Data-Independent Acquisition Method for In-Depth Proteomic Screening of Donkey Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Measurement of Quality Traits
2.3. Amino Acid Determination
2.4. DIA Procedures
2.4.1. Protein Preparation
2.4.2. Trypsin Digestion
2.4.3. Spectral Library Construction and DIA Quantitative Detection
2.5. Statistical and Bioinformatics Analysis
3. Results
3.1. Meat Quality Traits
3.2. Amino Acids Content
3.3. Identification and Comparison of DEPs Between WG/WLT and WS/WLT
3.4. GO Classification of DEPs from WG/WLT and WS/WLT of Wutou Donkeys
3.5. KEGG Pathway Analysis of DEPs from WG/WLT and WS/WLT of Wutou Donkeys
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aroua, M.; Haj Koubaier, H.; Rekik, C.; Fatica, A.; Ben Said, S.; Malek, A.; Mahouachi, M.; Salimei, E. Comparative study of carcass characteristics and meat quality of local Mediterranean donkey breeds. Foods 2024, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Man, L.; Ren, W.; Sun, M.; Du, Y.; Chen, H.; Qin, H.; Chai, W.; Zhu, M.; Liu, G.; Wang, C.; et al. Characterization of donkey-meat flavor profiles by GC–IMS and multivariate analysis. Front. Nutr. 2023, 10, 1079799. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, D.; Chai, W.; Zhu, M.; Wang, Y.; Liu, Y.; Wei, Q.; Fan, D.; Lv, M.; Jiang, X.; et al. Chemical and physical properties of meat from Dezhou black donkey. Food Sci. Technol. Res. 2022, 28, 87–94. [Google Scholar] [CrossRef]
- Li, X.; Amadou, I.; Zhou, G.; Qian, L.; Zhang, J.; Wang, D.; Cheng, X. Flavor components comparison between the neck meat of donkey, swine, bovine, and sheep. Food Sci. Anim. Resour. 2020, 40, 527. [Google Scholar] [CrossRef]
- Polidori, P.; Pucciarelli, S.; Ariani, A.; Polzonetti, V.; Vincenzetti, S. A comparison of the carcass and meat quality of Martina Franca donkey foals aged 8 or 12 months. Meat Sci. 2015, 106, 6–10. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Della Malva, A.; Muscio, A.; Sevi, A. Nutritional properties and consumer evaluation of donkey bresaola and salami: Comparison with conventional products. Meat Sci. 2015, 101, 19–24. [Google Scholar] [CrossRef]
- Li, M.; Sun, M.; Ren, W.; Man, L.; Chai, W.; Liu, G.; Zhu, M.; Wang, C. Characterization of volatile compounds in donkey meat by gas chromatography–ion mobility spectrometry (GC–IMS) combined with chemometrics. Food Sci. Anim. Resour. 2024, 44, 165–177. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Du, X.; Zhao, Y.; Ren, W.; Man, L.; Zhu, M.; Liu, G.; Khan, M.Z.; Wang, C. Characterization and discrimination of donkey milk lipids and volatiles across lactation stages. Food Chem. X 2024, 23, 101740. [Google Scholar] [CrossRef]
- Chai, W.; Wang, L.; Li, T.; Wang, T.; Wang, X.; Yan, M.; Zhu, M.; Gao, J.; Wang, C.; Ma, Q.; et al. Liquid chromatography–mass spectrometry-based metabolomics reveals dynamic metabolite changes during early postmortem aging of donkey meat. Foods 2024, 13, 1466. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Manyelo, T.G.; Nemukondeni, N.; Sebola, A.N.; Selaledi, L.; Mabelebele, M. The possibility of including donkey meat and milk in the food chain: A Southern African scenario. Animals 2022, 12, 1073. [Google Scholar] [CrossRef]
