Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations
Abstract
:1. Introduction
1.1. Background on Drought and Its Global Impact
1.2. Importance of Drought Tolerance in Agriculture and Ecology
1.3. Role of Microbes in Plant Health and Stress Tolerance
1.4. Objectives and Scope of Review
2. Literature Review Methodology
2.1. Overview of the Methodology
2.2. Search Strategy
- PubMed: For articles focusing on the biological and ecological aspects of beneficial microbes and their role in drought tolerance.
- Web of Science: To access a broad range of multidisciplinary studies on agriculture, environmental sciences, and microbial ecology.
- Scopus: For comprehensive coverage of peer-reviewed literature in the fields of microbiology, agriculture, and biotechnology.
- Google Scholar: To supplement the search with the gray literature and access a wider array of scientific publications, including conference proceedings and dissertations.
2.3. Inclusion and Exclusion Criteria
- Studies published in peer-reviewed journals from 2000 onwards.
- Research that focused on the use of beneficial microbes in agricultural and environmental drought tolerance.
- Both experimental studies and review articles were included.
- Only studies available in English were considered.
- Articles that focused on non-agricultural or non-ecological contexts without a direct link to drought resilience.
- Studies that did not include original research data or lacked scientific rigor.
2.4. Data Extraction and Analysis
2.5. Quality Assessment
2.6. Synthesis of Findings
- Mechanisms of microbe-mediated drought tolerance.
- Ecological innovations utilizing beneficial microbes.
- Agricultural applications and case studies demonstrating practical impacts.
- Challenges and future research directions.
3. Types of Beneficial Microbes for Drought Tolerance
3.1. Plant Growth-Promoting Rhizobacteria (PGPR)
3.2. Mycorrhizal Fungi
3.3. Endophytes
3.4. Other Beneficial Microorganisms
4. Mechanisms of Microbe-Mediated Drought Tolerance
4.1. Osmotic Adjustment and Water Retention
4.2. Enhancement of Root System Architecture
4.3. Production of Phytohormones
4.4. Induction of Antioxidant Defense Systems
4.5. Regulation of Gene Expression Related to Stress Response
5. Ecological Innovations Utilizing Beneficial Microbes
5.1. Soil Microbiome Engineering
5.2. Bioaugmentation and Inoculant Applications
5.3. Integrated Pest Management and Microbe Synergies
5.4. Sustainable Agricultural Practices Incorporating Microbes
6. Agricultural Innovations and Applications
6.1. Seed Coating and Soil Amendments with Beneficial Microbes
6.2. Microbial Consortia for Crop Improvement
6.3. Precision Agriculture and Microbe Monitoring
6.4. Case Studies of Successful Microbe-Based Drought Mitigation
7. Challenges and Limitations
7.1. Environmental Variability and Microbe Efficacy
7.2. Scale-Up and Commercialization Issues
7.3. Regulatory and Safety Considerations
7.4. Understanding Microbe–Plant–Environment Interactions
7.5. Economic Impact and Socio-Economic Barriers
8. Future Perspectives and Research Directions
8.1. Advances in Genomics and Microbiome Analysis
8.2. Synthetic Biology and Microbe Engineering
8.3. Enhancing Microbe Resilience and Functionality
8.4. Policy and Collaborative Efforts for Implementation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in Broadening Its Understanding. WIREs Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Belle, J.A.; Orimoloye, Y.M.; Olusola, A.O.; Ololade, O.O. Drought: A Common Environmental Disaster. Atmosphere 2022, 13, 111. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased Economic Drought Impacts in Europe with Anthropogenic Warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Savelli, E.; Rusca, M.; Cloke, H.; Di Baldassarre, G. Drought and Society: Scientific Progress, Blind Spots, and Future Prospects. WIREs Clim. Change 2022, 13, e761. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Drought and Its Impacts on Small-Scale Farmers in Sub-Saharan Africa: A Review. S. Afr. Geogr. J. 2021, 103, 319–341. [Google Scholar] [CrossRef]
- Salvador, C.; Nieto, R.; Linares, C.; Díaz, J.; Gimeno, L. Effects of Droughts on Health: Diagnosis, Repercussion, and Adaptation in Vulnerable Regions under Climate Change. Challenges for Future Research. Sci. Total Environ. 2020, 703, 134912. [Google Scholar] [CrossRef]
- Patil, R.; Polisgowdar, B.S.; Rathod, S.; Bandumula, N.; Mustac, I.; Srinivasa Reddy, G.V.; Wali, V.; Satishkumar, U.; Rao, S.; Kumar, A.; et al. Spatiotemporal Characterization of Drought Magnitude, Severity, and Return Period at Various Time Scales in the Hyderabad Karnataka Region of India. Water 2023, 15, 2483. [Google Scholar] [CrossRef]
