Floral Composition and Productivity of Leys and Permanent Grasslands in Baltic Livestock Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Conditions
2.2. Statistics
3. Results and Discussion
3.1. Flora Composition
3.2. DMY Productivity in Leys and Grasslands
3.3. Forage Quality of Leys and Permanent Grasslands
3.4. Differences in Fresh Matter Yield Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Species | Lazdijai | Kėdainiai | Šilutė | Zarasai |
---|---|---|---|---|
Lolium perenne L. | 20 | 10 | 20 | 25 |
Phleum pratense L. | - | - | 20 | 5 |
Festuca pratensis Huds. | 20 | 15 | 20 | 10 |
× Festulolium spp. | - | 15 | 15 | - |
Trifolium repens L. | 15 | 15 | 10 | 5 |
Trifolium pratense L. | 20 | 25 | 10 | 20 |
Poa pratensis L. | 5 | 3 | 5 | 5 |
Medicago sativa L. | 15 | 13 | - | 10 |
Lolium multiflorum var. italicum (Husn.) Beck. | - | 4 | - | - |
Medicago lupulina L. | - | - | - | 5 |
Lotus corniculatus L. | - | - | - | 5 |
Festuca rubra L. | 5 | - | - | 10 |
No. | Species | Kėdainiai Distr. | Zarasai Distr. | Šilalė Distr. | Lazdijai Distr. |
---|---|---|---|---|---|
1 | Achillea millefolium L. | + | + | + | + |
2 | Alchemilla vulgaris L. | + | + | + | + |
3 | Anthoxanthum odoratum L. | + | + | + | + |
4 | Centaurea jacea L | + | + | + | + |
5 | Cerastium holosteoides Fr. | + | + | + | + |
6 | Deschampsia cespitosa (L.) P. Beauv. | + | + | + | + |
7 | Galium mollugo L. | + | + | + | + |
8 | Lathyrus pratensis L. | + | + | + | + |
9 | Leontodon hispidus L. | + | + | + | + |
10 | Lotus corniculatus L | + | + | + | + |
11 | Luzula campestris (L.) DC | + | + | + | + |
12 | Plantago lanceolata L. | + | + | + | + |
13 | Poa pratensis L. | + | + | + | + |
14 | Ranunculus acris L. | + | + | + | + |
15 | Rumex acetosa L. | + | + | + | + |
16 | Veronica chamaedrys L. | + | + | + | + |
17 | Vicia cracca L. | + | + | + | + |
18 | Agrimonia eupatoria L. | + | + | + | + |
19 | Carex hirta L | + | + | + | + |
20 | Dactylis glomerata L. | + | + | + | + |
21 | Elytrigia repens (L.) Nevski | + | + | + | + |
22 | Festuca pratensis Huds. | + | + | + | + |
23 | Festuca rubra L. | + | + | + | + |
24 | Stellaria graminea L. | + | + | + | + |
25 | Taraxacum officinale F. H. Wigg. | + | + | + | + |
26 | Trifolium pratense L. | + | + | + | + |
27 | Trifolium repens L. | + | + | + | + |
28 | Cirsium arvense (L.) Scop. | − | + | + | + |
29 | Holcus lanatus L. | + | − | + | + |
30 | Hypericum perforatum L. | − | + | + | + |
31 | Leucanthemum vulgare Lam. | + | + | − | + |
32 | Phleum pratense L. | + | + | + | − |
33 | Pilosella officinarum F. W. Schultz et Sch. Bip. | + | − | + | + |
34 | Polygala comosa Schkuhr | + | − | + | + |
35 | Potentilla anserina L. | + | − | + | + |
36 | Ranunculus repens L. | + | + | + | − |
347 | Rhinanthus minor L. | + | − | + | + |
38 | Artemisia vulgaris L. | − | − | + | + |
39 | Anthriscus sylvestris (L.) Hoffm. | + | + | − | − |
40 | Barbarea vulgaris W.T. Aiton | − | − | + | + |
41 | Bromus hordaceus L | − | − | + | + |
42 | Carlina vulgaris L | − | − | + | + |
43 | Carum carvi L. | − | − | + | + |
44 | Cichorium intybus L. | − | − | + | + |
45 | Cynosurus cristatus L. | + | + | − | − |
46 | Daucus carota L. | − | − | + | + |
47 | Equisetum arvense L. | + | + | − | − |
48 | Filipendula ulmaria (L.) Maxim. | + | + | − | − |
49 | Hypochaeris radicata L. | + | + | − | − |
50 | Knautia arvensis (L.) Coult. | + | + | − | − |
51 | Medicago falcata L. | − | − | + | + |
52 | Medicago lupulina L. | − | − | + | + |
53 | Plantago major L. | − | + | + | − |
54 | Prunella vulgaris L. | + | + | − | − |
