Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education
Abstract
:1. Introduction
- (1)
- To highlight the importance of integrating education for sustainable development (ESD) into agricultural training programs, providing future professionals with the skills to apply bioclimatic principles in crop management.
- (2)
- To evaluate how thermo-ombroclimatic indicators can improve agricultural planning and enhance the resilience of olive crops to climate variability.
- (3)
- To explore the policy implications of using bioclimatic models, offering actionable recommendations for farmers, policymakers, and other stakeholders to adopt sustainable practices.
2. Materials and Methods
2.1. Study Area
2.2. Bioclimatic Caracterization
2.3. Production Data
2.4. Statistical Analyses
3. Results
3.1. Principal Component Analysis (PCA)
3.1.1. Geography and Precipitation
3.1.2. Temperature and Production
3.2. Multiple Linear Regression Analysis
3.2.1. Correlation Matrix
3.2.2. Goodness-of-Fit Statistics
3.2.3. Analysis of Variance (ANOVA)
4. Discussion
Educational and Policy Implications of the Findings
- (a)
- Water Resource Management: The results suggest that excessive or insufficient precipitation impacts yields. Policies could prioritize investment in efficient irrigation systems, particularly in areas where the ombroclimatic index indicates high water stress. Implementing efficient irrigation systems and water conservation practices can mitigate the impact of irregular precipitation patterns on olive yields. This approach is crucial in areas experiencing increased drought frequency due to climate change.
- (b)
- Climate-resilient varieties: The findings support the development of programs to encourage the adoption of drought- and heat-resistant olive cultivars. These programs could be supported by subsidies or incentives targeting farmers in regions prone to extreme weather conditions. Encouraging the adoption of drought- and heat-resistant olive varieties can enhance resilience to extreme weather conditions. Breeding programs focused on developing such cultivars are essential for maintaining productivity under changing climatic scenarios.
- (c)
- Local planning and zoning: The geographical variability observed in this study highlights the importance of zoning agricultural activities based on bioclimatic suitability. Decision-makers could use these data to guide land-use planning, optimizing crop placement for maximum productivity and sustainability.
- (d)
- Agroecological practices: Promoting soil conservation techniques, such as cover cropping and mulching, can improve soil moisture retention and fertility, supporting olive tree health during periods of climatic stress. These practices contribute to the overall sustainability of olive farming systems.
- (e)
- Educational initiatives: Integrating education for sustainable development (ESD) into agricultural training programs equips farmers with the knowledge and skills to apply bioclimatic principles in crop management. This education fosters adaptive capacity and informed decision-making among agricultural communities.
5. Conclusions
- -
- From a policy perspective, these results provide a foundation for developing adaptive agricultural strategies, integrating bioclimatic models into public policies and training programs. Such approaches contribute not only to mitigating the impacts of climate change but also to advancing the transition toward a more sustainable agricultural model.
- -
- For decision-makers, the implementation of these methods offers practical solutions to address the challenges of climatic variability, enabling more precise and region-specific planning. Furthermore, incorporating these insights into educational programs fosters the training of professionals equipped to tackle future challenges, promoting a balance between agricultural productivity and environmental conservation.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Date | 20 April 2018 | 21 April 2018 | 15 May 2022 | 20 May 2018 | 20 May 2018 | 5 April 2024 | 11 May 2024 |
---|---|---|---|---|---|---|---|
