Physiological Responses of Cabernet Sauvignon to Dividing Canopies in the Chihuahuan Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Plant Material and Experimental Design
2.2. Photosynthetically Active Radiation and Daily Light Integral
2.3. Leaf Area
2.4. Number and Dimensions of Stomata, Stomatal Pore and Guard Cell
2.5. Parameters of Photosynthetic Activity and Canopy Architecture
2.6. Berry Quality
2.7. Statistical Analyses
3. Results
3.1. Photosynthetically Active Radiation and Photosynthetic Activity Parameters
3.2. Berry Quality
4. Discussion
4.1. Photosynthetically Active Radiation and Photosynthetic Activity Parameters
4.2. Berry Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liu, X.; Xu, Y.; Wang, Y.; Yang, Q.; Li, Q. Rerouting artificial light for efficient crops production: A review of lighting strategy in PFALs. Agronomy 2022, 12, 1021. [Google Scholar] [CrossRef]
- Jediyi, H.; Naamani, K.; Elkoch, A.A.; Dihazi, A.; El Fels, A.E.; Arkize, W. First study on technological maturity and phenols composition during the ripeness of five Vitis vinifera L. grape varieties in Morocco. Sci. Hortic. 2019, 246, 390–397. [Google Scholar] [CrossRef]
- Emmel, C.; D’Odorico, P.; Revill, A.; Hörtnagl, L.; Ammann, C.; Buchmann, N.; Eugster, W. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Glob. Chang. Biol. 2020, 26, 5164–5177. [Google Scholar] [CrossRef]
- Neo, D.C.J.; Ong, M.M.X.; Lee, Y.Y.; Teo, E.J.; Ong, Q.; Tanoto, H.; Xu, J.; Ong, K.S.; Suresh, V. Shaping and tuning lighting conditions in controlled environment agriculture: A review. ACS Agric. Sci. Technol. 2022, 2, 3–16. [Google Scholar] [CrossRef]
- Torregrosa, L.; Carbonneau, A.; Kelner, J.J. The shoot system architecture of Vitis vinifera ssp. sativa. Sci. Horti-Cult. 2021, 288, 110404. [Google Scholar] [CrossRef]
- Jogaiah, S.; Striegler, K.R.; Bergmeier, E.; Harris, J. Influence of canopy management practices on canopy characteristics, yield, and fruit composition of ‘Norton’ grapes (Vitis aestivalis Michx). Int. J. Fruit Sci. 2013, 13, 441–458. [Google Scholar] [CrossRef]
- Prieto, J.A.; Louarn, G.; Pérez-Peña, J.; Ojeda, H.; Simonneau, T.; Lebon, E. A functional–structural plant model that simulates whole-canopy gas exchange of grapevine plants (Vitis vinifera, L.) under different training systems. An. De Bo-Tánica 2020, 126, 647–660. [Google Scholar] [CrossRef]
- Gao, X.T.; Sun, D.; Wu, M.H.; Li, H.Q.; Liu, F.Q.; He, F.; Pan, Q.H.; Wang, J. Influence of cluster positions in the canopy and row orientation on the flavonoid and volatile compound profiles in Vitis vinifera, L. Cabernet franc and Chardonnay berries. Food Res. Int. 2021, 143, 110306. [Google Scholar] [CrossRef]
- Yu, R.; Torres, N.; Tanner, J.D.; Kacur, S.M.; Marigliano, L.E.; Zumkeller, M.; Gilmer, J.C.; Gambetta, G.A.; Kurtural, S.K. Adapting wine grape production to climate change through canopy architecture manipulation and irrigation in warm climates. Front. Plant Sci. 2022, 13, 1015574. [Google Scholar] [CrossRef]
- Nistor, E.; Dobrei, A.; Dobrei, A.; Ciorica, G. Climate variability and canopy management influence on grape berries quality in Merlot and Pinot Noir varieties. Sci. Pap. Ser. B Hortic. 2020, 64, 299–306. [Google Scholar]
- Greer, D.H.; Ghannoum, O. Changes in photosynthesis and chlorophyll a fluorescence in relation to leaf temperature from just before to after harvest of Vitis vinifera cv. Shiraz vines grown in outdoor conditions. Funct. Plant Biol. 2021, 49, 170–185. [Google Scholar] [CrossRef]
- Wu, Y.S.; Gong, W.Z.; Wang, Y.M.; Yang, W.Y. Shading of mature leaves systemically regulates photosynthesis and leaf area of new developing leaves via hormones. Photosynthetica 2019, 57, 303–310. [Google Scholar] [CrossRef]