55 | Agrostis capillaris L. | + | − | − | − |
56 | Artemisia campestris L. | + | − | − | − |
57 | Briza media L. | + | − | − | − |
58 | Calamagrostis epigejos (L.) Roth | + | − | − | − |
59 | Campanula glomerata L. | + | − | − | − |
60 | Cardamine pratensis L. | + | − | − | − |
61 | Carex disticha Huds. | + | − | − | − |
62 | Carex flacca Shreb. | + | − | − | − |
63 | Carex nigra (L.) Reichard | + | − | − | − |
64 | Carex panicea L. | + | − | − | − |
65 | Cerastium arvense L. | + | − | − | − |
66 | Dactylorhiza incarnata (L.) Soó | + | − | − | − |
67 | Dactylorhiza longifolia Aver. | + | − | − | − |
68 | Equisetum palustre L. | + | − | − | − |
69 | Festuca trachyphylla (Hack.) Krajina | + | − | − | − |
70 | Filipendula vulgaris Moench. | + | − | − | − |
71 | Galium album Mill. | + | − | − | − |
72 | Galium boreale L | + | − | − | − |
73 | Galium verum L. | + | − | − | − |
74 | Geranium pratense L. | + | − | − | − |
75 | Geum rivale L. | + | − | − | − |
76 | Glechoma hederacea L. | + | − | − | − |
77 | Helictotrichon pubescens (Huds.) Pilg. | + | − | − | − |
78 | Heracleum sibiricum L. | + | − | − | − |
79 | Hylotelephium maximum (L.) Holub | + | − | − | − |
80 | Juncus compresus Jackq | + | − | − | − |
81 | Lysimachia nummularia L. | + | − | − | − |
82 | Phleum phleoides (L.) H. Karst. | + | − | − | − |
83 | Pimpinella saxifraga L. | + | − | − | − |
84 | Plantago media L. | + | − | − | − |
85 | Platanthera bifolia (L.) Rich. | + | − | − | − |
86 | Poa angustifolia L. | + | − | − | − |
87 | Ranunculus polyanthemos L. | + | − | − | − |
88 | Rhamnus catharticus L. | + | − | − | − |
89 | Rhinanthus angustifolius (Scop.) Pollich. | + | − | − | − |
90 | Rumex acetosella L. | + | − | − | − |
91 | Rumex thyrsiflorus Fingerh. | + | − | − | − |
92 | Rubus caesius L. | + | − | − | − |
93 | Saponaria officinalis L | + | − | − | − |
94 | Senecio jacobaea L. | + | − | − | − |
95 | Silene pratensis (Rafn) Godr. | + | − | − | − |
96 | Solidago virgaurea L. | + | − | − | − |
97 | Tanacetum vulgare L. | + | − | − | − |
98 | Thalictrum minus L. | + | − | − | − |
99 | Tragopogon orientalis L. | + | − | − | − |
100 | Tragopogon pratensis L. | + | − | − | − |
101 | Veronica longifolia L. | + | − | − | − |
102 | Agrostis gigantea Roth. | − | + | − | − |
103 | Campanula patula L. | − | + | − | − |
104 | Carex pallescens L. | − | + | − | − |
105 | Fragaria vesca L. | − | + | − | − |
106 | Lychnis flos-cuculi L. | − | + | − | − |
107 | Poa trivialis L. | − | + | − | − |
108 | Ranunculus auricomus L. | − | + | − | − |
109 | Rumex crispus L. | − | + | − | − |
110 | Trifolium dubium Sibth. | − | + | − | − |
111 | Trifolium medium L. | − | + | − | − |
112 | Rumex obtusifolius L. | − | − | + | − |
113 | Silene vulgaris (Moench) Garcke | − | − | + | − |
114 | Veronica serpyllifolia L. | − | − | + | − |
115 | Anthemis tinctoria L. | − | − | − | + |
116 | Arrhenatherum elatius (L.) P.Beauv. ex J. Presl et C.Presl. | − | − | − | + |
117 | Festuca gigantea (L.) Vill. | − | − | − | + |
118 | Medicago sativa | − | − | − | + |
119 | Onobrychis viciifolia Scop. | − | − | − | + |
120 | Ranunculus bulbosus L. | − | − | − | + |
No. | Species | Kėdainiai Distr. | Zarasai Distr. | Šilalė Distr. | Lazdijai Distr. |
---|---|---|---|---|---|
1 | Cirsium arvense (L.) Scop. | − | + | + | + |
2 | Dactylis glomerata L. | + | − | − | + |
3 | Festuca arundinacea Schreb. | + | − | − | − |
4 | Festuca pratensis Huds. | + | + | + | + |
5 | Festuca rubra L. | + | + | + | + |
6 | Lolium petrenne L. | + | + | + | + |