- Akhtar, M.T.; Samar, M.; Shami, A.A.; Mumtaz, M.W.; Mukhtar, H.; Tahir, A.; Shahzad-Ul-Hussan, S.; Chaudhary, S.U.; Kaka, U. 1H-NMR-Based Metabolomics: An Integrated Approach for the Detection of the Adulteration in Chicken, Chevon, Beef and Donkey Meat. Molecules 2021, 26, 4643. [Google Scholar] [CrossRef] [PubMed]
- Guyon, C.; Meynier, A.; De Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, S.; Li, Y.; Shen, Y.; Zhao, Y.; Guo, X.; Shi, L.; Yan, S. Comparison of the contents of conventional nutrients, amino acids and minerals in the muscle tissues of different parts of Dezhou donkeys. Feed Res. 2021, 44, 74–78. [Google Scholar] [CrossRef]
- Marino, R.; Della Malva, A.; Maggiolino, A.; De Palo, P.; d’Angelo, F.; Lorenzo, J.M.; Sevi, A.; Albenzio, M. Nutritional Profile of Donkey and Horse Meat: Effect of Muscle and Aging Time. Animals 2022, 12, 746. [Google Scholar] [CrossRef]
- Chai, W.; Xu, J.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Wang, T.; Gao, J.; Yao, H.; et al. Differential proteomic analysis to identify potential biomarkers associated with quality traits of Dezhou donkey meat using a data-independent acquisition (DIA) strategy. LWT-Food Sci. Technol. 2022, 166, 113792. [Google Scholar] [CrossRef]
- Ma, Q.; Kou, X.; Yang, Y.; Yue, Y.; Xing, W.; Feng, X.; Liu, G.; Wang, C.; Li, Y. Comparison of Lipids and Volatile Compounds in Dezhou Donkey Meat with High and Low Intramuscular Fat Content. Foods 2023, 12, 3269. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Hu, Y.; Chen, R.; Guo, B.; Li, L.; Chen, H.; Chen, H.; Song, X. Effect of probiotics and Chinese medicine polysaccharides on meat quality, muscle fibre type and intramuscular fat deposition in lambs. Ital. J. Anim. Sci. 2022, 21, 811–820. [Google Scholar] [CrossRef]
- Li, W.; Qiu, L.; Guan, J.; Sun, Y.; Zhao, J.; Du, M. Comparative transcriptome analysis of longissimus dorsi tissues with different intramuscular fat contents from Guangling donkeys. BMC Genom. 2022, 23, 644. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; He, Y.; Qin, Y.; Yan, Z.; Chen, J.; Zhao, R.; Zhou, S.; Irwin, D.M.; Li, B.; Zhang, S. Comparative analysis of differentially abundant proteins between high and low intramuscular fat content groups in donkeys. Front. Vet. Sci. 2022, 9, 951168. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Shi, X.; Yuan, W.; Liu, G.; Wang, C. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys. Genes 2022, 13, 1610. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Du, X.; Ren, W.; Man, L.; Chai, W.; Zhu, M.; Liu, G.; Wang, C. Characterization of lipids and volatile compounds in boiled donkey meat by lipidomics and volatilomics. J. Food Sci. 2024, 89, 3445–3454. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ren, W.; Chai, W.; Zhu, M.; Man, L.; Zhan, Y.; Qin, H.; Sun, M.; Liu, J.; Zhang, D.; et al. Comparing the Profiles of Raw and Cooked Donkey Meat by Metabonomics and Lipidomics Assessment. Front. Nutr. 2022, 9, 851761. