Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review
Abstract
:1. Introduction
- We review the literature on factors influencing soil health and how farmers adopt these practices.
- We provided an overview of how different management practices affect soil health and crop yield by evaluating soil biological indices, soil nutrient availability and chemical composition, and soil physical parameters.
- We evaluate how these practices have affected soil health, biodiversity, and yield and assess soil health that has a high possibility of adoption.
- We provide a concise summary of the main findings from the literature.
2. Concept of Soil Health
3. Soil Health and Ecosystem Services
4. Overview of Global Farming Practices
- Minimize the possibility of erosion by using conservation measures that shield agricultural areas from precipitation and wind.
- Cover the soil as much as possible all year or keep continuous living root systems.
- Minimize compaction and mechanical cultivation.
- Increase organic matter through natural methods while decreasing or eliminating synthetic fertilizer inputs.
- Increase crop diversity.
- Combine livestock with crops. For instance, graze, cover crops, or rotate them gradually.
- Increase soil biodiversity by reducing or removing pesticides, particularly soil fumigants.
5. Major Indicators for Soil Health Assessment
6. Main Effects of Farming Practice Management on Soil Health
6.1. Sustainable Practice and Soil Health
6.1.1. Tillage Systems
Soil Properties Affected | Tillage System | Effect Size | References |
---|---|---|---|
Soil organic carbon (SOC) | Conventional tillage | SOC decreased by 20–22% | [7,96] |
Reduced tillage | SOC increased by 12–28% | [95,99] | |
No tillage | SOC increased by 35% | [95] | |
Bulk density (BD) | Conventional tillage | Reduced BD by 6.4% | [1,94] |
Reduced tillage | Increased BD by 13% | [94,102] | |
No tillage | Reduced BD by 7–10% compared with CT | [94,102] | |
Soil erosion | Conventional tillage | Increased erosion by 70% compared with no till | [100] |
Reduced tillage | Reduced soil erosion soil aggregation | [108] | |
No tillage | Reduced erosion by 40% compared with CT | [100] | |
Soil biodiversity | Conventional tillage | Decreased microbial biomass by 10–15% | [109] |
Reduced tillage | |||
No tillage | Enhanced microbial diversity by 15–25% | [8,102] |
6.1.2. Role of Cover Crops
6.1.3. Role of Crop Rotation
6.1.4. Mulching Management
6.1.5. Organic Amendments
6.1.6. Role of Fertilizer Application
6.1.7. Agroforestry System
6.2. Impact on Yield, Yield Stability, and Farm Profitability
7. Yield Stability
8. Knowledge Gaps
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability
Conflicts of Interest
References
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Ur Rahim, H.; Qaswar, M.; Uddin, M.; Giannini, C.; Herrera, M.L.; Rea, G. Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. Nanomaterials 2021, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, B.; Li, G.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Tariq, M.; Javed, Q.; Naeem, M.; Ahmad, N. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 2023, 10, 100283. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Ansari, M.A.; Valente, D.; Petrosillo, I. Soil carbon dynamics under organic farming: Impact of tillage and cropping diversity. Ecol. Indic. 2023, 147, 109940. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.-K.; Guo, Z.; Li, J.-B.; Tian, C.; Hua, D.-W.; Shi, C.-D.; Wang, H.-Y.; Han, J.-C.; Xu, Y. Effects of conservation tillage on soil physicochemical properties and crop yield in an arid Loess Plateau, China. Sci. Rep. 2020, 10, 4716. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R.; Boast, C.W. The myth of nitrogen fertilization for soil carbon sequestration. Adv. Agron. 2007, 99, 69–134. [Google Scholar] [CrossRef]
- Yadav, M.K.; Kaswala, A.R.; Dubey, P.K. An assessment of Organic and Conventional Farming Practices for Yield, Pest Management and Soil Health. Asian J. Soil Sci. Plant Nutr. 2024, 10, 150–156. [Google Scholar] [CrossRef]
- FAO. ITPS Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; ISBN 978-92-5-109004-6. [Google Scholar]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; in press. [Google Scholar]
- Sharma, P.; Sharma, P.; Thakur, N. Sustainable farming practices and soil health: A pathway to achieving SDGs and future prospects. Discov. Sustain. 2024, 5, 250. [Google Scholar] [CrossRef]
- Wang, P.; Xie, W.; Ding, L.; Zhuo, Y.; Gao, Y.; Li, J.; Zhao, L. Effects of Maize–Crop Rotation on Soil Physicochemical Properties, Enzyme Activities, Microbial Biomass and Microbial Community Structure in Southwest China. Microorganisms 2023, 11, 2621. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; de Jonge, L.W.; Moldrup, P.; Paradelo, M.; Arthur, E. Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma 2022, 425, 116062. [Google Scholar] [CrossRef]
- Schmücker, N.; Lehmann, P.; Duddek, P.; Kirchgessner, N.; Carminati, A.; Nussbaum, M. Bridging the Gap: A Multilevel Approach to Soil Health Assessment across Various Land Uses. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. No. EGU24-18768. [Google Scholar]