Latitude | 37.9361 | 37.9340 | 37.9340 | 37.9361 | 37.9378 | 37.9355 | 37.9355 |
Longitude | −2.9922 | −2.9816 | −2.9816 | −2.9800 | −2.9818 | −2.9774 | −2.9809 |
Altitude | 547 | 742 | 715 | 735 | 775 | ||
Slope (°) | 15.7 | 18 | 24 | 36 | |||
Orientation | N | N | W | NE | NE | W | W |
Sampling area (m2) | 4 | 9 | 9 | 9 | 4 | 4 | 9 |
Vegetation layer cover E1 (%) | 100 | 80 | 100 | 95 | 100 | 100 | 100 |
Height of vegetation layer E1 (cm) | 90 | 60 | 90 | 35 | 75 | 25 | 75 |
Vegetation layer cover E2 (%) | 80 | 70 | 90 | ||||
Height of vegetation layer E2 (cm) | 55 | 30 | 8 | 30 | |||
Vegetation layer cover E3 (%) | 60 | ||||||
Height of vegetation layer E3 (cm) | 1 (Bryophyta sp.) | ||||||
Number of species | 5 | 11 | 18 | 17 | 21 | 11 | 14 |
Aegilops geniculata Roth | 4 | ||||||
Allium roseum L. | + | ||||||
Anacyclus clavatus (Desf.) Pers. | (+) | ||||||
Lysimachia arvensis (L.) U.Manns & Anderb. | + | + | 1 | r | |||
Anchusa azurea Schur | + | ||||||
Anchusa puechii Valdés | r | r | + | + | |||
Andryala integrifolia L. | + | ||||||
Anthyllis vulneraria subsp. gandogeri (Sagorski) W. Becker | 1 | + | |||||
Atractylis cancellata L. | 2 | ||||||
Avena barbata Pott ex Link | 1 | ||||||
Avena sterilis L. | 3 | 1 | |||||
Bituminaria bituminosa (L.) C.H.Stirt. | + | + | + | ||||
Bromus matritensis L. ex Roem. & Schult. | 3 | 2 | 2 | + | 1 | + | |
Bromus sterilis Láng ex Kumm. & Sendtn. | 1 | 3 | |||||
Bromus tectorum L. | 2 | ||||||
Bupleurum rotundifolium L. | 1 | ||||||
Calendula arvensis L. | 1 | 2 | 1 | + | |||
Campanula erinus L. | + | ||||||
Catapodium rigidum (L.) C.E.Hubb. | + | 1 | + | ||||
Centaurea melitensis L. | + | ||||||
Centaurea pullata subsp. pullata L. | (+) | + | |||||
Centranthus calcitrapae (L.) Dufr. | + | ||||||
Cerastium brachypetalum Desp. ex Pers. | r | ||||||
Convolvulus althaeoides L. | + | 2 | |||||
Convolvulus meonanthus Hoffmanns. & Link | (+) | 1 | |||||
Coronilla scorpioides (L.) W.D.J.Koch | 2 | + | 1 | + | |||
Crepis taraxacifolia Willd. | 2 | ||||||
Crepis vesicaria subsp. congenita Babcock | + | ||||||
Crupina vulgaris Pers. ex Cass. | 1 | ||||||
Daucus carota L. | + | ||||||
Echinaria capitata (L.) Desf. | 1 | 2 | |||||
Erodium aethiopicum subsp. pilosum (Thuill.) Guitt. | 1 | ||||||
Erodium malacoides (L.) L’Hér. | + | 1 | |||||
Euphorbia exigua L. | 1 | r | + | ||||
Euphorbia helioscopia L. | + | 1 | + | ||||
Euphorbia minima (Haw.) Mart. | + | ||||||
Euphorbia segetalis L. | + | 1 | |||||
Fedia cornucopiae (L.) Gaertn. | 1 | 2 | |||||
Filago pyramidata L. | + | r | |||||
Fumaria capreolata L. | + | 2 | |||||
Fumaria officinalis L. | 1 | 2 | |||||
Galium aparine L. | 1 | ||||||
Galium minutulum Jord. | + | 1 | r | ||||
Galium parisiense Pall. | r | ||||||
Geranium robertianum L. | 1 | ||||||
Geranium dissectum L. | + | ||||||
Geranium purpureum Gilib. | + | ||||||
Geranium rotundifolium L. | 2 | ||||||
Geropogon hybridus (L.) Sch.Bip. | + | 1 | |||||
Hordeum murinum subsp. leporinum (Link) Arcang. | 4 | ||||||
Lactuca serriola L. | + | + | |||||
Lagoecia cuminoides L. | r | ||||||
Lathyrus cicera L. | + | ||||||
Linaria micrantha (Cav.) Hoffmanns. & Link | + | ||||||
Lolium rigidum Gaudin | 3 | 2 | |||||
Malva hispanica L. | + | ||||||
Matricaria chamomilla L. | r | ||||||
Medicago doliata Carmign. | 1 | 1 | |||||
Medicago minima (L.) Bartal. | 1 | 1 | |||||
Medicago orbicularis (L.) Bartal. | 1 | 1 | |||||
Medicago polymorpha L. | 1 | 1 | |||||
Medicago rigidula (L.) All. | 2 | 1 | 3 | 2 | 5 | 4 | |
Medicago truncatula Gaertn. | + | ||||||
Minuartia hybrida (Vill.) Schischk. | + | ||||||
Muscari neglectum Guss. ex Ten. | + | ||||||
Muscari olivetorum Blanca, Ruíz Rejón & Suár.-Sant. | + | + | + | + | |||
Minuartia hybrida (Vill.) Schischk. | r | + | |||||
Orlaya daucoides (L.) Greuter | + | 1 | |||||
Pallenis spinosa (L.) Cass. | 1 | ||||||
Picnomon acarna (L.) Cass. | r | + | r | ||||
Ranunculus arvensis L. | + | + | + | r | + | ||
Reichardia intermedia (Jan ex DC.) Dinsm. | (+) | 3 | |||||
Rhagadiolus stellatus (L.) Gaertn. | 1 | 2 | |||||
Roemeria hybrida (L.) DC. | + | ||||||