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, X. Transcriptomic analysis of different intramuscular fat contents on the flavor of the longissimus dorsi tissues from Guangling donkey. Genomics 2024, 116, 110905. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Liu, Z.; Xu, J.; Yao, H.; Li, Z.; et al. RNA-Seq analysis identifies differentially expressed genes in different types of donkey skeletal muscles. Anim. Biotechnol. 2023, 34, 1786–1795. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Li, Y.; Li, H.; Wang, C.; Zhang, Q. Comparative transcriptome and proteome analyses of the longissimus dorsi muscle for explaining the difference between donkey meat and other meats. Anim. Biotechnol. 2023, 34, 3085–3098. [Google Scholar] [CrossRef]
- Della Malva, A.; Gagaoua, M.; Santillo, A.; De Palo, P.; Sevi, A.; Albenzio, M. First insights about the underlying mechanisms of Martina Franca donkey meat tenderization during aging: A proteomic approach. Meat Sci. 2022, 193, 108925. [Google Scholar] [CrossRef]
- Wu, G.; Yang, C.; Bruce, H.L.; Roy, B.C.; Li, X.; Zhang, C. Effects of Alternating Electric Field Assisted Freezing-Thawing-Aging Sequence on Data-Independent Acquisition Quantitative Proteomics of Longissimus dorsi Muscle. J. Agric. Food Chem. 2022, 70, 12990–13001. [Google Scholar] [CrossRef]
- Song, Y.; Huang, F.; Li, X.; Zhang, H.; Liu, J.; Han, D.; Rui, M.; Wang, J.; Zhang, C. DIA-based quantitative proteomic analysis on the meat quality of porcine Longissimus thoracis et lumborum cooked by different procedures. Food Chem. 2022, 371, 131206. [Google Scholar] [CrossRef]
- Barkovits, K.; Pacharra, S.; Pfeiffer, K.; Steinbach, S.; Eisenacher, M.; Marcus, K.; Uszkoreit, J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol. Cell. Proteom. 2020, 19, 181–197. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Xu, Z.; Yang, H.; Lin, X.; Leng, X. Replacing fishmeal with cottonseed protein concentrate in practical diet of largemouth bass (Micropterus salmoides): Growth, flesh quality and metabolomics. Aquaculture 2024, 579, 740164. [Google Scholar] [CrossRef]
- Wen, M.; Wu, P.; Jiang, W.; Liu, Y.; Wu, C.; Zhong, C.; Li, S.; Tang, L.; Feng, L.; Zhou, X. Dietary threonine improves muscle nutritional value and muscle hardness associated with collagen synthesis in grass carp (Ctenopharyngodon idella). Food Chem. 2023, 422, 136223. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ju, N.; Chang, J.; Ge, R.; Zhao, Y.; Zhang, G. Dietary α-lipoic acid supplementation improves postmortem color stability of the lamb muscles through changing muscle fiber types and antioxidative status. Meat Sci. 2022, 193, 108945. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, X.; Cui, H.; Hayat, K.; Zhang, X.; Ho, C. Improved tenderness and water retention of pork pieces and its underlying molecular mechanism through the combination of low-temperature preheating and traditional cooking. Food Chem. 2023, 421, 136137. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, Z.; Guo, X.; Gao, S.; Wu, D.; Liu, Z.; Wu, P.; Xu, Z.; Zou, X.; Meng, X. Changes in Textural Quality and Water Retention of Spiced Beef under Ultrasound-Assisted Sous-Vide Cooking and Its Possible Mechanisms. Foods 2022, 11, 2251. [Google Scholar] [CrossRef]