7 | Lotus corniculatus L | + | − | − | − |
8 | Medicago lupulina L. | + | − | + | − |
9 | Medicago sativa L. | + | + | − | + |
10 | Phleum pratense L. | + | + | + | − |
11 | Plantago major L. | − | + | + | − |
12 | Poa pratensis L. | + | + | + | + |
13 | Ranunculus repens L. | + | − | − | − |
14 | Rumex crispus L. | − | + | − | − |
15 | Rumex obtusifolius L. | − | − | + | − |
16 | Stellaria graminea L. | + | − | − | − |
17 | Taraxacum officinale F. H. Wigg. | + | + | + | + |
18 | Trifolium pratense L. | + | + | + | + |
19 | Trifolium repens L. | + | + | + | + |
20 | × Festulolium spp. | + | − | − | − |
References
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Situation of Grasslands in Lithuania. Available online: https://bef.lt/wp-content/uploads/2024/01/Situation-in-Lithuania.pdf (accessed on 5 November 2024).
- Lietuvos Respublikos Žemės Ūkio Ministro Įsakymas. Dėl Lietuvos Kaimo Plėtros 2007–2013 Metų Programos Priemonės “Ankstyvas Pasitraukimas iš Prekinės Žemės Ūkio Gamybos” Įgyvendinimo Taisyklių; Nr. 3D-399; Lietuvos Respublikos Žemės Ūkio Ministro Įsakymas: Vilnius, Lithuania, 2007. [Google Scholar]
- Lithuanian Agriculture Facts and Figures. Semiannual Statistical Report; SE Agricultural Data Center: Vilnius, Lithuania, 2023; No. 1 (31); p. 159. [Google Scholar]
- Lithuanian Agriculture Facts and Figures. Semiannual Statistical Report; SE Agricultural Data Center: Vilnius, Lithuania, 2023; No. 2 (32); p. 152. [Google Scholar]
- Rašomavičius, V. (Ed.) Lietuvos Augalija. Pievos; Šviesa: Kaunas, Lithuania, 1998; p. 269. [Google Scholar]
- Ignatavičius, G.; Ložytė, A. Effects of Agricultural Activities on Grassland Ecosystems in Lithuania. Žemės Ūkio Moksl. 2010, 17, 47–55. [Google Scholar]
- Rūsina, S. (Ed.) Protected Habitat Management Guidelines for Latvia: Seminatural Grasslands; Nature Conservation Agency: Sigulda, Latvia, 2017; p. 456. [Google Scholar]
- Karpavičienė, B.; Marcinkonis, S. Pievų Floros Sudėtis Trešiant Kiauslininkystės Komplektso Nuotekomis. Zemdirb. Agric. 2009, 96, 165–175. [Google Scholar]
- Sendžikaitė, J.; Pakalnis, R. Extensive Use of Sown Meadows: A Tool for Restoration of Botanical Diversity. J. Environ. Eng. Landsc. Manag. 2006, 14, 149–158. [Google Scholar] [CrossRef]
- Hoogeveen, Y.R.; Petersen, J.E.; Gabrielsen, P. Agriculture and Biodiversity in Europe. Background Report to the High-Level European Conference on Agriculture and Biodiversity; STRACO/AGRI 17; Council of Europe/UNEP: Geneva, Switzerland, 2001. [Google Scholar]
- Marcelino, S.M.; Gaspar, P.D.; do Paço, A.; Lima, T.M.; Monteiro, A.; Franco, J.C.; Santos, E.S.; Campos, R.; Lopes, C.M. Agricultural Practices for Biodiversity Enhancement: Evidence and Recommendations for the Viticultural Sector. AgriEngineering 2024, 6, 1175–1194. [Google Scholar] [CrossRef]
- Kadžiulienė, Ž.; Šlepetys, J. Mokslinių Eksperimentų su Daugiametėmis Žolėmis Metodika. In Mokslinės Metodikos Inovatyviems Žemės ir Miškų Mokslų Tyrimams; Lututė: Kaunas, Lithuania, 2013; pp. 278–287. [Google Scholar]
- Braun-Blanquet, J. Plant Sociology; Fuller, G.D.; Conrad, H.S., Translators; McGraw-Hill: New York, NY, USA, 1932; p. 539. [Google Scholar]
- Butkutė, B.; Mašauskienė, A.; Paplauskienė, V. Database Collecting and Development of Calibration Equations of Chemical Composition of Grasses by NIR Spectrometry. Žemdirbystė. Moksl. Darb. 2003, 82, 157–168. [Google Scholar]
- Lietuvos Hidrometeorologijos Tarnyba Prie Aplinkos Ministerijos. Public Database. Available online: https://www.meteo.lt/api (accessed on 5 November 2024).