Sagina apetala Ard. | + | ||||||
Sanguisorba minor Scop. | (+) | ||||||
Scandix pecten-veneris L. | + | 1 | 1 | 1 | (+) | 2 | 1 |
Scorpiurus muricatus L. | 1 | 2 | 2 | 3 | |||
Senecio vulgaris L. | + | + | |||||
Sherardia arvensis L. | + | 2 | 2 | + | |||
Silene colorata Fenzl | 1 | (+) | |||||
Sinapis alba subsp. mairei (H. Lindb. fil.) Maire | 4 | 4 | 4 | + | 4 | r | |
Sonchus asper (L.) Hill | 1 | ||||||
Sonchus oleraceus L. | r | ||||||
Sonchus tenerrimus Schur | 1 | + | 2 | ||||
Stellaria media (L.) Vill. | + | 1 | |||||
Thlaspi perfoliatum L. | + | ||||||
Thrincia hispida (L.) Roth | 1 | ||||||
Torilis arvensis (Huds.) Link | 1 | ||||||
Trachynia distachya (L.) Link | 1 | 1 | |||||
Tragopogon hybridus L. | + | ||||||
Urospermum picroides (L.) Scop. ex F.W.Schmidt | 1 | ||||||
Valerianella coronata (L.) DC. | + | ||||||
Valerianella discoidea (L.) Loisel. | 1 | ||||||
Veronica polita Fr. | 1 | + | |||||
Vicia cordata Wulfen ex Hoppe | 1 | 1 | |||||
Vicia lutea L. | + | ||||||
Vicia narbonensis L. | 1 | r | 1 | 1 | 1 |
References
- Daszkiewicz, T. Food Production in the Context of Global Developmental Challenges. Agriculture 2022, 12, 832. [Google Scholar] [CrossRef]
- Miladinov, G. Impacts of Population Growth and Economic Development on Food Security in Low-Income and Middle-Income Countries. Front. Hum. Dyn. 2023, 5, 1121662. [Google Scholar] [CrossRef]
- Becker, S.; Fanzo, J. Population and Food Systems: What Does the Future Hold? Popul. Environ. 2023, 45, 20. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global Food Demand Scenarios for the 21st Century. PLoS ONE 2015, 10, e0139201. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Fuentes, J.C.P.; Cano, E. Analysis of Toxic Contaminants in Agriculture: Educational Strategies to Avoid Their Influence on Food. Res. J. Ecol. Environ. Sci. 2024, 4. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Quinto-Canas, R.; Igbareyeh, J.; Astrid Laface, V.L.; Cano, E. The Teaching of Environmental Sciences in Secondary Education, High School and University to Fight Against Climate Change. In INTERNATIONAL SYMPOSIUM: New Metropolitan Perspectives; Springer International Publishing: Cham, Switzerland, 2022; Volume 482. [Google Scholar]
- Ali, M.A.; Kamraju, M. Land Use and Agriculture. In Natural Resources and Society: Understanding the Complex Relationship Between Humans and the Environment. Earth and Environmental Sciences Library; Springer: Cham, Switzerland, 2023; pp. 115–127. [Google Scholar] [CrossRef]
- Devi, S.; Goswami, S.; Bisaria, J.; Sinha, B. Approaches for Land Restoration: An Alternative Strategy for Climate Change Mitigation. In Forests and Climate Change: Biological Perspectives on Impact, Adaptation, and Mitigation Strategies; Springer Nature: Singapore, 2024; pp. 535–551. [Google Scholar] [CrossRef]
- Akkaya, D.; Bimpikis, K.; Lee, H. Government Interventions to Promote Agricultural Innovation. Manuf. Serv. Oper. Manag. 2021, 23, 437–452. [Google Scholar] [CrossRef]
- Puertas, R.; Marti, L.; Calafat, C. Agricultural and Innovation Policies Aimed at Mitigating Climate Change. Environ. Sci. Pollut. Res. 2023, 30, 47299–47310. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Wang, Z. Agricultural Production Agglomeration and Total Factor Carbon Productivity: Based on NDDF–MML Index Analysis. China Agric. Econ. Rev. 2022, 14, 709–740. Available online: https://www.emerald.com/insight/content/doi/10.1108/caer-02-2022-0035/full/html (accessed on 18 November 2024). [CrossRef]
- Shi, R.; Yao, L.; Zhao, M.; Yan, Z. The Role of Climate-Adaptive Technological Innovation in Promoting Agriculture Carbon Efficiency: Impact and Heterogeneity in Economic Development. Environ. Sci. Pollut. Res. Int. 2023, 30, 126029–126044. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas-Merino, A. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1. [Google Scholar]
- Adaptaciones Del Olivar al Cambio Climático—Blog Agromillora.Com. Available online: https://www.agromillora.com/olint/adaptaciones-del-olivar-al-cambio-climatico/ (accessed on 14 November 2024).