- Nunes, M.R.; Veum, K.S.; Parker, P.A.; Holan, S.H.; Karlen, D.L.; Amsili, J.P.; van Es, H.M.; Wills, S.A.; Seybold, C.A.; Moorman, T.B. The soil health assessment protocol and evaluation applied to soil organic carbon. Soil Sci. Soc. Am. J. 2021, 85, 1196–1213. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.A.; Júnior, A.L.; da Costa, C.C.; Victoria, D.D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Arshad, M.A.; Rouf, S.; Abbas, R.N.; Shahbaz, Z.; Aleem, K.; Shahbaz, H.; Pervaiz, R.; Sarwar, A.; Rehman, H.U. Navigating Synergies: A Comprehensive Review of Agroforestry System and Agronomy Crops. Haya Saudi J. Life Sci. 2024, 9, 97–113. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; Deyn, G.; Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Svoray, T. Soil Erosion: The General Problem. In A Geoinformatics Approach to Water Erosion; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Gutierrez, S.; Greve, M.H.; Møller, A.B.; Beucher, A.; Arthur, E.; Normand, S.; de Jonge, L.W.; de Carvalho Gomes, L. A systematic benchmarking framework for future assessments of soil health: An example from Denmark. J. Environ. Manag. 2024, 366, 121882. [Google Scholar] [CrossRef]
- Obade, V.P. Integrating management information with soil quality dynamics to assess agricultural productivity and environmental quality. Geoderma 2019, 337, 804–813. [Google Scholar] [CrossRef]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Achieving zero net land degradation: Challenges and opportunities. J. Arid Environ. 2015, 112, 44–51. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Nath, D.; Laik, R.; Das, A.; Pramanick, B.; Peramaiyan, P.; Singh, S.K.; Kumari, V.; Jatav, S.S.; Sattar, A. Index for refining soil health assessment through multivariate approach under diverse agro-climatic zones in the Indo-Gangetic basin of Bihar. Sci. Total Environ. 2024, 943, 173774. [Google Scholar] [CrossRef] [PubMed]
- Anikwe, M.A.N.; Ife, K. The role of soil ecosystem services in the circular bioeconomy. Front. Soil Sci. 2023, 3, 1209100. [Google Scholar] [CrossRef]
- Zerbe, S. Global Land-Use Development Trends: Traditional Cultural Landscapes Under Threat. In Restoration of Multifunctional Cultural Landscapes; Landscape Series; Springer: Cham, Switzerland, 2022; Volume 30. [Google Scholar] [CrossRef]
- Glenk, K.; Hall, C.; Liebe, U.; Meyerhoff, J. Preferences of Scotch malt whisky consumers for changes in pesticide use and origin of barley. Food Policy 2012, 37, 719–731. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services based on land use change in a typical agricultural watershed. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Chomel, M.; Segura, N.A.; de Castro, F.; Goodall, T.; Magilton, M.; Rhymes, J.M.; Delgado-Baquerizo, M.; Griffiths, R.I.; Baggs, E.M.; et al. Land management shapes drought responses of dominant soil microbial taxa across grasslands. Nat. Commun. 2023, 15, 29. [Google Scholar] [CrossRef]
- Chaudhary, B.; Thakur, R.; Yadav, S.K.; Pradhan, S.; Singh, P. Soil biodiversity and ecosystem resilience: Pathways and mechanisms for a sustainable future. Ecol. Indic. 2024, 156, 110285. [Google Scholar]
- Zheng, B.; Xiao, Z.; Liu, J.; Zhu, Y.; Shuai, K.; Chen, X.; Liu, Y.; Hu, R.; Peng, G.; Li, J.; et al. Vertical differences in carbon metabolic diversity and dominant flora of soil bacterial communities in farmlands. Sci. Rep. 2024, 14, 9445. [Google Scholar] [CrossRef]
- Bai, Z.; Lehmann, J.; Bossio, D.; Kögel-Knabner, I.; Smith, P. Soil organic carbon and ecosystem services: Insights from global biomes. Nat. Rev. Earth Environ. 2024, 5, 155–169. [Google Scholar]
- Zhao, Y.; Liang, J.; Tang, M. Urban soil ecosystem services: Climate regulation and biodiversity conservation. Urban Ecosyst. 2024, 27, 89–102. [Google Scholar]
- Hansen, C.; Meyer, T. Urban soil management for climate adaptation and ecosystem service optimization. Sustainability 2024, 16, 4551. [Google Scholar]
- Feng, J.; Liu, Y.-R.; Eldridge, D.; Huang, Q.; Tan, W.; Delgado-Baquerizo, M. Geologically younger ecosystems are more dependent on soil biodiversity for supporting function. Nat. Commun. 2024, 15, 4141. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Gupta, S.; Sundar, V. Soil organic carbon dynamics in geologically younger ecosystems and biodiversity links. Soil Biol. Biochem. 2024, 165, 108695. [Google Scholar]
- Liu, Z.; Shao, Y.; Cui, Q.; Ye, X.; Huang, Z. ‘Fertile island’ effects on the soil microbial community beneath the canopy of Tetraena mongolica. BMC Plant Biol. 2024, 24, 178. [Google Scholar] [CrossRef]
- Tran, P.; Nguyen, L.; Pham, D. Mitigating drought stress through microbial-mediated soil nutrient cycling. Agric. For. Meteorol. 2024, 329, 109623. [Google Scholar]
- Kihara, J.; Bolo, P.; Kinyua, M.; Nyawira, S.; Sommer, R. Soil health and ecosystem services: Lessons from sub-Saharan Africa. Geoderma 2020, 370, 114342. [Google Scholar] [CrossRef]
- Ortiz, P.; Vargas, J. ‘Fertile island’ effects and soil microbial interactions in arid ecosystems. J. Arid Environ. 2023, 203, 104867. [Google Scholar]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Coleman, D.C.; Geisen, S.; Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology, and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Kapayou, D.G.; Herrighty, E.M.; Hill, C.G.; Camacho, V.C.; Nair, A.; Winham, D.M.; McDaniel, M.D. Reuniting the Three Sisters: Collaborative science with Native growers to improve soil and community health. Agric. Hum. Values 2023, 40, 65–82. [Google Scholar] [CrossRef]