- Palazzolo, N.; Peres, D.J.; Bonaccorso, B.; Cancelliere, A. A Probabilistic Analysis of Drought Areal Extent Using SPEI-Based Severity-Area-Frequency Curves and Reanalysis Data. Water 2023, 15, 3141. [Google Scholar] [CrossRef]
- Nasir, J.; Assefa, E.; Zeleke, T.; Gidey, E. Meteorological Drought in Northwestern Escarpment of Ethiopian Rift Valley: Detection Seasonal and Spatial Trends. Environ. Syst. Res. 2021, 10, 16. [Google Scholar] [CrossRef]
- Ullah, I.; Ma, X.; Ren, G.; Yin, J.; Iyakaremye, V.; Syed, S.; Lu, K.; Xing, Y.; Singh, V.P. Recent Changes in Drought Events over South Asia and Their Possible Linkages with Climatic and Dynamic Factors. Remote Sens. 2022, 14, 3219. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought Tolerance Strategies in Plants: A Mechanistic Approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Park, S.; Mir, R.A.; Mushtaq, M.; Bhat, B.; Mahmoudi, H.; Bae, H. Deciphering the Plant Microbiome to Improve Drought Tolerance: Mechanisms and Perspectives. Environ. Exp. Bot. 2022, 201, 104933. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant Survival under Drought Stress: Implications, Adaptive Responses, and Integrated Rhizosphere Management Strategy for Stress Mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Więcław, H. Within-Species Variation among Populations of the Carex flava Complex as a Function of Habitat Conditions. Plant Ecol. Divers. 2017, 10, 443–451. [Google Scholar] [CrossRef]
- Decunta, F.A.; Pérez, L.I.; Malinowski, D.P.; Molina-Montenegro, M.A.; Gundel, P.E. A Systematic Review on the Effects of Epichloë Fungal Endophytes on Drought Tolerance in Cool-Season Grasses. Front. Plant Sci. 2021, 12, 644731. [Google Scholar] [CrossRef]
- Aslam, M.M.; Okal, E.J.; Idris, A.L.; Qian, Z.; Xu, W.; Karanja, J.K.; Wani, S.H.; Yuan, W. Rhizosphere Microbiomes Can Regulate Plant Drought Tolerance. Pedosphere 2022, 32, 61–74. [Google Scholar] [CrossRef]
- Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K.; Mellidou, I. Plant Growth Promoting Rhizobacteria Isolated from Halophytes and Drought-Tolerant Plants: Genomic Characterisation and Exploration of Phyto-Beneficial Traits. Sci. Rep. 2020, 10, 14857. [Google Scholar] [CrossRef]
- Schnabel, F.; Liu, X.; Kunz, M.; Barry, K.E.; Bongers, F.J.; Bruelheide, H.; Fichtner, A.; Härdtle, W.; Li, S.; Pfaff, C.-T.; et al. Species Richness Stabilizes Productivity via Asynchrony and Drought-Tolerance Diversity in a Large-Scale Tree Biodiversity Experiment. Sci. Adv. 2021, 7, eabk1643. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Effect of Nitrogen Fertilization on Tree Growth and Nutrient Content in Soil and Cherry Leaves (Prunus cerasus L.). Agriculture 2023, 13, 578. [Google Scholar] [CrossRef]
- Oszust, K.; Szpilska, K.; Gryta, A.; Panek, J.; Pylak, M.; Lipa, T.; Frąc, M. New Biotechnological Solutions in Biocontrol and Molecular Diagnostics of Neofabraea spp. in Apples—A Review. Postharvest Biol. Technol. 2023, 204, 112442. [Google Scholar] [CrossRef]
- Koza, N.; Adedayo, A.; Babalola, O.; Kappo, A. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef] [PubMed]
- Więcław, H.; Bosiacka, B.; Hrivnák, R.; Dajdok, Z.; Mesterházy, A.; Koopman, J. Morphological Variability of Carex buekii (Cyperaceae) as a Function of Soil Conditions: A Case Study of the Central European Populations. Sci. Rep. 2022, 12, 11761. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.L.; Cavalcante, Í.H.L.; Silva, M.A.; Paiva Neto, V.B.; Amariz, R.A.; Amorim, L.Y.A. Does the Sunblock Alleviate Abiotic Stress in Mango Trees Grown in the Tropical Semiarid? Folia Hortic. 2022, 34, 211–221. [Google Scholar] [CrossRef]
- Seymour, Z.J.; Mercedes, J.F.; Fang, J.-Y. Effect of Heat Acclimation on Thermotolerance of In Vitro Strawberry Plantlets. Folia Hortic. 2024, 36, 135–147. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Sanjuán, J.; Nápoles, M.C.; Pérez-Mendoza, D.; Lorite, M.J.; Rodríguez-Navarro, D.N. Microbials for Agriculture: Why Do They Call Them Biostimulants When They Mean Probiotics? Microorganisms 2023, 11, 153. [Google Scholar] [CrossRef]
- Tripathi, A.N.; Meena, B.R.; Pandey, K.K.; Singh, J. Microbial Bioagents in Agriculture: Current Status and Prospects. In New Frontiers in Stress Management for Durable Agriculture; Springer Singapore: Singapore, 2020; pp. 331–368. [Google Scholar]
- Paliwoda, D.; Mikiciuk, G. Use of Rhizosphere Microorganisms in Plant Production—A Review Study. J. Ecol. Eng. 2020, 21, 292–310. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.d.C.; Glick, B.R. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Anum, W.; Samreen, T.; Sarfraz, M.; Nazir, M.Z. Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. In Microbiota and Biofertilizers; Springer International Publishing: Cham, Switzerland, 2021; pp. 181–196. [Google Scholar]