- Lucherk, L.W.; O’Quinn, T.G.; Legako, J.F.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Assessment of objective measures of beef steak juiciness and their relationships to sensory panel juiciness ratings. J. Anim. Sci. 2017, 95, 2421–2437. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, S.; Xie, P.; Yang, X.; Sun, B.; Yang, H. Muscle fiber characteristics and postmortem quality of longissimus thoracis, psoas major and semitendinosus from Chinese Simmental bulls. Food Sci. Nutr. 2020, 8, 6083–6094. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Liang, R.; Mao, Y.; Zuo, H.; Hopkins, D.L.; Yang, X.; Luo, X.; Zhu, L.; Zhang, Y. Effects of different protein phosphorylation levels on the tenderness of different ultimate pH beef. Food Res. Int. 2023, 174, 113512. [Google Scholar] [CrossRef]
- Starkey, C.P.; Geesink, G.H.; Collins, D.; Hutton Oddy, V.; Hopkins, D.L. Do sarcomere length, collagen content, pH, intramuscular fat and desmin degradation explain variation in the tenderness of three ovine muscles? Meat Sci. 2016, 113, 51–58. [Google Scholar] [CrossRef]
- Wu, G.; Farouk, M.M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef]
- Koulicoff, L.A.; Chun, C.K.Y.; Hammond, P.A.; Jeneske, H.; Magnin-Bissel, G.; O’Quinn, T.G.; Zumbaugh, M.D.; Chao, M.D. Structural changes in collagen and aggrecan during extended aging may improve beef tenderness. Meat Sci. 2023, 201, 109172. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C. Methodologies to advance the understanding of flavor chemistry. Curr. Opin. Food Sci. 2020, 33, 131–135. [Google Scholar] [CrossRef]
- Wei, M.; Liu, X.; Xie, P.; Han, A.; Lei, Y.; Yang, X.; Liu, Y.; Zhang, S.; Sun, B. Investigating the interactions between selected heterocyclic flavor compounds and beef myofibrillar proteins using SPME-GC–MS, spectroscopic, and molecular docking approaches. J. Mol. Liq. 2024, 403, 124878. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Liu, Z.; Deng, D.; Cui, Y.; Tian, Z.; Wang, G. Effect of amino acids and their derivatives on meat quality of finishing pigs. J. Food Sci. Technol. 2020, 57, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Fengli, L.; Jun-Hu, C.; Da-Wen, S. Effects of combined roasting with steam cooking on fat content, physicochemical properties and in vitro protein digestion of chicken wings as compared with other conventional cooking methods. LWT 2023, 183, 114941. [Google Scholar] [CrossRef]
- Brown, L.D. Endocrine regulation of fetal skeletal muscle growth: Impact on future metabolic health. J. Endocrinol. 2014, 221, R13–R29. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Peng, X.; Sun, L.; Jia, S.; Wang, P.; Ma, S.; Zhao, H.; Yu, Q.; Huo, H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp. Ther. Med. 2017, 14, 1241–1247. [Google Scholar] [CrossRef]
- Cheng, Z. The FoxO–Autophagy Axis in Health and Disease. Trends Endocrinol. Metab. 2019, 30, 658–671. [Google Scholar] [CrossRef]