- Ighbareyeh, J.M.H.; Cano-Ortiz, A.; Cano, E. Case Study: Analysis of the Physical Factors of Palestinian Bioclimate. Am. J. Clim. Chang. 2014, 3, 223–231. [Google Scholar] [CrossRef]
- Ighbareyeh, J.M.H.; Cano-Ortiz, A.; Cano, E. Biological and Bioclimatic Basis to Optimize Plant Production: Increased Economic Areas of Palestine. Agric. Sci. Res. J. 2014, 4, 10–20. [Google Scholar]
- del Río, S.; Álvarez-Esteban, R.; Alonso-Redondo, R.; Álvarez, R.; Rodríguez-Fernández, M.P.; González-Pérez, A.; Penas, A. Applications of Bioclimatology to Assess Effects of Climate Change on Viticultural Suitability in the DO León (Spain). Theor. Appl. Clim. 2024, 155, 3387–3404. [Google Scholar] [CrossRef]
- Cano, E.; Cano-Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Ighbareyeh, J.M.H.; Leyva Gea, F.; del Río, S. Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain). In Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 31–69. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Fuentes, J.C.P.; Gea, F.L.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Meireles, C.I.R.; Raposo, M.; Gomes, C.J.P.; Spampinato, G.; del Río González, S.; et al. Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy 2022, 12, 2707. [Google Scholar] [CrossRef]
- Guo, B.; Chen, K.; Jin, G. Does Multi-Goal Policy Affect Agricultural Land Efficiency? A Quasi-Natural Experiment Based on the Natural Resource Conservation and Intensification Pilot Scheme. Appl. Geogr. 2023, 161, 103141. [Google Scholar] [CrossRef]
- Rocamora-Montiel, B.; Glenk, K.; Colombo, S. Territorial Management Contracts as a Tool to Enhance the Sustainability of Sloping and Mountainous Olive Orchards: Evidence from a Case Study in Southern Spain. Land Use Policy 2014, 41, 313–324. [Google Scholar] [CrossRef]
- Arjen, E.; Wals, J.; Kieft, G. Education for Sustainable Development Research Overview. Edita 2010 Art. no. Sida61266en. 2010. ISBN: 978-91-586-4131-0. Available online: https://www.sida.se/en/about-sida/publications-archive/education-for-sustainable-developmentresearch-overview (accessed on 18 November 2024).
- UNESCO Education for Sustainable Development 2023. Available online: https://www.unesco.org/en/sustainable-development/education/esd-net?hub=72522 (accessed on 18 November 2024).
- de Pauw, J.B.; Gericke, N.; Olsson, D.; Berglund, T. The Effectiveness of Education for Sustainable Development. Sustainability 2015, 7, 15693–15717. [Google Scholar] [CrossRef]
- Jordan, C.F. A Systems (Holistic) Approach to Sustainable Agriculture. In An Ecosystem Approach to Sustainable Agriculture. Environmental Challenges and Solutions; Springer: Dordrecht, the Netherlands, 2013; pp. 1–38. [Google Scholar] [CrossRef]
- Caron, P.; Ferrero y de Loma-Osorio, G.; Nabarro, D.; Hainzelin, E.; Guillou, M.; Andersen, I.; Arnold, T.; Astralaga, M.; Beukeboom, M.; Bickersteth, S.; et al. Food Systems for Sustainable Development: Proposals for a Profound Four-Part Transformation. Agron. Sustain. Dev. 2018, 38, 41. [Google Scholar] [CrossRef]
- Bisht, I.S.; Rana, J.C.; Jones, S.; Estrada-Carmona, N.; Yadav, R.; Bisht, I.S.; Rana, J.C.; Jones, S.; Estrada-Carmona, N.; Yadav, R. Agroecological Approach to Farming for Sustainable Development: The Indian Scenario. In Biodiversity of Ecosystems; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Gliessman, S. Defining Agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 599–600. [Google Scholar] [CrossRef]
- Nimmo, E.R.; Nelson, E.; Gómez-Tovar, L.; García, M.M.; Spring, A.; Lacerda, A.E.B.; de Carvalho, A.I.; Blay-Palmer, A. Building an Agroecology Knowledge Network for Agrobiodiversity Conservation. Conservation 2023, 3, 491–508. [Google Scholar] [CrossRef]
- Cano, E.; García Fuentes, A.; Torres, J.A.; Salazar, C.; Melendo, M.; Pinto Gomes, C.; Valle, F. Phytosociologie Appliquée a La Planification Agricole. Colloq. Phytosociol. 1997, 27, 1007–1022. [Google Scholar]
- Cano Ortiz, A. Teaching about Biodiversity from Phytosociology: Evaluation and Conservation. Plant Sociol. 2023, 60, 25–37. [Google Scholar] [CrossRef]
- Dayamba, D.S.; Ky-Dembele, C.; Bayala, J.; Dorward, P.; Clarkson, G.; Sanogo, D.; Diop Mamadou, L.; Traoré, I.; Diakité, A.; Nenkam, A.; et al. Assessment of the Use of Participatory Integrated Climate Services for Agriculture (PICSA) Approach by Farmers to Manage Climate Risk in Mali and Senegal. Clim. Serv. 2018, 12, 27–35. [Google Scholar] [CrossRef]