- Espinoza, S.; Ortega-Farías, S.; Ahumada-Orellana, L. Characterization of stomatal density and size of different Vitis vinifera, L. cultivars growing in Mediterranean climate conditions. Cienc. Tec. Vitivinic. 2024, 39, 196–208. [Google Scholar] [CrossRef]
- Pereira, G.E.; Padhi, E.M.; Girardello, R.C.; Medina-Plaza, C.; Tseng, D.; Bruce, R.C.; Erdmann, J.N.; Kurtural, S.K.; Slupsky, C.M.; Oberholster, A. Trunk girdling increased stomatal conductance in Cabernet Sauvignon grapevines, reduced glutamine, and increased malvidin-3-glucoside and querce-tin-3-glucoside concentrations in skins and pulp at harvest. Front. Plant Sci. 2020, 11, 707. [Google Scholar] [CrossRef]
- Wang, X.; De Bei, R.; Fuentes, S.; Collins, C. Influence of canopy management practices on canopy architecture and re-productive performance of Semillon and Shiraz grapevines in a hot climate. Am. J. Enol. Vitic. 2019, 70, 360–372. [Google Scholar] [CrossRef]
- Korczynski, P.C.; Logan, J.; Faust, J.E. Mapping monthly distribution of daily light integrals across the contiguous United States. HortTechnology 2002, 12, 12–16. [Google Scholar] [CrossRef]
- Sánchez, C.; Fischer, G.; Sanjuanelo, D.W. Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer]. Agron. Colomb. 2013, 31, 38–47. [Google Scholar]
- Olmedo, L.; Henning, M.F.; Pappalardo, B.; García, S.M.; Pellon-Maison, M. Validation of an enzymatic colorimetric assay for fructose content determination in soft drinks. Rev. Española Nutr. Humana Dietética 2021, 25, 69–77. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- Rescic, J.; Mikulic-Petkovsek, M.; Rusjan, D. The impact of canopy managements on grape and wine composition of cv. ‘Istrian Malvasia’ (Vitis vinifera, L.). J. Sci. Food Agric. 2016, 96, 4724–4735. [Google Scholar] [CrossRef]
- Bubola, M.; Sivilotti, P.; Janjanin, D.; Poni, S. Early leaf removal has a larger effect than cluster thinning on grape phenolic composition in cv. Teran. Am. J. Enol. Vitic. 2017, 68, 234–242. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, T.; Liu, J.; Li, H.; Liu, B. Shade-induced leaf senescence in plants. Plants 2023, 12, 1550. [Google Scholar] [CrossRef]
- Gavhane, K.P.; Hasan, M.; Singh, D.K.; Kumar, S.N.; Sahoo, R.N.; Alam, W. Determination of optimal daily light integral (DLI) for indoor cultivation of iceberg lettuce in an indigenous vertical hydroponic system. Sci. Rep. 2023, 13, 10923. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, L.A.; Spósito, M.B. Influence of the trellis/training system on the physiology and production of Vitis labrusca cv. Niagara Rosada in Brazil. Sci. Hortic. 2020, 261, 109043. [Google Scholar] [CrossRef]
- Durand, M.; Murchie, E.H.; Lindfors, A.V.; Urban, O.; Aphalo, P.J.; Robson, T.M. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agric. For. Meteorol. 2021, 311, 108684. [Google Scholar] [CrossRef]
- Leibar, U.; Aizpurua, A.; Unamunzaga, O.; Pascual, I.; Morales, F. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Photosynth. Res. 2015, 124, 199–215. [Google Scholar] [CrossRef]
- Dechant, B.; Ryu, Y.; Badgley, G.; Zeng, Y.; Berry, J.A.; Zhang, Y.; Goulas, Y.; Li, Z.; Zhang, Q.; Kang, M.; et al. Canopy structure explains the relationship between photo-synthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 2020, 241, 111733. [Google Scholar] [CrossRef]
- Reshef, N.; Walbaum, N.; Agam, N.; Fait, A. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster. Front. Plant Sci. 2017, 8, 70. [Google Scholar] [CrossRef]
- Sebastian, V.; Nicolas, O.; Alvaro, G.; Samuel, O.F. Effect of irrigation management on the relationship between stomatal conductance and stem water potential on cv. Cabernet Sauvignon. BIO Web Conf. 2023, 56, 01012. [Google Scholar] [CrossRef]