- R package, version 1.3-7; agricolae: Statistical Procedures for Agricultural Research. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 20 November 2024).
- R package, version 0.7.2; rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Available online: https://cran.r-project.org/web/packages/rstatix/index.html (accessed on 20 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Klimek, S.; Kemmermann, A.R.g.; Hofmann, M.; Isselstein, J. Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors. Biol. Conserv. 2007, 134, 559–570. [Google Scholar] [CrossRef]
- Wilson, J.B.; Peet, R.K.; Dengler, J.; Pärtel, M. Plant species richness: The world records. J. Veg. Sci. 2012, 23, 796–802. [Google Scholar] [CrossRef]
- Pavlů, V.; Hejcman, M.; Pavlů, L.; Gaisler, J. Effect of rotational and continuous grazing on vegetation of an upland grassland in the Jizerské hory Mts., Czech Republic. Folia Geobot. 2003, 38, 21–34. [Google Scholar] [CrossRef]
- Hopkins, A.; Holz, B. Grassland for agriculture and nature conservation: Production, quality, and multi-functionality. Agron. Res. 2006, 4, 3–20. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats–EUR28; European Commission: Brussels, Belgium, 2013; Available online: https://cdr.eionet.europa.eu/help/natura2000/Documents/Int_Manual_EU28.pdf (accessed on 6 November 2024).
- Rodwell, J.S.; Schaminée, J.H.J.; Mucina, L.; Pignatti, S.; Dring, J.; Moss, D. The Diversity of European Vegetation: An Overview of Phytosociological Alliances and Their Relationships to EUNIS Habitats; National Reference Centre for Agriculture, Nature and Fisheries: Wageningen, The Netherlands, 2002. [Google Scholar]
- Preislerová, Z.; Marcenò, C.; Loidi, J.; Bonari, G.; Borovyk, D.; Gavilán, R.G.; Golub, V.; Terzi, M.; Theurillat, J.P.; Argagnon, O.; et al. Structural, ecological and biogeographical attributes of European vegetation alliances. Appl. Veg. Sci. 2024, 27, e12766. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Wright, J.P.; McGill, B.M.; Richardson, C. Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification. PLoS ONE 2011, 6, e16584. [Google Scholar] [CrossRef]
- Šidlauskaitė, G.; Kemešytė, V.; Toleikienė, M.; Kadžiulienė, Ž. Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality. Sustainability 2022, 14, 1182. [Google Scholar] [CrossRef]
- Brophy, C.; Finn, J.A.; Lüscher, A.; Suter, M.; Kirwan, L.; Sebastià, M.; Helgadóttir, Á.; Baadshaug, O.H.; Bélanger, G.; Black, A.; et al. Major Shifts in Species’ Relative Abundance in Grassland Mixtures alongside Positive Effects of Species Diversity in Yield: A Continental-Scale Experiment. J. Ecol. 2017, 105, 1210–1222. [Google Scholar] [CrossRef]
- Raus, J.; Knot, P.; Hrabě, F. Effect of Fertilization and Harvest Frequency on Floristic Composition and Yields of Meadow Stand. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 60, 181–186. [Google Scholar] [CrossRef]
- Ivanov, D.A.; Karaseva, O.V.; Rublyuk, M.V. Study of the Dynamics of Herbs Productivity Based on Long-Term Monitoring Data. Agric. Sci. Eur. N. East 2021, 22, 76–84. [Google Scholar] [CrossRef]
- Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.H.; Yang, W.; Yan, Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy 2022, 12, 1449. [Google Scholar] [CrossRef]