- Gao, L.; Chen, X. Valuation of soil biodiversity in supporting ecosystem services under climate stress. Ecol. Econ. 2023, 197, 107558. [Google Scholar]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Sekaran, U.; Lai, L.; Ussiri, D.A.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security—A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Dönmez, D.; Isak, M.A.; İzgü, T.; Şimşek, Ö. Green Horizons: Navigating the Future of Agriculture through Sustainable Practices. Sustainability 2024, 16, 3505. [Google Scholar] [CrossRef]
- Ile, O.J.; McCormick, H.; Skrabacz, S.; Bhattacharya, S.; Aguilos, M.; Carvalho, H.D.R.; Idassi, J.; Baker, J.; Heitman, J.L.; King, J.S. Integrating Short Rotation Woody Crops into Conventional Agricultural Practices in the Southeastern United States: A Review. Land 2023, 12, 10. [Google Scholar] [CrossRef]
- Reyes, S.R.C.; Miyazaki, A.; Yiu, E.; Saito, O. Enhancing Sustainability in Traditional Agriculture: Indicators for Monitoring the Conservation of Globally Important Agricultural Heritage Systems (GIAHS) in Japan. Sustainability 2020, 12, 5656. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef]
- Muyombano, E.; Espling, M. Land use consolidation in Rwanda: The experiences of small-scale farmers in Musanze District, Northern Province. Land Use Policy 2020, 99, 105060. [Google Scholar] [CrossRef]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Cai, X.; Molden, D.; Mainuddin, M.; Sharma, B.; Ahmad, M.-D.; Karimi, P. Producing more food with less water in a changing world: Assessment of water productivity in 10 major river basins. Water Int. 2011, 36, 42–62. [Google Scholar] [CrossRef]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef] [PubMed]
- Király, G.; Rizzo, G.; Tóth, J. Transition to organic farming: A case from Hungary. Agronomy 2022, 12, 2435. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Jimenez, L.C.Z.; Queiroz, H.M.; Cherubin, M.R.; Ferreira, T.O. Applying the Soil Management Assessment Framework (SMAF) to Assess Mangrove Soil Quality. Sustainability 2022, 14, 3085. [Google Scholar] [CrossRef]
- Queiroz, H.M.; Nóbrega, G.N.; Otero, X.L.; Ferreira, T.O. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves? Mar. Pollut. Bull. 2018, 126, 318–322. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Bastida, F.; Domínguez, S.G.; Toledo, D.M.; Faz, A. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 2015, 1, 173–185. [Google Scholar] [CrossRef]
- Fine, A.K.; van Es, H.M.; Schindelbeck, R.R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Singh, Y.V.; Kant, S.; Singh, S.K.; Sharma, P.K.; Jat, L.K.; Kumar, M.; Shahi, S.K.; Jatav, H.S.; Yadav, R.N. Assessment of physico-chemical characteristics of the soil of Lahar block in Bhind district of Madhya Pradesh (India). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 511–519. [Google Scholar] [CrossRef]
- Subbaiah, P.V. Effect of inorganic and organic sources of nutrients and their conjunctive use on soil health. J. Pharmacogn. Phytochem. 2019, 8, 1352–1357. [Google Scholar]
- Farooq, K.; Bhat, M.A.; Wani, M.A.; Bangroo, S.A.; Nabi, B.B. Effects of Different Land Use Classes on Some Selected Physico-chemical Properties of Soil of District Ganderbal. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 200–206. [Google Scholar] [CrossRef]
- Usharani, K.V.; Roopashree, K.M.; Naik, D. Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 2019, 8, 1256–1267. [Google Scholar]
- Hussain, Z.; Deng, L.; Wang, X.; Cui, R.; Liu, G. A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach. Sustainability 2022, 14, 9300. [Google Scholar] [CrossRef]
- Alwazzan, T.T.; Ati, A.S. Assessment of soil quality and health using some physical and biological properties for fadak farm project. Iraqi J. Agric. Sci. 2024, 55, 1011–1024. [Google Scholar] [CrossRef]
- Mishra, B.; Gyawali, B.R.; Paudel, K.P.; Poudyal, N.C.; Simon, M.F.; Dasgupta, S.; Antonious, G. Adoption of sustainable agriculture practices among farmers in Kentucky, USA. Environ. Manag. 2018, 62, 1060–1072. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Exploring the variability of soil properties as influenced by land use and management practices: A case study in the Upper Blue Nile basin, Ethiopia. Soil Tillage Res. 2020, 200, 104614. [Google Scholar] [CrossRef]
- Zhou, J.; Fong, J.J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 2021, 165, 103970. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Chan, K.Y.; Singh, B.P. Soil organic matter, soil health and climate change. In Soil Health and Climate Change; Springer: Berlin/Heidelberg, Germany, 2011; pp. 87–106. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bastida, F.; Eldridge, D.J.; García, C.; Png, G.K.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Weersink, A.; Vyn, R. Adoption of beneficial management practices to improve soil health. Can. J. Soil Sci. 2022, 102, 825–834. [Google Scholar] [CrossRef]
- Raseduzzaman, M.D.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Irvine, R.; Houser, M.; Marquart-Pyatt, S.T.; Bogar, G.; Bolin, L.G.; Browning, E.G.; Evans, S.E.; Howard, M.M.; Lau, J.A.; Lennon, J.T. Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils. J. Soil Water Conserv. 2023, 78, 82–92. [Google Scholar] [CrossRef]
- Soil Health | NRCS Soils. (n.d.). Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 15 March 2024).