- Clarkson, G.; Dorward, P.; Osbahr, H.; Torgbor, F.; Kankam-Boadu, I. An Investigation of the Effects of PICSA on Smallholder Farmers’ Decision-Making and Livelihoods When Implemented at Large Scale—The Case of Northern Ghana. Clim. Serv. 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Clarkson, G.; Dorward, P.; Poskitt, S.; Stern, R.D.; Nyirongo, D.; Fara, K.; Gathenya, J.M.; Staub, C.G.; Trotman, A.; Nsengiyumva, G.; et al. Stimulating Small-Scale Farmer Innovation and Adaptation with Participatory Integrated Climate Services for Agriculture (PICSA): Lessons from Successful Implementation in Africa, Latin America, the Caribbean and South Asia. Clim. Serv. 2022, 26, 100298. [Google Scholar] [CrossRef]
- Cleves, A.; Youkhana, E.; Toro, J. A Method to Assess Agroecosystem Resilience to Climate Variability. Sustainability 2022, 14, 8588. [Google Scholar] [CrossRef]
- Chen, Y. Biodiversity and Pest Management in Agroecosystems. J. Environ. Qual. 2005, 34, 729–730. [Google Scholar] [CrossRef]
- Holt-Giménez, E. Measuring Farmers’ Agroecological Resistance after Hurricane Mitch in Nicaragua: A Case Study in Participatory, Sustainable Land Management Impact Monitoring. Agric. Ecosyst. Environ. 2002, 93, 87–105. [Google Scholar] [CrossRef]
- Aich, A.; Dey, D.; Id, A.R. Climate Change Resilient Agricultural Practices: A Learning Experience from Indigenous Communities over India. PLoS Sustain. Transform. 2022, 1, e0000022. [Google Scholar] [CrossRef]
- Shehzad, M.; Zahid, N.; Maqbool, M.; Singh, A.; Liu, H.; Wu, C.; Khan, A.; Wahid, F.; Saud, S. Climate Resilience in Agriculture. In Building Climate Resilience in Agriculture; Springer: Cham, Switzerland, 2022; pp. 67–82. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A Review on Effective Soil Health Bio-Indicators for Ecosystem Restoration and Sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A.; El Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Núñez-Michuy, C.M.; Veloz-Segura, V.T.; Agualongo-Chela, L.M.; Bayas-Romero, E.L. Integración de La Inteligencia Artificial En La Educación Para El Desarrollo Sostenible: Oportunidades y Desafíos. Mag. Las Cienc. Rev. Investig. Innovación 2023, 8, 96–108. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Piñar Fuentes, J.C.; Cano, E. Didactics of Natural Sciences in Higher Scondary Education. IJHSSE 2021, 8, 6–10. [Google Scholar]
- Mendoza-Fernández, A.J.; Martínez-Hernández, F.; Salmerón-Sánchez, E.; Pérez-García, F.J.; Teruel, B.; Merlo, M.E.; Mota, J.F. The Relict Ecosystem of Maytenus Senegalensis Subsp. Europaea in an Agricultural Landscape: Past, Present and Future Scenarios. Land 2020, 10, 1. [Google Scholar] [CrossRef]
- Pereira, A.J.; Porto, M.; Correia, O.; Beja, P. Traditional Ploughing Is Critical to the Conservation of Threatened Plants in Mediterranean Olive Groves. Agric. Ecosyst. Environ. 2024, 359, 108775. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Piñar Fuentes, J.C.; Quinto Canas, R.J.; Pinto Gomes, C.J.; Cano, E. Analysis of the Relationship between Bioclimatology and Sustainable Development. In Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2021; Volume 178. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Ma, W.; Rahut, D.B. Climate-Smart Agriculture: Adoption, Impacts, and Implications for Sustainable Development. Mitig Adapt Strat. Glob. Chang. 2024, 29, 44. [Google Scholar] [CrossRef]
- Mishra, A.K.; Sinha, D.D.; Grover, D.; Roohi Mishra, S.; Tyagi, R.; Sheoran, H.S.; Sharma, S. Regenerative Agriculture as Climate Smart Solution to Improve Soil Health and Crop Productivity Thereby Catalysing Farmers’ Livelihood and Sustainability. In Towards Sustainable Natural Resources: Monitoring and Managing Ecosystem Biodiversity; Rani, M., Chaudhary, B.S., Jamal, S., Kumar, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 295–309. ISBN 978-3-031-06443-2. [Google Scholar]
- Piñar Fuentes, J.C.; Leiva, F.; Cano-Ortiz, A.; Musarella, C.M.; Quinto-Canas, R.; Pinto-Gomes, C.J.; Cano, E. Impact of Grass Cover Management with Herbicides on Biodiversity, Soil Cover and Humidity in Olive Groves in the Southern Iberian. Agronomy 2021, 11, 412. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Font Tullot, I. Climatología de España y Portugal, 2nd ed.; Ediciones Universidad de Salamanca: Salamanca, España, 2000; ISBN 978-84-7800-944-2. [Google Scholar]
- Piñar Fuentes, J.C. Influencia Del Cambio Climático En La Vegetación Andaluza: Especial Referencia a Los Hábitats de Interés Comunitario, Universidad de Jaén, 2023. Available online: https://hdl.handle.net/10953/2496 (accessed on 18 November 2024).