- Jing, J.; Søegaard, K.; Cong, W.-F.; Eriksen, J. Species Diversity Effects on Productivity, Persistence and Quality of Multispecies Swards in a Four-Year Experiment. PLoS ONE 2017, 12, e0169208. [Google Scholar] [CrossRef]
- Helgadóttir, Á.; Suter, M.; Gylfadóttir, T.Ó.; Kristjánsdóttir, T.A.; Lüscher, A. Grass–Legume Mixtures Sustain Strong Yield Advantage over Monocultures under Cool Maritime Growing Conditions over a Period of 5 Years. Ann. Bot. 2018, 122, 337–348. [Google Scholar] [CrossRef]
- Wilkins, P.W.; Humphreys, M.O. Progress in Breeding Perennial Forage Grasses for Temperate Agriculture. J. Agric. Sci. 2003, 140, 129–150. [Google Scholar] [CrossRef]
- Nilsson, J.; El Khosht, F.F.; Bergkvist, G.; Öborn, I.; Tidåker, P. Effect of Short-Term Perennial Leys on Life Cycle Environmental Performance of Cropping Systems: An Assessment Based on Data from a Long-Term Field Experiment. Eur. J. Agron. 2023, 149, 126888. [Google Scholar] [CrossRef]
- Martin, G.; Durand, J.-L.; Duru, M.; Gastal, F.; Julier, B.; Litrico, I.; Louarn, G.; Médiène, S.; Moreau, D.; Valentin-Morison, M.; et al. Role of Ley Pastures in Tomorrow’s Cropping Systems: A Review. Agron. Sustain. Dev. 2020, 40, 17. [Google Scholar] [CrossRef]
- Riesinger, P.; Herzon, I. Variability of Herbage Production in Mixed Leys as Related to Ley Age and Environmental Factors: A Farm Survey. Agric. Food Sci. 2008, 17, 394. [Google Scholar] [CrossRef]
- Malisch, C.S.; Finn, J.A.; Eriksen, J.; Loges, R.; Brophy, C.; Huguenin-Elie, O. The Importance of Multi-Species Grassland Leys to Enhance Ecosystem Services in Crop Rotations. Grass Forage Sci. 2024, 79, 120–134. [Google Scholar] [CrossRef]
- Zhu, J.; Giri, K.; Cogan, N.O.; Smith, K.F.; Jacobs, J.L. Genotype-by-Environment Interaction Analysis of Dry Matter Yield of Perennial Ryegrass Cultivars across South-Eastern Australia Using Factor Analytic Models. Field Crops Res. 2023, 303, 109143. [Google Scholar] [CrossRef]
- Elgersma, A.; Søegaard, K. Changes in Nutritive Value and Herbage Yield during Extended Growth Intervals in Grass–Legume Mixtures: Effects of Species, Maturity at Harvest, and Relationships between Productivity and Components of Feed Quality. Grass Forage Sci. 2018, 73, 78–93. [Google Scholar] [CrossRef]
- Melts, I.; Heinsoo, K. Seasonal Dynamics of Bioenergy Characteristics in Grassland Functional Groups. Grass Forage Sci. 2015, 70, 571–581. [Google Scholar] [CrossRef]
- Weggler, K.; Thumm, U.; Elsaesser, M. Development of Legumes after Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications. Agriculture 2019, 9, 207. [Google Scholar] [CrossRef]
- Thers, H.; Eriksen, J. Annual Protein Yield and Extractable Protein Potentials in Three Legumes and Two Grasses. J. Sci. Food Agric. 2022, 102, 3742–3751. [Google Scholar] [CrossRef]
- Marković, J.; Racić, N.; Bekčić, F.; Lazarević, Đ.; Vasić, T.; Živković, S.; Cekić, B. Lignification as the Major Factor Limiting Red Clover DM and NDF Digestibility. In Proceedings of the 2nd International Symposium on Biotechnology, Faculty of Agronomy in Čačak, University of Kragujevac, Čačak, Serbia, 14–15 March 2024; pp. 75–80. [Google Scholar]
- Huhtanen, P.; Jaakkola, S. Influence of Grass Maturity and Diet on Ruminal Dry Matter and Neutral Detergent Fibre Digestion Kinetics. Arch. Tierernahr. 1994, 47, 153–167. [Google Scholar] [CrossRef]