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef]
- Toth, M.; Stumpp, C.; Klik, A.; Strauss, P.; Mehdi-Schulz, B.; Liebhard, G.; Strohmeier, S. Long-term effects of tillage systems on soil health of a silt loam in Lower Austria. Soil Tillage Res. 2024, 241, 106120. [Google Scholar] [CrossRef]
- Acir, N.; Günal, H.; Celik, I.; Barut, Z.B.; Budak, M.; Kılıç, Ş. Effects of long-term conventional and conservational tillage systems on biochemical soil health indicators in the Mediterranean region. Arch. Agron. Soil Sci. 2022, 68, 795–808. [Google Scholar] [CrossRef]
- Collier, S.M.; Green, S.M.; Inman, A.; Hopkins, D.W.; Kendall, H.; Jahn, M.M.; Dungait, J.A.J. Effect of farm management on topsoil organic carbon and aggregate stability in water: A case study from Southwest England, UK. Soil Use Manag. 2020, 37, 49–62. [Google Scholar] [CrossRef]
- Littrell, J.; Xu, S.; Omondi, E.C.; Saha, D.; Lee, J.; Jagadamma, S. Long-term organic management combined with conservation tillage enhanced soil organic carbon accumulation and aggregation. Soil Sci. Soc. Am. J. 2021, 85, 1741–1754. [Google Scholar] [CrossRef]
- Angon, P.B.; Anjum, N.; Akter, M.M.; Kc, S.; Suma, R.P.; Jannat, S. An overview of the impact of tillage and cropping systems on soil health in agricultural practices. Adv. Agric. 2023, 2023, 8861216. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Juhos, K.; Nugroho, P.A.; Jakab, G.; Prettl, N.; Kotroczó, Z.; Szigeti, N.; Szalai, Z.; Madarász, B. A comprehensive analysis of soil health indicators in a long-term conservation tillage experiment. Soil Use Manag. 2024, 40, e12942. [Google Scholar] [CrossRef]
- Khakbazan, M.; Carew, R.; Crittenden, S.; Mohr, R.M.; Biswas, D.K. An economic review of conservation tillage practices: Select case studies from the eastern Prairies of Canada. Can. J. Soil Sci. 2023, 104, 11–21. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Grove, J.; Poffenbarger, H.; Jacobsen, K.; Tao, B.; Zhu, X.; McNear, D. Assessing synergistic effects of no-tillage and cover crops on soil carbon dynamics in a long-term maize cropping system under climate change. Agric. For. Meteorol. 2020, 291, 108090. [Google Scholar] [CrossRef]
- Awe, G.O.; Fontanela, E.; Reichert, J.M. Degree of compaction, aeration, and soil water retention indices of a sugarcane field without soil disturbance after initial tillage. Can. J. Soil Sci. 2023, 104, 91–107. [Google Scholar] [CrossRef]
- Rocco, S.; Munkholm, L.J.; Jensen, J.L. Long-term soil quality and C stock effects of tillage and cover cropping in a conservation agriculture system. Soil Tillage Res. 2024, 241, 106129. [Google Scholar] [CrossRef]
- Lv, L.; Gao, Z.; Liao, K.; Zhu, Q.; Zhu, J. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Jia, L.; Zhao, W.; Zhai, R.; An, Y.; Pereira, P. Quantifying the effects of contour tillage in controlling water erosion in China: A meta-analysis. Catena 2020, 195, 104829. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Iida, K.; Yokota, K.; Isobe, K. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 2020, 10, 6039. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef]
- Carlos, F.S.; Schaffer, N.; Mariot, R.F.; Fernandes, R.S.; Boechat, C.L.; Roesch, L.F.W.; de Oliveira Camargo, F.A. Soybean crop incorporation in irrigated rice cultivation improves nitrogen availability, soil microbial diversity and activity, and growth of ryegrass. Appl. Soil Ecol. 2022, 170, 104313. [Google Scholar] [CrossRef]
- Tian, J.; Dungait, J.A.J.; Hou, R.; Deng, Y.; Hartley, I.P.; Yang, Y.; Kuzyakov, Y.; Zhang, F.; Cotrufo, M.F.; Zhou, J. Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming. Nat. Commun. 2024, 15, 377. [Google Scholar] [CrossRef] [PubMed]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Haruna, S.; Ward, Z.; Cartwright, A.; Wunner, A. Influence of no-till cover crops on the physical and hydraulic properties of a Paleudult. Int. Agrophysics 2023, 37, 189–199. [Google Scholar] [CrossRef]
- Dhakal, M.; Locke, M.A.; Reddy, K.N.; Moore, M.T.; Steinriede, R.W.; Krutz, L.J. Improving soil water storage with no-till cover cropping in the Mississippi River Alluvial Basin. Soil Sci. Soc. Am. J. 2024, 88, 540–556. [Google Scholar] [CrossRef]