- Jaiswal, N.; Gavin, M.; Loro, E.; Sostre-Colón, J.; Roberson, P.A.; Uehara, K.; Rivera-Fuentes, N.; Neinast, M.; Arany, Z.; Kimball, S.R.; et al. AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology. J. Cachexia Sarcopenia Muscle 2022, 13, 495–514. [Google Scholar] [CrossRef]
- Nakashima, K.; Yakabe, Y. AMPK Activation Stimulates Myofibrillar Protein Degradation and Expression of Atrophy-Related Ubiquitin Ligases by Increasing FOXO Transcription Factors in C2C12 Myotubes. Biosci. Biotechnol. Biochem. 2007, 71, 1650–1656. [Google Scholar] [CrossRef]
- Kimura, N.; Tokunaga, C.; Dalal, S.; Richardson, C.; Yoshino, K.-I.; Hara, K.; Kemp, B.E.; Witters, L.A.; Mimura, O.; Yonezawa, K. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 2003, 8, 65–79. [Google Scholar] [CrossRef]
- Quintas, A.; Harvey, R.F.; Horvilleur, E.; Garland, G.D.; Schmidt, T.; Kalmar, L.; Dezi, V.; Marini, A.; Fulton, A.M.; Pöyry, T.A.A.; et al. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res. 2024, 52, 12039–12054. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Zhang, Z.; Wang, X.; Shen, W.; Zhang, L.; Lin, S. Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry. Front. Vet. Sci. 2023, 10, 1284551. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Xu, Y.; Cheng, L.; Yi, K.; Gu, X.; Luo, Z.; Zhang, J.; Wang, J.; Geng, F. Quantitative proteomic analysis of cattle-yak and yak longissimus thoracis provides insights into the differential mechanisms of meat quality. Food Res. Int. 2023, 173, 113253. [Google Scholar] [CrossRef] [PubMed]
- Yampolskaya, D.S.; Kopylova, G.V.; Shchepkin, D.V.; Nabiev, S.R.; Nikitina, L.V.; Walklate, J.; Ziganshin, R.H.; Bershitsky, S.Y.; Geeves, M.A.; Matyushenko, A.M.; et al. Pseudo-phosphorylation of essential light chains affects the functioning of skeletal muscle myosin. Biophys. Chem. 2023, 292, 106936. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, Y.; Li, X.; Deng, G.; Han, Y.; Yuan, F.; Yi, G.; Xia, X. Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-β1/Smad Signaling. Tohoku J. Exp. Med. 2023, 261, 257–265. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, R.; Tang, G.; Zhang, W.; Pang, W. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenesis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes. J. Anim. Sci. Biotechnol. 2021, 12, 12. [Google Scholar] [CrossRef]
- Underwood, K.R.; Means, W.J.; Zhu, M.J.; Ford, S.P.; Hess, B.W.; Du, M. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Meat Sci. 2008, 79, 394–402. [Google Scholar] [CrossRef]
- Putman, C.T.; Kiricsi, M.; Pearcey, J.; MacLean, I.M.; Bamford, J.A.; Murdoch, G.K.; Dixon, W.T.; Pette, D. AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J. Physiol. 2003, 551, 169–178. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, H.; Huang, X.; Wang, A.; Xie, D. Molecular Characterization, Tissue Distribution Profile, and Nutritional Regulation of acsl Gene Family in Golden Pompano (Trachinotus ovatus). Int. J. Mol. Sci. 2022, 23, 6437. [Google Scholar] [CrossRef]