- Vocciante, M.; Grifoni, M.; Fusini, D.; Petruzzelli, G.; Franchi, E. The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. Appl. Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Ptak, P.; Chylewska, U.; Statkiewicz, M.; Lisek, A. Physiological Response of Three Grapevine Cultivars Grown in North-Western Poland to Mycorrhizal Fungi. S. Afr. J. Enol. Vitic. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Dakora, F.D.; Phillips, D.A. Root Exudates as Mediators of Mineral Acquisition in Low-Nutrient Environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities; Springer: Dordrecht, The Netherlands, 2002; pp. 201–213. [Google Scholar]
- Fourneau, E.; Pannier, M.; Riah, W.; Personeni, E.; Morvan-Bertrand, A.; Bodilis, J.; Pawlak, B. A “Love Match” Score to Compare Root Exudate Attraction and Feeding of the Plant Growth-Promoting Rhizobacteria Bacillus Subtilis, Pseudomonas Fluorescens, and Azospirillum Brasilense. Front. Microbiol. 2024, 15, 1473099. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, Y.; Wang, X.; Dai, X.; Zhu, M. Antimicrobial Metabolites Produced by the Plant Growth-Promoting Rhizobacteria (PGPR): Bacillus and Pseudomonas. Adv. Agrochem 2024, 3, 206–221. [Google Scholar] [CrossRef]
- Essalimi, B.; Esserti, S.; Rifai, L.A.; Koussa, T.; Makroum, K.; Belfaiza, M.; Rifai, S.; Venisse, J.S.; Faize, L.; Alburquerque, N.; et al. Enhancement of Plant Growth, Acclimatization, Salt Stress Tolerance and Verticillium Wilt Disease Resistance Using Plant Growth-Promoting Rhizobacteria (PGPR) Associated with Plum Trees (Prunus domestica). Sci. Hortic. 2022, 291, 110621. [Google Scholar] [CrossRef]
- Mota, I.; Sánchez-Sánchez, J.; Pedro, L.G.; Sousa, M.J. Composition Variation of the Essential Oil from Ocimum Basilicum L. Cv. Genovese Gigante in Response to Glomus Intraradices and Mild Water Stress at Different Stages of Growth. Biochem. Syst. Ecol. 2020, 90, 104021. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Wu, Q.-S.; Kuča, K. Unravelling the Role of Arbuscular Mycorrhizal Fungi in Mitigating the Oxidative Burst of Plants under Drought Stress. Plant Biol. 2021, 23, 50–57. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Abd Elgawad, H.; Xiong, Y.; Macovei, A.; Brestic, M.; Skalicky, M.; Shaghaleh, H.; Alhaj Hamoud, Y.; El-Sawah, A.M. Inoculation with Bacillus amyloliquefaciens and Mycorrhiza Confers Tolerance to Drought Stress and Improve Seed Yield and Quality of Soybean Plant. Physiol. Plant. 2021, 172, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Byregowda, R.; Prasad, S.R.; Oelmüller, R.; Nataraja, K.N.; Prasanna Kumar, M.K. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int. J. Mol. Sci. 2022, 23, 9194. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Saiyam, D.; Kumar, A.; Hashem, A.; Abd_Allah, E.F.; Khan, M.L. Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean (Glycine max (L.) Merr.) under Drought Stress. Int. J. Environ. Res. Public Health 2021, 18, 931. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, Q.; Jing, Y.; Liu, Z.; Zheng, Z.; Sun, Y.; Xue, Q.; Lai, H. Application of Streptomyces Pactum Act12 Enhances Drought Resistance in Wheat. J. Plant Growth Regul. 2020, 39, 122–132. [Google Scholar] [CrossRef]
- Chukwuneme, C.F.; Babalola, O.O.; Kutu, F.R.; Ojuederie, O.B. Characterization of Actinomycetes Isolates for Plant Growth Promoting Traits and Their Effects on Drought Tolerance in Maize. J. Plant Interact. 2020, 15, 93–105. [Google Scholar] [CrossRef]
- Xie, F.; Andrews, B.; Asenjo, J.A.; Goodfellow, M.; Pathom-aree, W. Atacama Desert Actinomycetes: Taxonomic Analysis, Drought Tolerance and Plant Growth Promoting Potential. World J. Microbiol. Biotechnol. 2024, 40, 283. [Google Scholar] [CrossRef]
- El-Shazoly, R.M.; Aloufi, A.S.; Fawzy, M.A. The Potential Use of Arthrospira (Spirulina platensis) as a Biostimulant for Drought Tolerance in Wheat (Triticum aestivum L.) for Sustainable Agriculture. J. Plant Growth Regul. 2024, in press. [Google Scholar] [CrossRef]
- GR, S.; Yadav, R.K.; Chatrath, A.; Gerard, M.; Tripathi, K.; Govindsamy, V.; Abraham, G. Perspectives on the Potential Application of Cyanobacteria in the Alleviation of Drought and Salinity Stress in Crop Plants. J. Appl. Phycol. 2021, 33, 3761–3778. [Google Scholar] [CrossRef]
- Abbasi, S.; Mohammadi, P. Improving Drought Tolerance and Glycyrrhizin Content of Licorice Plant by EPS-Producing Cyanobacteria. Ind. Crops Prod. 2023, 197, 116578. [Google Scholar] [CrossRef]