- Anić, M.; Osrečak, M.; Andabaka, Ž.; Tomaz, I.; Večenaj, Ž.; Jelić, D.; Kozina, B.; Kontić, J.K.; Karoglan, M. The effect of leaf removal on canopy microclimate, vine performance and grape phenolic composition of Merlot (Vitis vinifera, L.) grapes in the continental part of Croatia. Sci. Hortic. 2021, 285, 110161. [Google Scholar] [CrossRef]
- Herrera, J.C.; Calderan, A.; Gambetta, G.A.; Peterlunger, E.; Forneck, A.; Sivilotti, P.; Hochberg, U. Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. Plant J. 2022, 109, 804–815. [Google Scholar] [CrossRef]
- Munitz, S.; Schwartz, A.; Netzer, Y. Effect of timing of irrigation initiation on vegetative growth, physiology and yield parameters in Cabernet Sauvignon grapevines. Aust. J. Grape Wine Res. 2020, 26, 220–232. [Google Scholar] [CrossRef]
- Munitz, S.; Schwartz, A.; Netzer, Y. Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. ‘Cabernet Sauvignon’ vineyard. Agric. Water Manag. 2019, 219, 86–94. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Zorer, R. Vineyard row orientation of Vitis vinifera, L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016, 228, 104–119. [Google Scholar] [CrossRef]
- Boso, S.; Gago, P.; Alonso-Villaverde, V.; Santiago, J.L.; Martinez, M.C. Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties. Vitis 2016, 55, 17–22. [Google Scholar]
- Speirs, J.; Binney, A.; Collins, M.; Edwards, E.; Loveys, B. Expression of ABA synthesis and metabolism genes under dif-ferent irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera, L. cv Cabernet Sauvignon). J. Exp. Bot. 2013, 64, 1907–1916. [Google Scholar] [CrossRef]
- Zhang, J.; Serra, S.; Leisso, R.S.; Musacchi, S. Effect of light microclimate on the quality of ‘d’Anjou’ pears in mature open-centre tree architecture. Biosyst. Eng. 2016, 141, 1–11. [Google Scholar] [CrossRef]
- Hunter, J.K.; Tarricone, L.; Volschenk, C.; Giacalone, C.; Melo, M.S.; Zorer, R. Grapevine physiological response to row ori-entation-induced spatial radiation and microclimate changes. OENO One 2020, 54, 411–433. [Google Scholar] [CrossRef]
- Römermann, C.; Bucher, S.F.; Hahn, M.; Bernhardt-Römermann, M. Plant functional traits–fixed facts or variable de-pending on the season? Folia Geobot. 2016, 51, 143–159. [Google Scholar] [CrossRef]
- Niimi, J.; Tomic, O.; Næs, T.; Bastian, S.E.; Jeffery, D.W.; Nicholson, E.L.; Maffei, S.M.; Boss, P.K. Objective measures of grape quality: From Cabernet Sauvignon grape composition to wine sensory characteristics. LWT-Food Sci. Technol. 2020, 123, 109105. [Google Scholar] [CrossRef]
- Sams, B.; Bramley, R.G.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote sensing, yield, physical characteristics, and fruit composition variability in Cabernet Sauvignon vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [Google Scholar] [CrossRef]
- González, C.V.; Prieto, J.A.; Mazza, C.; Jeréz, D.N.; Biruk, L.N.; Jofré, M.F.; Giordano, C.V. Grapevine morphological shade acclimation is mediated by light quality whereas hydraulic shade acclimation is mediated by light intensity. Plant Sci. 2021, 307, 110893. [Google Scholar] [CrossRef] [PubMed]
- Furini, G.; de Oliveira Anese, R.; Reinehr, J.; Silva, F.N.; Casa, R.T.; Rufato, L.; Rufato, D.P.; Bogo, A. Ethephon effect on defoliation of cluster zone, Botrytis bunch rot, and viticultural performance of ‘Cabernet Sauvignon’ grapevine in highland region of southern Brazil. Cienc. Rural 2024, 54, e20230207. [Google Scholar] [CrossRef]
- Kyraleou, M.; Kallithraka, S.; Koundouras, S.; Chira, K.; Haroutounian, S.; Spinthiropoulou, H.; Kotseridis, Y. Effect of vine training system on the phenolic composition of red grapes (Vitis vinifera, L. cv. Xinomavro). OENO One 2015, 49, 71–84. [Google Scholar] [CrossRef]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Kurtural, S.K. Optimal ranges and thresholds of grape berry solar radiation for flavonoid biosynthesis in warm climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Güler, S.; Kunter, B.; Şehit, A. Stomatal density, type and their relationships with leaf morphological traits in Vitis vinifera, L. varieties. Int. J. Agric. Environ. Food Sci. 2023, 8, 78–87. [Google Scholar] [CrossRef]
