Huang, D., Lu, J., Huang, J., Zhou, D., & Zheng, J. (2024). Model for Inverting the Leaf Area Index of Green Plums by Integrating IoT Environmental Monitoring Data and Leaf Relative Content of Chlorophyll Values. Agriculture, 14(11), 2076. https://doi.org/10.3390/agriculture14112076