- Cornejo-Ríos, K.; Osorno-Suárez, M.d.P.; Hernández-León, S.; Reyes-Santamaría, M.I.; Juárez-Díaz, J.A.; Pérez-España, V.H.; Peláez-Acero, A.; Madariaga-Navarrete, A.; Saucedo-García, M. Impact of Trichoderma Asperellum on Chilling and Drought Stress in Tomato (Solanum lycopersicum). Horticulturae 2021, 7, 385. [Google Scholar] [CrossRef]
- Scudeletti, D.; Crusciol, C.A.C.; Bossolani, J.W.; Moretti, L.G.; Momesso, L.; Servaz Tubaña, B.; de Castro, S.G.Q.; De Oliveira, E.F.; Hungria, M. Trichoderma Asperellum Inoculation as a Tool for Attenuating Drought Stress in Sugarcane. Front. Plant Sci. 2021, 12, 645542. [Google Scholar] [CrossRef]
- Battaglia, M.E.; Martinez, S.I.; Covacevich, F.; Consolo, V.F. Trichoderma harzianum Enhances Root Biomass Production and Promotes Lateral Root Growth of Soybean and Common Bean under Drought Stress. Ann. Appl. Biol. 2024, 185, 36–48. [Google Scholar] [CrossRef]
- Hussain, M.; Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zhou, H.; Zhang, Z.; Xu, M.; Rui, Y.; White, J.C. Nano-Enabled Plant Microbiome Engineering for Disease Resistance. Nano Today 2023, 48, 101752. [Google Scholar] [CrossRef]
- Kavadia, A.; Omirou, M.; Fasoula, D.; Ioannides, I.M. The Importance of Microbial Inoculants in a Climate-Changing Agriculture in Eastern Mediterranean Region. Atmosphere 2020, 11, 1136. [Google Scholar] [CrossRef]
- Branco, S.; Schauster, A.; Liao, H.; Ruytinx, J. Mechanisms of Stress Tolerance and Their Effects on the Ecology and Evolution of Mycorrhizal Fungi. New Phytol. 2022, 235, 2158–2175. [Google Scholar] [CrossRef]
- Cheng, S.; Zou, Y.-N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front. Microbiol. 2021, 12, 809473. [Google Scholar] [CrossRef]
- Koopman, J.; Więcław, H.; Cembrowska-Lech, D. Intersectional Hybrids of Carex remota with C. otrubae and C. vulpina (Cyperaceae) in Europe. Bot. J. Linn. Soc. 2023, 203, 350–369. [Google Scholar] [CrossRef]
- Jajoo, A.; Mathur, S. Role of Arbuscular Mycorrhizal Fungi as an Underground Saviuor for Protecting Plants from Abiotic Stresses. Physiol. Mol. Biol. Plants 2021, 27, 2589–2603. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Marro, N.; Grilli, G.; Soteras, F.; Caccia, M.; Longo, S.; Cofré, N.; Borda, V.; Burni, M.; Janoušková, M.; Urcelay, C. The Effects of Arbuscular Mycorrhizal Fungal Species and Taxonomic Groups on Stressed and Unstressed Plants: A Global Meta-analysis. New Phytol. 2022, 235, 320–332. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Lisek, A.; Wera-Bryl, S.; Rudnicka, J. Mycorrhizal Frequency, Physiological Parameters, and Yield of Strawberry Plants Inoculated with Endomycorrhizal Fungi and Rhizosphere Bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef]
- Salvi, P.; Mahawar, H.; Agarrwal, R.; Kajal; Gautam, V.; Deshmukh, R. Advancement in the Molecular Perspective of Plant-Endophytic Interaction to Mitigate Drought Stress in Plants. Front. Microbiol. 2022, 13, 981355. [Google Scholar] [CrossRef] [PubMed]
- Hosseyni Moghaddam, M.S.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-Adapted Fungal Endophytes Induce Salinity and Drought Stress Resistance in Model Crops. Plant Physiol. Biochem. 2021, 160, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Sahu, P.K.; Kumar, K.; Pal, G.; Gond, S.K.; Kharwar, R.N.; White, J.F. Endophyte Roles in Nutrient Acquisition, Root System Architecture Development and Oxidative Stress Tolerance. J. Appl. Microbiol. 2021, 131, 2161–2177. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.; Cardinale, M.; Zulfiqar, F.; Koyro, H.-W.; Rasool, S.G.; Hessini, K.; Darbali, W.; Zhao, F.; Siddique, K.H.M. Seed Endophyte Bacteria Enhance Drought Stress Tolerance in Hordeum Vulgare by Regulating, Physiological Characteristics, Antioxidants and Minerals Uptake. Front. Plant Sci. 2022, 13, 980046. [Google Scholar] [CrossRef]
- Koopman, J.; Dajdok, Z.; Więcław, H.; Marinetto, E.; Grulich, V.; Řepka, R.; Jimenez-Mejas, P. Global Distribution of Carex buekii (Cyperaceae) Reappraised. Phytotaxa 2018, 358, 139–161. [Google Scholar] [CrossRef]
- Oyedoh, O.P.; Yang, W.; Dhanasekaran, D.; Santoyo, G.; Glick, B.R.; Babalola, O.O. Rare Rhizo-Actinomycetes: A New Source of Agroactive Metabolites. Biotechnol. Adv. 2023, 67, 108205. [Google Scholar] [CrossRef]
- Sneha, G.R.; Govindasamy, V.; Singh, P.K.; Kumar, S.; Abraham, G. Priming of Seeds with Cyanobacteria Improved Tolerance in Wheat (Triticum aestivum L.) during Post-Germinative Drought Stress. J. Appl. Phycol. 2024, 36, 1233–1246. [Google Scholar] [CrossRef]
- Więcław, H.; Šumberová, K.; Bosiacka, B.; Hrivnák, R.; Dajdok, Z.; Mesterházy, A.; Minuzzo, C.; Martinetto, E.; Koopman, J. Ecology, Threats and Conservation Status of Carex buekii (Cyperaceae) in Central Europe. Sci. Rep. 2019, 9, 11162. [Google Scholar] [CrossRef]