- Jung, Y.H.; Bu, S.Y. Suppression of long chain acyl-CoA synthetase blocks intracellular fatty acid flux and glucose uptake in skeletal myotubes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158678. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, Y.; Xu, P.; Zhu, X.; Zhou, C. l-Lysine and l-arginine inhibit myosin aggregation and interact with acidic amino acid residues of myosin: The role in increasing myosin solubility. Food Chem. 2018, 242, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, D.; Huang, Y.; Chen, L.; Bao, P.; Fang, H.; Zhou, C. L-arginine and L-lysine degrade troponin-T, and L-arginine dissociates actomyosin: Their roles in improving the tenderness of chicken breast. Food Chem. 2020, 318, 126516. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zheng, C.; Zheng, J.; Ma, L.; Ma, X.; Zhong, Y.; Zhao, X.; Li, F.; Guo, Q.; Yin, Y. Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci. China Life Sci. 2022, 66, 1323–1339. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Zhang, X.; Yan, E.; He, L.; Wang, L.; Ma, C.; Zhang, P.; Yin, J. Dietary Valine/Isoleucine Ratio Impact Carcass Characteristics, Meat Edible Quality and Nutritional Values in Finishing Crossbred Duroc × Landrace × Yorkshire Pigs With Different Slaughter Weights. Front. Nutr. 2022, 9, 899871. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Jiao, N.; Qiu, K.; Zhang, X.; Wang, L.; Wang, L.; Yin, J. The coordination of dietary valine and isoleucine on water holding capacity, pH value and protein solubility of fresh meat in finishing pigs. Meat Sci. 2020, 163, 108074. [Google Scholar] [CrossRef]
- Jia, H.; Yang, Y.; Li, M.; Chu, Y.; Song, H.; Zhang, J.; Zhang, D.; Zhang, Q.; Xu, Y.; Wang, J.; et al. Snail enhances arginine synthesis by inhibiting ubiquitination-mediated degradation of ASS1. EMBO Rep. 2021, 22, e51780. [Google Scholar] [CrossRef]
- Lerin, C.; Goldfine, A.B.; Boes, T.; Liu, M.; Kasif, S.; Dreyfuss, J.M.; De Sousa-Coelho, A.L.; Daher, G.; Manoli, I.; Sysol, J.R.; et al. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol. Metab. 2016, 5, 926–936. [Google Scholar] [CrossRef]
- Campos-Ferraz, P.L.; Bozza, T.; Nicastro, H.; Lancha, A.H. Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition 2013, 29, 1388–1394. [Google Scholar] [CrossRef]
Item | WLT | WG | WS |
---|---|---|---|
Hardness (gf) | 1400.61 ± 156.50 b | 2225.13 ± 291.16 a | 1468.88 ± 75.47 b |
Adhesiveness (gf-mm) | 5.27 ± 1.15 a | 3.89 ± 0.72 a | 1.54 ± 0.25 b |
Chewiness (gf) | 289.56 ± 59.70 | 282.15 ± 44.63 | 279.47 ± 12.11 |
Gumminess (gf) | 659.70 ± 95.85 | 691.79 ± 147.35 | 541.77 ± 100.71 |
Elasticity (mm) | 0.45 ± 0.01 ab | 0.51 ± 0.05 a | 0.41 ± 0.05 b |
Cohesiveness | 0.44 ± 0.05 | 0.45 ± 0.05 | 0.45 ± 0.05 |
Resilience | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.08 ± 0.02 |
Shear force (kgf) | 3.34 ± 0.33 | 3.18 ± 0.44 | 3.24 ± 1.00 |
pH | 5.47 ± 0.09 ab | 5.36 ± 0.10 b | 5.55 ± 0.03 a |
L* | 55.53 ± 0.53 b | 58.58 ± 1.26 a | 50.95 ± 5.25 ab |
a* | 17.73 ± 2.35 | 20.63 ± 4.59 | 17.75 ± 1.96 |
b* | 12.68 ± 2.16 | 13.00 ± 2.62 | 13.50 ± 0.78 |
Cooked meat rate (%) | 54.75 ± 0.77 a | 56.50 ± 2.18 a | 48.45 ± 1.39 b |
Water holding capacity (%) | 92.87 ± 1.37 b | 96.82 ± 1.23 a | 96.34 ± 0.71 a |
Amino Acid | WG | WLT | WS |
---|---|---|---|