- Zhang, H.; Ghahramani, A.; Ali, A.; Erbacher, A. Cover cropping impacts on soil water and carbon in dryland cropping system. PLoS ONE 2023, 18, e0286748. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Idowu, O.J.; Shukla, M.K. Cover cropping enhanced soil aggregation and associated carbon and nitrogen storage in semi-arid silage cropping systems. Catena 2024, 245, 108264. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- DeLaune, P.B.; Mubvumba, P.; Lewis, K.L.; Keeling, J.W. Rye cover crop impacts soil properties in a long-term cotton system. Soil Sci. Soc. Am. J. 2019, 83, 1451–1458. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129A–134A. [Google Scholar] [CrossRef]
- FAO. 2021FAO Soil Biological Properties. 2021. Available online: http://www.fao.org/soils-portal/data-hub/soil-properties/biological-properties/en/ (accessed on 4 September 2021).
- USDA. Cropland In-Field Soil Health Assessment Guide; Soil Health Technical Note No. 450-06; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2020.
- Tang, J.; Mo, Y.; Zhang, J.; Zhang, R. Influence of biological aggregating agents associated with microbial population on soil aggregate stability. Appl. Soil Ecol. 2011, 47, 153–159. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Jasa, P. Do grass and legume cover crops improve soil properties in the long term? Soil Sci. Soc. Am. J. 2019, 83, 1181–1187. [Google Scholar] [CrossRef]
- Tyler, H.L. Winter cover crops and no till management enhance enzyme activities in soybean field soils. Pedobiologia 2020, 81, 150666. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Seufert, V.; Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2019, 2, 378–385. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef]
- Priori, S.; Pellegrini, S.; Vignozzi, N.; Costantini, E.A. Soil physical-hydrological degradation in the root-zone of tree crops: Problems and solutions. Agronomy 2020, 11, 68. [Google Scholar] [CrossRef]
- Iheshiulo, E.M.-A.; Larney, F.J.; Hernandez-Ramirez, G.; Luce, M.S.; Liu, K.; Chau, H.W. Do diversified crop rotations influence soil physical health? A meta-analysis. Soil Tillage Res. 2023, 233, 105781. [Google Scholar] [CrossRef]
- Li, M.; Guo, J.; Ren, T.; Luo, G.; Shen, Q.; Lu, J.; Guo, S.; Ling, N. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agric. Ecosyst. Environ. 2021, 319, 107550. [Google Scholar] [CrossRef]
- Malaspina, M.; Chantre, G.R.; Yanniccari, M. Effect of cover crops mixtures on weed suppression capacity in a dry sub-humid environment of Argentina. Front. Agron. 2024, 5, 1330073. [Google Scholar] [CrossRef]
- Conceição, P.C.; Dieckow, J.; Bayer, C. Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil Tillage Res. 2013, 129, 40–47. [Google Scholar] [CrossRef]
- dos Santos, N.Z.; Dieckow, J.; Bayer, C.; Molin, R.; Favaretto, N.; Pauletti, V.; Piva, J.T. Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Res. 2011, 111, 208–218. [Google Scholar] [CrossRef]
- Garba, I.I.; Bell, L.W.; Chauhan, B.S.; Williams, A. Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems. Agric. Syst. 2024, 214, 103821. [Google Scholar] [CrossRef]
- Bécu, T.; Barot, S.; Lata, J.-C.; Le Roux, X.; Enjalbert, J.; Niboyet, A. Increasing intraspecific diversity of wheat affects plant nutrient contents but not N recovery in the plant-soil system. Basic Appl. Ecol. 2024, 74, 24–34. [Google Scholar] [CrossRef]
- Kussul, N.; Deininger, K.; Shumilo, L.; Lavreniuk, M.; Ali, D.A.; Nivievskyi, O. Biophysical Impact of Sunflower Crop Rotation on Agricultural Fields. Sustainability 2022, 14, 3965. [Google Scholar] [CrossRef]
- Garba, I.I.; Stirling, G.R.; Stirling, A.M.; Williams, A. Cover crop functional types alter soil nematode community composition and structure in dryland crop-fallow rotations. Appl. Soil Ecol. 2024, 194, 105196. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Koehler-Cole, K.; Elmore, R.W.; Francis, C.A.; Shapiro, C.A. Cover crops and soil health in rainfed and irrigated corn: What did we learn after 8 years? Soil Sci. Soc. Am. J. 2023, 87, 1174–1190. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, F. Influence of companion planting on microbial compositions and their symbiotic network in pepper continuous cropping soil. J. Microbiol. Biotechnol. 2023, 33, 760–770. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Wang, Z.; Li, F.; Dai, J.; Li, Q.; Xue, C.; Cao, H.; Wang, S.; Malhi, S.S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M. Mulching effects on soil physical properties. In Encyclopedia of Agrophysics; Springer: Dordrecht, The, Netherlands, 2011; pp. 492–496. [Google Scholar]
- Girona-García, A.; Vieira, D.C.; Silva, J.; Fernández, C.; Robichaud, P.R.; Keizer, J.J. Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis. Earth-Sci. Rev. 2021, 217, 103611. [Google Scholar] [CrossRef]