- Yasmin, H.; Rashid, U.; Hassan, M.N.; Nosheen, A.; Naz, R.; Ilyas, N.; Sajjad, M.; Azmat, A.; Alyemeni, M.N. Volatile Organic Compounds Produced by Pseudomonas pseudoalcaligenes Alleviated Drought Stress by Modulating Defense System in Maize (Zea mays L.). Physiol. Plant. 2021, 172, 896–911. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The Role of Plant Growth Promoting Rhizobacteria in Plant Drought Stress Responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef]
- Gontia-Mishra, I.; Sapre, S.; Deshmukh, R.; Sikdar, S.; Tiwari, S. Microbe-Mediated Drought Tolerance in Plants: Current Developments and Future Challenges. In Plant Microbiomes for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 351–379. [Google Scholar]
- Koopman, J.; Kalinowski, P.; Stech, M.; Więcław, H. Carex × kneuckeri, a Hybrid New for Central Europe and Neotypification of This Name. Preslia 2019, 91, 161–177. [Google Scholar] [CrossRef]
- Naseem, H.; Ahsan, M.; Shahid, M.A.; Khan, N. Exopolysaccharides Producing Rhizobacteria and Their Role in Plant Growth and Drought Tolerance. J. Basic Microbiol. 2018, 58, 1009–1022. [Google Scholar] [CrossRef]
- Yadav, K.; Yadav, P.; Singh, K. Microbial-Mediated Molecular Mechanisms to Cope Up Salinity and Drought Stress in Plants. In Microbial Based Land Restoration Handbook, Volume 2; CRC Press: Boca Raton, FL, USA, 2022; pp. 31–64. ISBN 9781003147077. [Google Scholar]
- Jain, D.; Phurailatpam, L.; Mishra, S. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges. In Advances in Plant Microbiome and Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–218. [Google Scholar]
- Narayanasamy, S.; Uthandi, S. Microbial Mitigation of Drought Stress: Potential Mechanisms and Challenges. In Microbial Management of Plant Stresses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 185–201. [Google Scholar]
- Jatav, S.S.; Parihar, M.; Patra, A.; Singh, S.K.; Chitara, M.K.; Mohapatra, K.K.; Rana, K. Soil Microbes in Plant Growth Promotion and for Mitigation of Abiotic Stress of Drought. In Soil Microbiomes for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 175–201. [Google Scholar]
- Asghar, M.A.; Ahmad, B.; Raza, A.; Adil, B.; Hassan Javed, H.; Farooq, M.U.; Ghafoor, A.; Iftikhar Hussain, M.; Shafiq, I.; Karim, H.; et al. Shade and Microbes Enhance Drought Stress Tolerance in Plants by Inducing Phytohormones at Molecular Levels: A Review. J. Plant Ecol. 2022, 15, 1107–1117. [Google Scholar] [CrossRef]
- Singh, D.; Thapa, S.; Yadav, J.; Singh, D.; Chakdar, H.; Kumar, M.; Saxena, A.K. Deciphering the Mechanisms of Microbe Mediated Drought Stress Alleviation in Wheat. Acta Physiol. Plant. 2023, 45, 81. [Google Scholar] [CrossRef]
- Kour, D.; Yadav, A.N. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr. Microbiol. 2022, 79, 248. [Google Scholar] [CrossRef]
- Kour, D.; Khan, S.S.; Kaur, T.; Kour, H.; Singh, G.; Yadav, A.; Yadav, A.N. Drought Adaptive Microbes as Bioinoculants for the Horticultural Crops. Heliyon 2022, 8, e09493. [Google Scholar] [CrossRef]
- Gupta, A.; Bano, A.; Rai, S.; Mishra, R.; Singh, M.; Sharma, S.; Pathak, N. Mechanistic Insights of Plant-Microbe Interaction towards Drought and Salinity Stress in Plants for Enhancing the Agriculture Productivity. Plant Stress 2022, 4, 100073. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary Metabolites in the Drought Stress Tolerance of Crop Plants: A Review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Andreo-Jimenez, B.; Schilder, M.T.; Nijhuis, E.H.; te Beest, D.E.; Bloem, J.; Visser, J.H.M.; van Os, G.; Brolsma, K.; de Boer, W.; Postma, J. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia Solani Disease via Changes to the Soil Microbial Community. Appl. Environ. Microbiol. 2021, 87, e00318-21. [Google Scholar] [CrossRef]
- Sandhya, V.; Ali, S.Z.; Grover, M.; Reddy, G.; Venkateswarlu, B. Effect of Plant Growth Promoting Pseudomonas spp. on Compatible Solutes, Antioxidant Status and Plant Growth of Maize under Drought Stress. Plant Growth Regul. 2010, 62, 21–30. [Google Scholar] [CrossRef]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of Arbuscular Mycorrhizal Fungi and/or Bacteria to Enhancing Plant Drought Tolerance under Natural Soil Conditions: Effectiveness of Autochthonous or Allochthonous Strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Glick, B.R. Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. Biology 2022, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Hanaka, A.; Ozimek, E.; Reszczyńska, E.; Jaroszuk-Ściseł, J.; Stolarz, M. Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. Horticulturae 2021, 7, 390. [Google Scholar] [CrossRef]