Asp | 67.09 ± 1.12 | 66.96 ± 0.69 | 90.70 ± 14.35 |
Thr | 31.59 ± 0.75 | 30.88 ± 0.32 | 39.61 ± 5.23 |
Ser | 25.71 ± 0.53 | 26.25 ± 0.34 | 31.44 ± 2.80 |
Glu | 117.88 ± 2.80 | 117.15 ± 1.67 | 161.93 ± 23.38 |
Gly | 32.85 ± 0.99 a | 30.00 ± 0.33 b | 33.64 ± 0.83 a |
Ala | 44.22 ± 0.76 b | 44.44 ± 1.19 b | 48.78 ± 1.99 a |
Cys | 11.22 ± 0.62 b | 10.53 ± 0.46 b | 13.77 ± 0.75 a |
Val | 33.78 ± 0.45 b | 33.67 ± 0.58 b | 36.97 ± 1.28 a |
Met | 18.91 ± 0.88 | 19.72 ± 1.03 | 21.17 ± 1.44 |
Ile | 33.87 ± 0.30 | 33.58 ± 0.67 | 36.08 ± 1.47 |
Leu | 62.55 ± 1.26 ab | 61.38 ± 1.07 b | 64.49 ± 1.82 a |
Tyr | 24.09 ± 0.40 b | 25.08 ± 0.30 b | 27.43 ± 1.29 a |
Phe | 27.65 ± 0.59 b | 27.50 ± 0.51 b | 31.44 ± 1.00 a |
His | 31.68 ± 0.49 ab | 32.54 ± 0.67 a | 31.03 ± 0.69 b |
Lys | 69.33 ± 1.38 | 68.77 ± 1.75 | 69.04 ± 3.64 |
Arg | 45.97 ± 0.69 | 46.37 ± 0.45 | 47.38 ± 1.67 |
Pro | 23.02 ± 0.60 b | 20.98 ± 0.53 b | 28.09 ± 2.52 a |
TAAs | 701.38 ± 8.80 | 695.79 ± 8.89 | 812.96 ± 51.57 |
EAAs | 355.32 ± 4.58 b | 354.40 ± 5.06 b | 377.20 ± 11.09 a |
NEAAs | 346.06 ± 4.24 | 341.39 ± 4.04 | 435.76 ± 45.80 |
BCAAs | 130.21 ± 1.79 b | 128.63 ± 2.22 b | 137.54 ± 4.19 a |
FAAs | 326.91 ± 4.24 | 324.64 ± 3.34 | 403.59 ± 39.52 |
KEGG Pathway | DEPs | Enrichment Ratio |
---|---|---|
WS/WLT | ||
Fatty acid biosynthesis | long-chain-fatty-acid–CoA ligase 6 isoform X1 (ACSL, fadD), malonyl-CoA-acyl carrier protein transacylase, mitochondrial (fabD, MCAT, MCT1), 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial (fabF, OXSM, CEM1), 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial (fabF, OXSM, CEM1) | 0.4 |
TGF-β signaling pathway | fibrillin-1 isoform X2 (FBN1), cullin-1 (CUL1, CDC53), mothers against decapentaplegic homolog 4 (SMAD4), mitogen-activated protein kinase 3 (ERK, MAPK1_3), serine/threonine-protein phosphatase 2A catalytic subunit beta isoform (PPP2C) | 0.36 |
PI3K-Akt signaling pathway | 5′-AMP-activated protein kinase catalytic subunit alpha-2 isoform X2 (PRKAA, AMPK), glycogen [starch] synthase, muscle (GYS), RAC-beta serine/threonine-protein kinase (AKT), integrin alpha-6 isoform X1 (ITGA6, CD49f), laminin subunit alpha-5 isoform X1 (LAMA3_5), eukaryotic translation initiation factor 4B isoform X1 (EIF4B), mitogen-activated protein kinase 3 (ERK, MAPK1_3), serine/threonine-protein phosphatase 2A catalytic subunit beta isoform (PPP2C), heat shock protein HSP 90-alpha (HSP90A, htpG), heat shock protein HSP 90-beta (HSP90A, htpG), hsp90 co-chaperone Cdc37 (CDC37), guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7 (GNG7), 14-3-3 protein eta (YWHAG_H), vitronectin (VTN) | 0.22 |
Adipocytokine signaling pathway | RAC-beta serine/threonine-protein kinase (AKT), long-chain-fatty-acid-CoA ligase 6 isoform X1 (ACSL, fadD), 5′-AMP-activated protein kinase catalytic subunit alpha-2 isoform X2 (PRKAA, AMPK), protein kinase C theta type isoform X1 (PRKCQ), tyrosine-protein phosphatase non-receptor type 11 isoform X1 (PTPN11) | 0.29 |
Arginine biosynthesis | aminoacylase-1 (ACY1), alanine aminotransferase 2 isoform X1 (GPT, ALT), argininosuccinate synthase (argG, ASS1) | 0.3 |