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere 2020, 11, 656. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; del Río, S.; Díaz González, T.E.; Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula. Plant and Vegetation; Springer: Cham, Switzerland, 2017; pp. 29–80. [Google Scholar]
- del Río, S.; Herrero, L.; Fraile, R.; Penas, A. Spatial Distribution of Recent Rainfall Trends in Spain (1961–2006). Int. J. Climatol. 2011, 31, 656–667. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Loidi Arregui, J. Bioclimatology of the Iberian Peninsula. ItineraGeobotánica 1999, 13, 41–47. [Google Scholar]
- Karger, D.N.; Nobis, M.P.; Normand, S.; Graham, C.H.; Zimmermann, N.E. CHELSA-TraCE21k–High-Resolution (1 Km) Downscaled Transient Temperature and Precipitation Data since the Last Glacial Maximum. Clim. Past 2023, 19, 439–456. [Google Scholar] [CrossRef]
- Galán, C.; Vázquez, L.; García-Mozo, H.; Domínguez, E. Forecasting Olive (Olea europaea) Crop Yield Based on Pollen Emission. Field Crops Res. 2004, 86, 43–51. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Salvia, R.; Quaranta, G.; Cudlín, P.; Salvati, L.; Gimenez-Morera, A. Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate 2021, 9, 64. [Google Scholar] [CrossRef]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected Climate Changes Are Expected to Decrease the Suitability and Production of Olive Varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef]
- Guerfel, M.; Baccouri, O.; Boujnah, D.; Chaïbi, W.; Zarrouk, M. Impacts of Water Stress on Gas Exchange, Water Relations, Chlorophyll Content and Leaf Structure in the Two Main Tunisian Olive (Olea europaea L.) Cultivars. Sci. Hortic. 2009, 119, 257–263. [Google Scholar] [CrossRef]
- Moriana, A.; Villalobos, F.J.; Fereres, E. Stomatal and Photosynthetic Responses of Olive (Olea europaea L.) Leaves to Water Deficits. Plant Cell Environ. 2002, 25, 395–405. [Google Scholar] [CrossRef]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F.J. The Effects of Regulated and Continuous Deficit Irrigation on the Water Use, Growth and Yield of Olive Trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Tuzet, A.; Perrier, A.; Leuning, R. A Coupled Model of Stomatal Conductance, Photosynthesis and Transpiration. Plant Cell Environ. 2003, 26, 1097–1116. [Google Scholar] [CrossRef]
- Giorio, P.; Sorrentino, G.; D’Andria, R. Stomatal Behaviour, Leaf Water Status and Photosynthetic Response in Field-Grown Olive Trees under Water Deficit. Environ. Exp. Bot 1999, 42, 95–104. [Google Scholar] [CrossRef]
- De Graaff, J.; Eppink, L.A.A.J. Olive Oil Production and Soil Conservation in Southern Spain, in Relation to EU Subsidy Policies. Land Use Policy 1999, 16, 259–267. [Google Scholar] [CrossRef]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global Scale Climate-Crop Yield Relationships and the Impacts of Recent Warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales-González, J.M.; Yu, Y.; Salvati, L.; Giménez-Morera, A.; Cerdà, A. Long-Term Changes in Rainfed Olive Production, Rainfall and Farmer’s Income in Bailén (Jaén, Spain). EuroMediterr. J. Environ. Integr 2021, 6, 58. [Google Scholar] [CrossRef]
- Bardi, L.; Martins, S.; Pereira, S.; Dinis, L.-T.; Brito, C. Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae 2024, 10, 1066. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Sustainability of Olive Growing in the Mediterranean Area under Future Climate Scenarios: Exploring the Effects of Intensification and Deficit Irrigation. Eur. J. Agron. 2021, 129, 126319. [Google Scholar] [CrossRef]
- Course: Introduction to Climate-Smart Agriculture|FAO Elearning Academy. Available online: https://elearning.fao.org/course/view.php?id=439 (accessed on 22 October 2024).