- Camaille, M.; Fabre, N.; Clément, C.; Ait Barka, E. Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021, 9, 687. [Google Scholar] [CrossRef]
- Singh, S.K.; Srikanth, G.S.; Puranik, S.; Shukla, L. Chemical Talk within Plant Holobiont: A Fascinating Conversation. In Plant-Microbe Interaction-Recent Advances in Molecular and Biochemical Approaches; Elsevier: Amsterdam, The Netherlands, 2023; pp. 165–203. [Google Scholar]
- Rajput, S.; Sengupta, P.; Kohli, I.; Varma, A.; Singh, P.K.; Joshi, N.C. Role of Piriformospora Indica in Inducing Soil Microbial Communities and Drought Stress Tolerance in Plants. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–110. [Google Scholar]
- Kour, D.; Rana, K.L.; Kaur, T.; Sheikh, I.; Yadav, A.N.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Microbe-Mediated Alleviation of Drought Stress and Acquisition of Phosphorus in Great Millet (Sorghum bicolour L.) by Drought-Adaptive and Phosphorus-Solubilizing Microbes. Biocatal. Agric. Biotechnol. 2020, 23, 101501. [Google Scholar] [CrossRef]
- Zhang, K.; Khan, Z.; Yu, Q.; Qu, Z.; Liu, J.; Luo, T.; Zhu, K.; Bi, J.; Hu, L.; Luo, L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants 2022, 11, 2864. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.K.; Patel, J.S. Microbial Inoculation in Rice Regulates Antioxidative Reactions and Defense Related Genes to Mitigate Drought Stress. Sci. Rep. 2020, 10, 4818. [Google Scholar] [CrossRef]
- Mahdi Dar, Z.; Masood, A.; Hussain Mughal, A.; Asif, M.; Ahamd Malik, M. Review on Drought Tolerance in Plants Induced by Plant Growth Promoting Rhizobacteria. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 412–422. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Datta, S.; Ramamurthy, P.C.; Singh, J. Molecular Mechanism and Signaling Pathways Interplay between Plant Hormones during Plant-Microbe Crosstalk. In Microbial Management of Plant Stresses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–105. [Google Scholar]
- Kaya, C. Microbial Modulation of Hormone Signaling, Proteomic Dynamics, and Metabolomics in Plant Drought Adaptation. Food Energy Secur. 2024, 13, e513. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Pandey, P.; Tripathi, A.; Dwivedi, S.; Lal, K.; Jhang, T. Deciphering the Mechanisms, Hormonal Signaling, and Potential Applications of Endophytic Microbes to Mediate Stress Tolerance in Medicinal Plants. Front. Plant Sci. 2023, 14, 1250020. [Google Scholar] [CrossRef] [PubMed]
- Dhar, N.; Gopalan, N.S.R.; Nikhil, P.T.; Mohapatra, S. Role of Phytohormones in Plant-Microbial Interaction. In Auxins, Cytokinins and Gibberellins Signaling in Plants; Springer: Berlin/Heidelberg, Germany, 2022; pp. 313–336. [Google Scholar]
- Bora, S.S.; Anshu; Deka, P.; Barooah, M. Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Millets. In Millet Rhizosphere; Springer Nature Singapore: Singapore, 2023; pp. 83–96. [Google Scholar]
- Gowtham, H.G.; Singh, B.; Murali, M.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N.; Niranjana, S.R. Induction of Drought Tolerance in Tomato upon the Application of ACC Deaminase Producing Plant Growth Promoting Rhizobacterium Bacillus Subtilis Rhizo SF 48. Microbiol. Res. 2020, 234, 126422. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Srivastava, R.; Gupta, V.V.S.R.; Franco, C.M.M.; Sharma, A.K. Evaluation of ACC-Deaminase-Producing Rhizobacteria to Alleviate Water-Stress Impacts in Wheat (Triticum aestivum L.) Plants. Can. J. Microbiol. 2019, 65, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, H.; Xu, F.; Ding, Y.; Gui, Y.; Zhang, J.; Xu, W. Root-Bacteria Associations Boost Rhizosheath Formation in Moderately Dry Soil through Ethylene Responses. Plant Physiol. 2020, 183, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants. Agronomy 2023, 13, 1844. [Google Scholar] [CrossRef]
- Bhagat, N.; Raghav, M.; Dubey, S.; Bedi, N. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J. Microbiol. Biotechnol. 2021, 31, 1045–1059. [Google Scholar] [CrossRef]
- Ault, T.R. On the Essentials of Drought in a Changing Climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef]
- Thakur, N.; Nigam, M.; Mann, N.A.; Gupta, S.; Hussain, C.M.; Shukla, S.K.; Shah, A.A.; Casini, R.; Elansary, H.O.; Khan, S.A. Host-Mediated Gene Engineering and Microbiome-Based Technology Optimization for Sustainable Agriculture and Environment. Funct. Integr. Genom. 2023, 23, 57. [Google Scholar] [CrossRef]
- Sinha, T.; Nandi, K.; Das, R.; Prasad, S.N.; Pradhan, M.; Maurya, S.; Nandi, A. Microbe-Mediated Biotic and Abiotic Stress Tolerance in Crop Plants. In Microbes and Microbial Biotechnology for Green Remediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–116. [Google Scholar]