FOXO signaling pathway | 5′-AMP-activated protein kinase catalytic subunit alpha-2 isoform X2 (PRKAA, AMPK), RAC-beta serine/threonine-protein kinase (AKT), mothers against decapentaplegic homolog 4 (SMAD4), mitogen-activated protein kinase 3 (ERK, MAPK1_3), mitogen-activated protein kinase 12 isoform X1 (P38), homer protein homolog 2 isoform X1 (HOMER) | 0.23 |
mTOR signaling pathway | 5′-AMP-activated protein kinase catalytic subunit alpha-2 isoform X2 (PRKAA, AMPK), RAC-beta serine/threonine-protein kinase (AKT), eukaryotic translation initiation factor 4B isoform X1 (EIF4B), mitogen-activated protein kinase 3 (ERK, MAPK1_3), ras-related GTP-binding protein A (RRAGA_B), ras-related GTP-binding protein C (RRAGC_D) | 0.21 |
WG/WLT | ||
Ribosome | 40S ribosomal protein S3a (RP-S3Ae, RPS3A), 40S ribosomal protein S23 (RP-S23e, RPS23), 60S ribosomal protein L10 isoform X1 (RP-L10e, RPL10), 60S ribosomal protein L13 (RP-L13e, RPL13), 60S ribosomal protein L37a isoform X1 (RP-L37Ae, RPL37A) | 0.16 |
Alanine, aspartate, and glutamate metabolism | glutamate dehydrogenase 1, mitochondrial (GLUD1_2, gdhA), glutamine–fructose-6-phosphate aminotransferase [isomerizing] 1 (glmS, GFPT), argininosuccinate synthase (argG, ASS1), omega-amidase NIT2 (NIT2, yafV) | 0.24 |
Arginine biosynthesis | aminoacylase-1 (ACY1), glutamate dehydrogenase 1, mitochondrial (GLUD1_2, gdhA), argininosuccinate synthase (argG, ASS1) | 0.3 |
Valine, leucine, and isoleucine degradation | succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial (OXCT), acetyl-CoA acetyltransferase, mitochondrial isoform X1 (ACAT, atoB), methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial isoform X1 (mmsA, iolA, ALDH6A1), methylmalonyl-CoA mutase, mitochondrial (MUT) aldehyde dehydrogenase family 16 member A1 isoform X1 (ALDH) | 0.15 |
Butanoate metabolism | succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial (OXCT), acetyl-CoA acetyltransferase, mitochondrial isoform X1 (ACAT, atoB) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Qu, H.; Wang, X.; Wang, T.; Ma, Q.; Khan, M.Z.; Zhu, M.; Wang, C.; Liu, W.; Chai, W. Data-Independent Acquisition Method for In-Depth Proteomic Screening of Donkey Meat. Agriculture 2024, 14, 2102. https://doi.org/10.3390/agriculture14122102
Wang L, Qu H, Wang X, Wang T, Ma Q, Khan MZ, Zhu M, Wang C, Liu W, Chai W. Data-Independent Acquisition Method for In-Depth Proteomic Screening of Donkey Meat. Agriculture. 2024; 14(12):2102. https://doi.org/10.3390/agriculture14122102
Chicago/Turabian StyleWang, Liyuan, Honglei Qu, Xinrui Wang, Tianqi Wang, Qiugang Ma, Muhammad Zahoor Khan, Mingxia Zhu, Changfa Wang, Wenqiang Liu, and Wenqiong Chai. 2024. "Data-Independent Acquisition Method for In-Depth Proteomic Screening of Donkey Meat" Agriculture 14, no. 12: 2102. https://doi.org/10.3390/agriculture14122102
APA StyleWang, L., Qu, H., Wang, X., Wang, T., Ma, Q., Khan, M. Z., Zhu, M., Wang, C., Liu, W., & Chai, W. (2024). Data-Independent Acquisition Method for In-Depth Proteomic Screening of Donkey Meat. Agriculture, 14(12), 2102. https://doi.org/10.3390/agriculture14122102