- Climate Resilient Farmer Field Schools Handbook. Available online: https://ccafs.cgiar.org/resources/publications/climate-resilient-farmer-field-schools-handbook (accessed on 22 October 2024).
- Alvar-Beltrán, J.; Elbaroudi, I.; Gialletti, A.; Heureux, A.; Neretin, L.; Soldan, R. Climate Resilient Practices: Typology and Guiding Material for Climate Risk Screening; FAO: Rome, Italy, 2021; Volume 36. [Google Scholar]
- Free Online Course Teaches Agricultural Resilience|CALS. Available online: https://cals.cornell.edu/news/2021/10/free-online-course-teaches-agricultural-resilience (accessed on 22 October 2024).
- Albizua, A.; Bennett, E.M.; Larocque, G.; Krause, R.W.; Pascual, U. Social Networks Influence Farming Practices and Agrarian Sustainability. PLoS ONE 2021, 16, e0244619. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N. Both Technological Innovations and Cultural Change Are Key to a Sustainability Transition. PLoS Biol. 2023, 21, e3002298. [Google Scholar] [CrossRef] [PubMed]
- Broch, S.W.; Vedel, S.E. Using Choice Experiments to Investigate the Policy Relevance of Heterogeneity in Farmer Agri-Environmental Contract Preferences. Environ. Resour. Econ. 2012, 51, 561–581. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; Van Bavel, R. Behavioural Factors Affecting the Adoption of Sustainable Farming Practices: A Policy-Oriented Review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Climate-Smart Agriculture|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/climate-smart-agriculture/en/ (accessed on 22 October 2024).
- FAO. FAO Strategy on Climate Change 2022–2031; FAO: Rome, Italy, 2022. [Google Scholar]
ID | Period | Mean Production (Kg/Ha) | Coordinates | Altitude | P | T | Geology | Soil |
---|---|---|---|---|---|---|---|---|
Sierra de Cazorla01 | 2010–2023 | 4614 | 37.9353; −2.9783 | 750 | 437 | 14.4 | Limestone and marl | Vertic Cambisols |
Sierra de Cazorla02 | 2010–2023 | 4272 | 37.9743; −2.9963 | 620 | 421 | 14.8 | Sandy limestone, sandstone, sand, and marl | Calcic Cambisols and Regosols |
Finca Los Robledos | 2012–2017 | 5160 | 38.1627; −3.1816 | 500 | 380 | 16.5 | Dolostone, limestone, and oolitic and nodular limestone | Calcic Cambisols and Regosols |
La Loma | 2012–2017 | 5919 | 37.7444; −3.3826 | 891 | 518 | 13.6 | Dolostone, limestone and nodular limestones | Calcic Cambisols with Calcic Luvisols |
Pichilín | 2012–2016 | 3621 | 38.06; −3.2035 | 626 | 410 | 16.0 | Conglomerate, calcarenite, reef limestone, sandstone, and marl with turbiditic beds | Vertic Cambisols and Chromic Vertisols |
El Guijarrillo01 | 2009–2014 | 3215 | 37.5551; −4.8866 | 141 | 579 | 17.7 | Conglomerate, sandstone, and marl | Calcareous Fluvisols |
El Guijarrillo02 | 2009–2014 | 3750 | 37.5551; −4.8866 | 141 | 579 | 17.7 | Conglomerate, sandstone, and marl | Calcareous Fluvisols |
Salido Bajo01 | 2010–2014 | 3288 | 38.2019; −3.3848 | 438 | 403 | 16.5 | Variegated mudstone and gypsum | Calcic Luvisols |
Salido Bajo02 | 2010–2014 | 2813 | 38.2019; −3.3848 | 438 | 403 | 16.5 | Variegated mudstone and gypsum | Calcic Luvisols |
La Mina01 | 2019–2023 | 2300 | 37.3411; −4.7755 | 275 | 599 | 17.3 | Gravel, sand, clay, and silt. | Calcic Luvisols |
La Mina02 | 2019–2023 | 2645 | 37.3411; −4.7755 | 275 | 599 | 17.3 | Gravel, sand, clay, and silt. | Calcic Luvisols |
La Mina03 | 2019–2023 | 1725 | 37.3411; −4.7755 | 275 | 599 | 17.3 | Alluvial deposits, beach, point bars | Chromic Luvisols with Calcareous Regosols |