- Dastogeer, K.M.G.; Zahan, M.I.; Rhaman, M.S.; Sarker, M.S.A.; Chakraborty, A. Microbe-Mediated Thermotolerance in Plants and Pertinent Mechanisms—A Meta-Analysis and Review. Front. Microbiol. 2022, 13, 833566. [Google Scholar] [CrossRef]
- Ummara, U.; Noreen, S.; Afzal, M.; Zafar, Z.U.; Akhter, M.S.; Iqbal, S.; Hefft, D.I.; Kazi, M.; Ahmad, P. Induced Systemic Tolerance Mediated by Plant-Microbe Interaction in Maize (Zea mays L.) Plants under Hydrocarbon Contamination. Chemosphere 2022, 290, 133327. [Google Scholar] [CrossRef]
- Elnajar, M.; Aldesuquy, H.; Abdelmoteleb, M.; Eltanahy, E. Mitigating Drought Stress in Wheat Plants (Triticum aestivum L.) through Grain Priming in Aqueous Extract of Spirulina platensis. BMC Plant Biol. 2024, 24, 233. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, A.E.; Orozco-Mosqueda, M.d.C.; Santos-Villalobos, S.d.l.; Santoyo, G.; Babalola, O.O. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. Plants 2022, 11, 3090. [Google Scholar] [CrossRef]
- Joshi, H.; Bisht, N.; Mishra, S.K.; Prasad, V.; Chauhan, P.S. Bacillus amyloliquefaciens Modulate Carbohydrate Metabolism in Rice-PGPR Cross-Talk Under Abiotic Stress and Phytohormone Treatments. J. Plant Growth Regul. 2023, 42, 4466–4483. [Google Scholar] [CrossRef]
- Galicia-Campos, E.; García-Villaraco, A.; Montero-Palmero, M.B.; Gutiérrez-Mañero, F.J.; Ramos-Solano, B. Bacillus G7 Improves Adaptation to Salt Stress in Olea europaea L. Plantlets, Enhancing Water Use Efficiency and Preventing Oxidative Stress. Sci. Rep. 2023, 13, 22507. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-A.; Song, J.; Choe, S.; Jang, G.; Kim, Y. Plant Growth-Promoting Rhizobacterium Bacillus Megaterium Modulates the Expression of Antioxidant-Related and Drought-Responsive Genes to Protect Rice (Oryza sativa L.) from Drought. Front. Microbiol. 2024, 15, 1430546. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Lv, G.; Wang, J.; Li, J. Regulation of Drought Stress on Nutrient Cycle and Metabolism of Rhizosphere Microorganisms in Desert Riparian Forest. Sci. Total Environ. 2024, 954, 176148. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, R.; Dutta, T.; Jhelom, F.R. Genetic and Microbial Insights into Drought Stress Alleviation in Tomato (Solanum lycopersicum L.). Biol. Life Sci. Forum 2023, 27, 22. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Anandham, R.; Senthilkumar, M.; Venkatramanan, V. Adaptation Mechanism of Methylotrophic Bacteria to Drought Condition and Its Strategies in Mitigating Plant Stress Caused by Climate Change. In Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals; Springer Singapore: Singapore, 2021; pp. 145–158. [Google Scholar]
- Kaya, C.; Uğurlar, F.; Adamakis, I.-D.S. Epigenetic and Hormonal Modulation in Plant–Plant Growth-Promoting Microorganism Symbiosis for Drought-Resilient Agriculture. Int. J. Mol. Sci. 2023, 24, 16064. [Google Scholar] [CrossRef]
- Nisha; Batra, N.; Sharma, V.; Sharma, R.; Sharma, A. Abiotic Stress Responses and Strategies of Microbes Mediated Mitigation for Sustainable Agriculture. Vegetos 2022, 36, 20–27. [Google Scholar] [CrossRef]
- Lewis, W.H.; Tahon, G.; Geesink, P.; Sousa, D.Z.; Ettema, T.J.G. Innovations to Culturing the Uncultured Microbial Majority. Nat. Rev. Microbiol. 2021, 19, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Kumar, N.; Shandilya, C.; Mohapatra, S.; Bhayana, S.; Varma, A. Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front. Microbiol. 2020, 11, 560406. [Google Scholar] [CrossRef] [PubMed]
- Poppeliers, S.W.; Sánchez-Gil, J.J.; de Jonge, R. Microbes to Support Plant Health: Understanding Bioinoculant Success in Complex Conditions. Curr. Opin. Microbiol. 2023, 73, 102286. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; McClure, R.; Egbert, R.G. Soil Microbiome Engineering for Sustainability in a Changing Environment. Nat. Biotechnol. 2023, 41, 1716–1728. [Google Scholar] [CrossRef]
- Bano, S.; WU, X.; Zhang, X. Towards Sustainable Agriculture: Rhizosphere Microbiome Engineering. Appl. Microbiol. Biotechnol. 2021, 105, 7141–7160. [Google Scholar] [CrossRef]
- Nwankwegu, A.S.; Zhang, L.; Xie, D.; Onwosi, C.O.; Muhammad, W.I.; Odoh, C.K.; Sam, K.; Idenyi, J.N. Bioaugmentation as a Green Technology for Hydrocarbon Pollution Remediation. Problems and Prospects. J. Environ. Manag. 2022, 304, 114313. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, H.; Wang, L.; Li, Y.; Tang, T.; Bai, Y.; Liang, H. Current and Emerging Trends in Bioaugmentation of Organic Contaminated Soils: A Review. J. Environ. Manag. 2022, 320, 115799. [Google Scholar] [CrossRef]