- Bélanger, G.; McQueen, R.E. Analysis of the Nutritive Value of Timothy Grown with Varying N Nutrition. Grass Forage Sci. 1998, 53, 109–119. [Google Scholar] [CrossRef]
- Duru, M.; Cruz, P.; Theau, J.P. Plant diversity in pastures enhances ecosystem services and resilience. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
- Ammar, H.; López, S.; Bochi-Brum, O.; García, R.; Ranilla, M. Composition and In Vitro Digestibility of Leaves and Stems of Grasses and Legumes Harvested from Permanent Mountain Meadows at Different Stages of Maturity. J. Anim. Feed Sci. 1999, 8, 599–610. [Google Scholar] [CrossRef]
- Michaud, A.; Plantureux, S.; Pottier, E.; Baumont, R. Links between Functional Composition, Biomass Production and Forage Quality in Permanent Grasslands over a Broad Gradient of Conditions. J. Agric. Sci. 2015, 153, 891–906. [Google Scholar] [CrossRef]
- Godlewska, A.; Ciepiela, G.A. Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy 2020, 11, 39. [Google Scholar] [CrossRef]
- Lemežienė, N.; Kanapeckas, J.; Tarakanovas, P.; Nekrošas, S. Analysis of Dry Matter Yield Structure of Forage Grasses. Plant Soil Environ. 2004, 50, 277–282. [Google Scholar] [CrossRef]
- López, I.F.; Valentine, I.; Lambert, M.G.; Hedderley, D.I.; Kemp, P.D. Plant Functional Groups in a Heterogeneous Environment. N. Z. J. Agric. Res. 2006, 49, 439–450. [Google Scholar] [CrossRef]
- Siebenkäs, A.; Schumacher, J.; Roscher, C. Trait Variation in Response to Resource Availability and Plant Diversity Modulates Functional Dissimilarity among Species in Experimental Grasslands. J. Plant Ecol. 2016, 10, 981–993. [Google Scholar] [CrossRef]
Kėdainiai Distr. | Lazdijai Distr. | Šilalės Distr. | Zarasai Distr. | |||||
---|---|---|---|---|---|---|---|---|
Type of grassland | ley | perennial | ley | perennial | ley | perennial | ley | perennial |
Plots number | 16 | 18 | 7 | 11 | 6 | 16 | 14 | 14 |
Area of grassland, ha | 1.5 | 2.0 | 1.29 | 2.75 | 1.74 | 5.95 | 6.65 | 2.6 |
Zarasai | Šilalė | Lazdijai | |
---|---|---|---|
Kėdainiai | 36.27 | 32.69 | 31.13 |
Zarasai | 47.76 | 42.86 | |
Šilalė | 76.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Živatkauskienė, V.; Petrauskas, G.; Kemešytė, V.; Statkevičiūtė, G.; Stukonis, V.; Norkevičienė, E. Floral Composition and Productivity of Leys and Permanent Grasslands in Baltic Livestock Farms. Agriculture 2024, 14, 2115. https://doi.org/10.3390/agriculture14122115
Živatkauskienė V, Petrauskas G, Kemešytė V, Statkevičiūtė G, Stukonis V, Norkevičienė E. Floral Composition and Productivity of Leys and Permanent Grasslands in Baltic Livestock Farms. Agriculture. 2024; 14(12):2115. https://doi.org/10.3390/agriculture14122115
Chicago/Turabian StyleŽivatkauskienė, Vilma, Giedrius Petrauskas, Vilma Kemešytė, Gražina Statkevičiūtė, Vaclovas Stukonis, and Eglė Norkevičienė. 2024. "Floral Composition and Productivity of Leys and Permanent Grasslands in Baltic Livestock Farms" Agriculture 14, no. 12: 2115. https://doi.org/10.3390/agriculture14122115
APA StyleŽivatkauskienė, V., Petrauskas, G., Kemešytė, V., Statkevičiūtė, G., Stukonis, V., & Norkevičienė, E. (2024). Floral Composition and Productivity of Leys and Permanent Grasslands in Baltic Livestock Farms. Agriculture, 14(12), 2115. https://doi.org/10.3390/agriculture14122115