- Abrantes, J.R.; Prats, S.A.; Keizer, J.J.; de Lima, J.L. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Das, A.; Babu, S.; Singh, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Datta, M.; Yadav, S.K.; Wani, O.A.; Yadav, D. Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas. Sustainability 2022, 14, 12078. [Google Scholar] [CrossRef]
- Tang, M.; Liu, R.; Luo, Z.; Zhang, C.; Kong, J.; Feng, S. Straw Returning Measures Enhance Soil Moisture and Nutrients and Promote Cotton Growth. Agronomy 2023, 13, 1850. [Google Scholar] [CrossRef]
- Ahmad, S.; Zaheer, M.S.; Ali, H.H.; Erinle, K.O.; Wani, S.H.; Iqbal, R.; Okone, O.G.; Raza, A.; Waqas, M.M.; Nawaz, M. Physiological and Biochemical Properties of Wheat (Triticum aestivum L.) Under Different Mulching and Water Management Systems in the Semi-Arid Region of Punjab, Pakistan. Arid. Land Res. Manag. 2021, 36, 181–196. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, X.; Zhang, S.; Li, N.; Zhao, Y.; Bai, W.; Sun, Z.; Zhang, Z. Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland. Agriculture 2024, 14, 1803. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, K.S.; Choudhary, A.K.; Bana, R.S.; Sharma, V.K.; Prasad, S.; Gupta, G.; Choudhary, M.; Pradhan, A.; Rajpoot, S.K.; et al. Energy Budgeting and Carbon Footprints of Zero-Tilled Pigeonpea-Wheat Cropping System under Sole or Dual Crop Basis Residue Mulching and Zn-Fertilization in a Semi-Arid Agro-Ecology. Energy 2021, 231, 120862. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, B.; Liu, B.; Wang, J.; Zhang, H. Effects of Straw Return Rate on Soil Physicochemical Properties and Yield in Paddy Fields. Agronomy 2024, 14, 1668. [Google Scholar] [CrossRef]
- Yisfah, T.; Grum, B.; Aregay, G. Comparison of Different Mulching Options for Improving Water Productivity and Maize Yield in a Semi-Arid Climate, Northern Ethiopia, Tigray. Discov. Agric. 2023, 1, 5. [Google Scholar] [CrossRef]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of three types of organic fertilizers on greenhouse gas emissions in a grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Guo, L.; Nie, Z.; Zhou, J.; Zhang, S.; An, F.; Zhang, L.; Tóth, T.; Yang, F.; Wang, Z. Effects of Different Organic Amendments on Soil Improvement, Bacterial Composition, and Functional Diversity in Saline–Sodic Soil. Agronomy 2022, 12, 2294. [Google Scholar] [CrossRef]
- Goss, M.J.; Tubeileh, A.; Goorahoo, D. A review of the use of organic amendments and the risk to human health. Adv. Agron. 2013, 120, 275–379. [Google Scholar] [CrossRef]
- Marín-Martínez, A.; Sanz-Cobeña, A.; Bustamante, M.A.; Agulló, E.; Paredes, C. Effect of Organic Amendment Addition on Soil Properties, Greenhouse Gas Emissions and Grape Yield in Semi-Arid Vineyard Agroecosystems. Agronomy 2021, 11, 1477. [Google Scholar] [CrossRef]
- Oueriemmi, H.; Kidd, P.S.; Trasar-Cepeda, C.; Rodríguez-Garrido, B.; Zoghlami, R.I.; Ardhaoui, K.; Prieto-Fernández, Á.; Moussa, M. Evaluation of composted organic wastes and farmyard manure for improving fertility of poor sandy soils in arid regions. Agriculture 2021, 11, 415. [Google Scholar] [CrossRef]
- Ortiz, C.; Yagüe, M.R.; Valdez, A.S.; Molina, M.G.; Bosch-Serra, À.D. Sustainability of organic fertilizers use in dryland Mediterranean agriculture. Agriculture 2024, 14, 1301. [Google Scholar] [CrossRef]
- Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of cultivating rice and wheat with and without organic fertilizer application on greenhouse gas emissions and soil quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. [Google Scholar] [CrossRef]
- Kurniawati, A.; Toth, G.; Ylivainio, K.; Toth, Z. Opportunities and Challenges of Bio-Based Fertilizers Utilization for Improving Soil Health. Org. Agric. 2023, 13, 335–350. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Xu, F.; Du, J.; Tian, X.; Shi, J.; Wei, G. Organic Amendments Affect Soil Organic Carbon Sequestration and Fractions in Fields with Long-Term Contrasting Nitrogen Applications. Agric. Ecosyst. Environ. 2021, 322, 107643. [Google Scholar] [CrossRef]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Shahzad, S.M. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils: A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Herencia, J.; García-Galavís, P.; Maqueda, C. Long-term effect of organic and mineral fertilization on soil physical properties under greenhouse and outdoor management practices. Pedosphere 2011, 21, 443–453. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Panagea, I.S.; Berti, A.; Čermak, P.; Diels, J.; Elsen, A.; Kusá, H.; Piccoli, I.; Poesen, J.; Stoate, C.; Tits, M.; et al. Soil water retention as affected by management induced changes of soil organic carbon: Analysis of long-term experiments in Europe. Land 2021, 10, 1362. [Google Scholar] [CrossRef]