Carboneros | 2012–2017 | 4667 | 38.21; −3.62 | 476 | 417 | 16.8 | Conglomerate, sand, reef, yellow siltstone | Eutric Cambisols, Chromic Luvisols, and Orthic Luvisols |
F1 | F2 | F3 | |
---|---|---|---|
Eigenvalue | 18.597 | 6.797 | 0.881 |
Variance (%) | 68.877 | 25.175 | 3.264 |
Cumulative % | 68.877 | 94.053 | 97.316 |
Variables | Production (Kg)/Ha Correlation | Axis F1 | Axis F2 | Variables | Production (Kg)/Ha Correlation | Axes F1 | Axes F2 |
---|---|---|---|---|---|---|---|
Lat | 0.516 | 0.904 | 0.385 | P01 | −0.588 | −0.975 | −0.217 |
Long | 0.639 | 0.991 | −0.059 | P02 | −0.502 | −0.937 | −0.348 |
Tp | −0.689 | −0.706 | 0.703 | P03 | −0.323 | −0.796 | −0.6 |
Itc | −0.715 | −0.778 | 0.624 | P04 | −0.336 | −0.806 | −0.579 |
Io | −0.161 | −0.654 | −0.755 | P05 | 0.224 | −0.051 | −0.969 |
Pp | −0.503 | −0.941 | −0.338 | P06 | 0.8 | 0.879 | −0.425 |
P | −0.503 | −0.941 | −0.338 | P07 | 0.723 | 0.969 | −0.222 |
m | −0.763 | −0.866 | 0.495 | P08 | 0.749 | 0.904 | −0.358 |
M | −0.701 | −0.847 | 0.521 | P09 | −0.178 | −0.755 | −0.609 |
Ic | 0.637 | 0.989 | 0.074 | P10 | −0.568 | −0.981 | −0.171 |
Tmin | −0.73 | −0.858 | 0.511 | P11 | −0.591 | −0.986 | −0.156 |
Tmax | −0.307 | −0.008 | 0.976 | P12 | −0.602 | −0.989 | −0.148 |
T | −0.689 | −0.706 | 0.703 |
GL | F | Pr > F | Significance | |
---|---|---|---|---|
Model | 8.000 | 12.094 | 0.015 | * |
Error | 4.000 | |||
Total corregido | 12.000 |
Variable | Value | Standard Error | t | Pr > |t| | Lower Limit (95%) | Upper Limit (95%) | Signification |
---|---|---|---|---|---|---|---|
Itc | 58.628 | 41.919 | 1.399 | 0.234 | −57.757 | 175.012 | ° |
Io | 16.450 | 3.528 | 4.662 | 0.010 | 6.653 | 26.246 | ** |
Ic | 31.342 | 32.611 | 0.961 | 0.391 | −59.200 | 121.884 | ° |
Tmin | 0.000 | 0.000 | |||||
Tmax | −34.553 | 29.599 | −1.167 | 0.308 | −116.733 | 47.627 | ° |
T | 0.000 | 0.000 | |||||
P01 | −17.994 | 9.569 | −1.880 | 0.133 | −44.561 | 8.574 | ° |
P02 | −8.249 | 6.314 | −1.306 | 0.261 | −25.781 | 9.283 | ° |
P10 | 0.000 | 0.000 | |||||
P11 | −3.570 | 4.154 | −0.859 | 0.439 | −15.102 | 7.962 | ° |
P12 | 3.040 | 9.406 | 0.323 | 0.763 | −23.076 | 29.155 | ° |
Statistic | O1—Value | O1—p-Value | O2—Value | O2—p-Value |
---|---|---|---|---|
Box-Pierce (6 DF) | 3.028 | 0.805 | 3.07 | 0.8 |
Ljung-Box (6 DF) | 4.973 | 0.547 | 4.829 | 0.566 |
McLeod-Li (6 DF) | 14.071 | 0.029 | 7.924 | 0.244 |
Box-Pierce (12 DF) | 11.037 | 0.526 | 3.838 | 0.986 |
Ljung-Box (12 DF) | 62.71 | <0.0001 | 7.771 | 0.803 |
McLeod-Li (12 DF) | 28.357 | 0.005 | 11.395 | 0.495 |
Jarque-Bera (2 DF) | 1.561 | 0.458 | 0.623 | 0.732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñar-Fuentes, J.C.; Peña-Martínez, J.; Cano-Ortiz, A. Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education. Agriculture 2024, 14, 2112. https://doi.org/10.3390/agriculture14122112
Piñar-Fuentes JC, Peña-Martínez J, Cano-Ortiz A. Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education. Agriculture. 2024; 14(12):2112. https://doi.org/10.3390/agriculture14122112
Chicago/Turabian StylePiñar-Fuentes, José Carlos, Juan Peña-Martínez, and Ana Cano-Ortiz. 2024. "Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education" Agriculture 14, no. 12: 2112. https://doi.org/10.3390/agriculture14122112
APA StylePiñar-Fuentes, J. C., Peña-Martínez, J., & Cano-Ortiz, A. (2024). Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education. Agriculture, 14(12), 2112. https://doi.org/10.3390/agriculture14122112