- Sivilotti, P.; Herrera, J.C.; Lisjak, K.; Česnik, H.B.; Sabbatini, P.; Peterlunger, E.; Castellarin, S.D. Impact of leaf removal applied before and after flowering on anthocyanin, tannin, and methoxypyrazine concentrations in ‘Merlot’ (Vitis vinifera, L.) grapes and wines. J. Agric. Food Chem. 2016, 64, 4487–4496. [Google Scholar] [CrossRef]
- Alonso, R.; Muñoz, F.; Bottini, R.; Piccoli, P.; Berli, F.J. Effects of wind exposure and deficit irrigation on vegetative growth, yield components and berry composition of Malbec and Cabernet Sauvignon. Plants 2024, 13, 1292. [Google Scholar] [CrossRef]
- Ontiveros-Capurata, R.E.; Juárez-López, P.; Mendoza-Tafolla, R.O.; Alia-Tejacal, I.; Villegas-Torres, O.G.; Guillén-Sánchez, D.; Cartmill, A.D.; de Wisconsin–Platteville, U. Relationship between chlorophyll and nitrogen concentration, and fresh matter production in basil ‘Nufar’ (Ocimum basilicum) with three handheld chlorophyll meter readings: SPAD, atLEAF and MC-100. Revista Chapingo. Ser. Hortic. 2022, 28, 189–202. [Google Scholar] [CrossRef]
Treatments | PFD | DLI | PR | SC | CI | LA |
---|---|---|---|---|---|---|
9 June 2022 (vegetative growth) | ||||||
Open canopy | 415.9 a | 5.9 a | 8.9 a | 150.1 a | 291.4 a | 97.92 a |
Closed canopy | 266.0 b | 3.8 b | 7.2 b | 140.2 a | 272.1 b | 95.20 b |
22 September 2022 (after harvest) | ||||||
Open canopy | 320.7 a | 4.6 a | 4.2 a | 90.34 a | 304.5 a | 91.39 a |
Closed canopy | 298.6 a | 4.3 a | 3.0 b | 90.82 a | 289.6 b | 90.67 a |
Treatment | Transpiration | H2O/CO2 | LT | AT |
---|---|---|---|---|
9 June 2022 (vegetative growth) | ||||
Open canopy | 6.4 a | 1180.4 b | 35.9 a | 36.9 a |
Closed canopy | 6.0 a | 1760.4 a | 36.2 a | 37.3 a |
22 September 2022 (after harvest) | ||||
Open canopy | 2.9 a | 359.5 a | 32.9 a | 33.2 a |
Closed canopy | 2.8 a | 355.2 b | 32.2 b | 32.4 b |
Treatment | NS mm2 | LS | WS | LSP | SPO | WGC |
---|---|---|---|---|---|---|
Open canopy | 47.5 a | 31.62 a | 24.10 a | 13.62 a | 1.88 a | 8.42 a |
Closed canopy | 47.5 a | 31.35 a | 23.15 a | 15.2 a | 1.55 a | 7.40 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Ordoñez, E.; Cruz-Alvarez, O.; Orozco-Avitia, J.A.; Hernández-Rodríguez, O.A.; Alonso-Villegas, R.; Jacobo-Cuellar, J.L.; Gardea-Bejar, A.A.; Ojeda-Barrios, D.L. Physiological Responses of Cabernet Sauvignon to Dividing Canopies in the Chihuahuan Desert. Agriculture 2024, 14, 2101. https://doi.org/10.3390/agriculture14122101
Hernández-Ordoñez E, Cruz-Alvarez O, Orozco-Avitia JA, Hernández-Rodríguez OA, Alonso-Villegas R, Jacobo-Cuellar JL, Gardea-Bejar AA, Ojeda-Barrios DL. Physiological Responses of Cabernet Sauvignon to Dividing Canopies in the Chihuahuan Desert. Agriculture. 2024; 14(12):2101. https://doi.org/10.3390/agriculture14122101
Chicago/Turabian StyleHernández-Ordoñez, Elizabeth, Oscar Cruz-Alvarez, Jesús Antonio Orozco-Avitia, Ofelia Adriana Hernández-Rodríguez, Rodrigo Alonso-Villegas, Juan Luis Jacobo-Cuellar, Alfonso Antero Gardea-Bejar, and Damaris Leopoldina Ojeda-Barrios. 2024. "Physiological Responses of Cabernet Sauvignon to Dividing Canopies in the Chihuahuan Desert" Agriculture 14, no. 12: 2101. https://doi.org/10.3390/agriculture14122101
APA StyleHernández-Ordoñez, E., Cruz-Alvarez, O., Orozco-Avitia, J. A., Hernández-Rodríguez, O. A., Alonso-Villegas, R., Jacobo-Cuellar, J. L., Gardea-Bejar, A. A., & Ojeda-Barrios, D. L. (2024). Physiological Responses of Cabernet Sauvignon to Dividing Canopies in the Chihuahuan Desert. Agriculture, 14(12), 2101. https://doi.org/10.3390/agriculture14122101