- Barquero, M.; Cazador, C.; Ortiz-Liébana, N.; Zotti, M.; Brañas, J.; González-Andrés, F. Fertilising Maize with Bio-Based Mineral Fertilisers Gives Similar Growth to Conventional Fertilisers and Does Not Alter Soil Microbiome. Agronomy 2024, 14, 916. [Google Scholar] [CrossRef]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Stanojković-Sebić, A.; Miladinović, V.; Stajković-Srbinović, O.; Pivić, R. Response of Arugula to Integrated Use of Biological, Inorganic, and Organic Fertilization. Microorganisms 2024, 12, 1334. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wu, Y.; He, G.; Wen, S.; Yang, L.; Ji, L. Fertilization regime changes rhizosphere microbial community assembly and interaction in Phoebe bournei plantations. Appl. Microbiol. Biotechnol. 2024, 108, 417. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Huang, F.; Luo, D.; Liu, Z.; Han, M.; Zhao, Z.; Sun, X. Oilseed flax cultivation: Optimizing phosphorus use for enhanced growth and soil health. Front. Plant Sci. 2024, 15, 1432875. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Bier, R.; Li, X.; Daniels, M.; Smith, A.; Yu, L.; Kan, J. Agricultural practices influence soil microbiome assembly and interactions at different depths identified by machine learning. Commun. Biol. 2024, 7, 1349. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A. Effects of Combined Fertilization on Arugula Yield and Soil Microbial Health. J. Hortic. Res. 2021, 15, 25. [Google Scholar]
- Zhao, Z.; Lu, C.; Li, X. Organic carbon accumulation and aggregate formation in soils under organic and inorganic fertilizer management practices in a rice–wheat cropping system. Sci. Rep. 2023, 13, 3665. [Google Scholar] [CrossRef]
- Chauhan, Z.Y.; Shah, S.N.; Patel, K.C.; Shroff, J.C.; Patel, H.K. Optimizing integrated nutrient management for sustainable maize–sesame cropping in Gujarat Plains: A soil health perspective. Soil Sci. Soc. Am. J. 2024. [Google Scholar] [CrossRef]
- Krevh, V.; Filipović, L.; Petošić, D.; Mustać, I.; Bogunović, I.; Butorac, J.; Kisić, I.; Defterdarović, J.; Nakić, Z.; Kovač, Z.; et al. Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D. Agric. Water Manag. 2023, 275, 108039. [Google Scholar] [CrossRef]
- Buthelezi, K.; Buthelezi-Dube, N. Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil. Heliyon 2022, 8, e08690. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, S.; Hua, K.; Yin, Y.; Chu, H.; Wang, D.; Guo, X. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl. Soil Ecol. 2020, 149, 103510. [Google Scholar] [CrossRef]
- Hammad, H.M.; Khaliq, A.; Abbas, F.; Farhad, W.; Fahad, S.; Aslam, M.; Shah, G.M.; Nasim, W.; Mubeen, M.; Bakhat, H.F. Comparative effects of organic and inorganic fertilizers on soil organic carbon and wheat productivity under arid region. Commun. Soil Sci. Plant Anal. 2020, 51, 1406–1422. [Google Scholar] [CrossRef]
- Salem, M.A.; Bedade, D.K.; Al-Ethawi, L. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6, e05224. [Google Scholar] [CrossRef] [PubMed]
- Aryal, K.; Maraseni, T.; Apan, A. Transforming agroforestry in contested landscapes: A win-win solution to trade-offs in ecosystem services in Nepal. Sci. Total Environ. 2023, 857, 159301. [Google Scholar] [CrossRef] [PubMed]
- Dmuchowski, W.; Baczewska-Dąbrowska, A.H.; Gworek, B. The role of temperate agroforestry in mitigating climate change: A review. For. Policy Econ. 2024, 159, 103136. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A.; Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Biological nitrogen fixation and mycorrhizal associations in agroforestry. In Tropical Agroforestry; Springer: Dordrecht, The, Netherlands, 2014; pp. 173–202. [Google Scholar]
- Ntawuruhunga, D.; Ngowi, E.E.; Mangi, H.O.; Salanga, R.J.; Shikuku, K.M. Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn’t work, and why. For. Policy Econ. 2023, 150, 102937. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry systems for soil health improvement and maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Amponsah-Doku, B.; Daymond, A.; Robinson, S.; Atuah, L.; Sizmur, T. Improving soil health and closing the yield gap of cocoa production in Ghana—A review. Sci. Afr. 2022, 15, e01075. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter content and crop yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M.; Abdel-Azeem, A.M.; Ahluwalia, A.S.; Saxena, A.K. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Knapp, S.; van der Heijden, M.G. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 2018, 9, 3632. [Google Scholar] [CrossRef] [PubMed]
- Bruns, M.A.; Couradeau, E. Sustainable soil health. In Plant Biotechnology: Experience and Future Prospects; Springer International Publishing: Cham, Switzerland, 2021; pp. 181–202. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yoder, D.C.; Jagadamma, S.; Walker, F.R.; Yin, X.; Arelli, P. Management duration controls the synergistic effect of tillage, cover crop, and nitrogen rate on cotton yield and yield stability. Agric. Ecosyst. Environ. 2020, 301, 107007. [Google Scholar] [CrossRef]
- Thorsøe, M.H.; Keesstra, S.; De Boever, M.; Buchová, K.; Bøe, F.; Castanheira, N.L.; Chenu, C.; Cornu, S.; Don, A.; Fohrafellner, J.; et al. Sustainable soil management: Soil knowledge use and gaps in Europe. Eur. J. Soil Sci. 2023, 74, e13439. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Chapter One—Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar] [CrossRef]
- Mason, E.; Löbmann, M.; Matt, M.; Sharif, I.; Maring, L.; Ittner, S.; Bispo, A. Knowledge needs and gaps on soil and land management. Inrae Zalf 2023, 108, hal-04453703. [Google Scholar]
Physical | Chemical | Biological |
---|---|---|
Soil texture Soil structure Soil water characteristics Soil depth Porosity Soil consistency Water-holding capacity …etc. | Soil organic carbon Soil pH CEC Plant nutrients Bas saturation Soil salinity etc. | Enzymatic activity Mineralization Nitrification Nitrogen Fixation Denitrification Carbon cycle Biodiversity |
Cover Crop | Effect on Soil Properties | Reference |
---|---|---|
Leguminous Crops | Increased nitrogen content improved soil structure and moisture retention | [71,113,125] |
Rye | Enhanced soil organic matter, reduced soil erosion, improved water infiltration | [116,118] |
Oats | Enhanced soil fertility, increased soil porosity, reduced weed pressure | [115] |
Vetch | Significant nitrogen fixation, improved soil structure, increased earthworm activity, improves soil water infiltration | [112,117] |
Mixed Cover | Synergistic effects include increased biodiversity and resilience to stresses | [113,117] |
Radish | Biodrilling; improvements in soil aeration; increased nutrient uptake | [123,124] |
Winter wheat | Enhanced soil health parameters in surface soils | [126] |
Basic | Organic | Inorganic |
---|---|---|
Meaning | It is a natural material derived from decaying plant and animal waste that can be applied to the soil to improve its fertility | It is a chemical or man-made material that can be put to soil to increase productivity and improve fertility |
Preparation | Prepared in fields | Factory-produced materials |
Humus | It supplies the soil with humus | It does not provide the soil with humus |
Nutrients | Plant nutrients are quite limited | Reich in plant nutrients |
Side effect | It does not have any adverse impacts and, in fact, makes the soil better physically | It harms organisms, distorts the ecosystem of the land, and contaminates groundwater |
Safety | Safe | Harmful |
Cost | Cost effective | Expensive |
Example | Compost, green manure, biochar | Nitrogen fertilizers, phosphorous fertilizers, potassium fertilizers, sulfur, calcium, and magnesium fertilizers, and micronutrient fertilizers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, E.; Szlatenyi, D.; Csenki, S.; Alrwashdeh, J.; Czako, I.; Láng, V. Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture 2024, 14, 2114. https://doi.org/10.3390/agriculture14122114
Omer E, Szlatenyi D, Csenki S, Alrwashdeh J, Czako I, Láng V. Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture. 2024; 14(12):2114. https://doi.org/10.3390/agriculture14122114
Chicago/Turabian StyleOmer, Elsadig, Dora Szlatenyi, Sándor Csenki, Jomana Alrwashdeh, Ivan Czako, and Vince Láng. 2024. "Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review" Agriculture 14, no. 12: 2114. https://doi.org/10.3390/agriculture14122114
APA StyleOmer, E., Szlatenyi, D., Csenki, S., Alrwashdeh, J., Czako, I., & Láng, V. (2024). Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture, 14(12), 2114. https://doi.org/10.3390/agriculture14122114