- Wangithi, C.; Muriithi, B.W.; Diiro, G.; Dubois, T.; Mohamed, S.; Lattorff, M.G.; Ngowi, B.V.; Abdel-Rahman, E.M.; Adan, M.; Kassie, M. Synergies of Integrated Pest and Pollinator Management in Avocado Farming in East Africa: An Ex-Ante Economic Analysis. PLoS ONE 2022, 17, e0271241. [Google Scholar] [CrossRef]
- Ratnadass, A.; Avelino, J.; Fernandes, P.; Letourmy, P.; Babin, R.; Deberdt, P.; Deguine, J.-P.; Grechi, I.; Naudin, K.; Rhino, B.; et al. Synergies and Tradeoffs in Natural Regulation of Crop Pests and Diseases under Plant Species Diversification. Crop Prot. 2021, 146, 105658. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae Biostimulants: A Critical Look at Microalgal Biostimulants for Sustainable Agricultural Practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- Arif, I.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Choudhary, M.; Gupta, S.; Dhar, M.K. Engineering Host Microbiome for Crop Improvement and Sustainable Agriculture. Front. Microbiol. 2021, 12, 635917. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dubey, A. Rhizosphere Microbiome: Engineering Bacterial Competitiveness for Enhancing Crop Production. J. Adv. Res. 2020, 24, 337–352. [Google Scholar] [CrossRef]
- Lau, S.-E.; Teo, W.F.A.; Teoh, E.Y.; Tan, B.C. Microbiome Engineering and Plant Biostimulants for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Discov. Food 2022, 2, 9. [Google Scholar] [CrossRef]
- Phour, M.; Sindhu, S.S. Mitigating Abiotic Stress: Microbiome Engineering for Improving Agricultural Production and Environmental Sustainability. Planta 2022, 256, 85. [Google Scholar] [CrossRef]
- Yang, S.; Liu, H.; Xie, P.; Wen, T.; Shen, Q.; Yuan, J. Emerging Pathways for Engineering the Rhizosphere Microbiome for Optimal Plant Health. J. Agric. Food Chem. 2023, 71, 4441–4449. [Google Scholar] [CrossRef]
- Rodríguez, R.; Barra, P.J.; Larama, G.; Carrion, V.J.; de la Luz Mora, M.; Hale, L.; Durán, P. Microbiome Engineering Optimized by Antarctic Microbiota to Support a Plant Host under Water Deficit. Front. Plant Sci. 2023, 14, 1241612. [Google Scholar] [CrossRef]
- Zhang, Y.; Trivedi, P.; Xu, J.; Roper, M.C.; Wang, N. The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes J. 2021, 5, 249–262. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Bao, M.; Li, S. Solid Inoculants as a Practice for Bioaugmentation to Enhance Bioremediation of Hydrocarbon Contaminated Areas. Chemosphere 2021, 263, 128175. [Google Scholar] [CrossRef]
- Lu, X.-L.; Ding, K.; Dong, X.-X.; Li, G.; Ma, J. A Bioaugmentation Strategy for Promoting the Humification Process during Composting by Microbial Inoculants: A Review. In Organic Fertilizers-New Advances and Applications [Working Title]; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Adetunji, C.O.; Anani, O.A. Bioaugmentation: A Powerful Biotechnological Techniques for Sustainable Ecorestoration of Soil and Groundwater Contaminants. In Microbial Rejuvenation of Polluted Environment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 373–398. [Google Scholar]
- Brzeszcz, J.; Kapusta, P.; Steliga, T.; Turkiewicz, A. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules 2020, 25, 661. [Google Scholar] [CrossRef] [PubMed]
- Tondera, K.; Chazarenc, F.; Chagnon, P.-L.; Brisson, J. Bioaugmentation of Treatment Wetlands—A Review. Sci. Total Environ. 2021, 775, 145820. [Google Scholar] [CrossRef] [PubMed]
- Gorodylova, N.; Seron, A.; Michel, K.; Joulian, C.; Delorme, F.; Soulier, C.; Bresch, S.; Garreau, C.; Giovannelli, F.; Michel, C. Zeolite-Supported Biofilms as Inoculants for the Treatment of MCPA-Polluted Soil and Sand by Bioaugmentation: A Microcosm Study. Appl. Soil Ecol. 2022, 180, 104614. [Google Scholar] [CrossRef]
- Balseiro-Romero, M.; Wick, L.Y.; Vila, J.; Grifoll, M.; Ortega-Calvo, J.J. Drivers for Efficient Bioaugmentation and Clean-Up of Contaminated Soil. In Soil Remediation Science and Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 261–291. [Google Scholar]
- Dehnavi, S.M.; Ebrahimipour, G. Comparative Remediation Rate of Biostimulation, Bioaugmentation, and Phytoremediation in Hydrocarbon Contaminants. Int. J. Environ. Sci. Technol. 2022, 19, 11561–11586. [Google Scholar] [CrossRef]
- Song, Y.Q.; Shahir, S.; Abd Manan, F. Bacterial Inoculant-Assisted Phytoremediation of Heavy Metal-Contaminated Soil: Inoculant Development and the Inoculation Effects. Biologia 2021, 76, 2675–2685. [Google Scholar] [CrossRef]
- López, A.M.Q.; dos Santos Silva, A.L. Biostimulation and Bioaugmentation. In Genomics Approach to Bioremediation; Wiley: Hoboken, NJ, USA, 2023; pp. 53–68. [Google Scholar]
- Agrawal, A.; Maharana, J.K.; Patel, A.K. Microbial Inoculants and Their Potential Application in Bioremediation. In Microbes Based Approaches for the Management of Hazardous Contaminants; Wiley: Hoboken, NJ, USA, 2024; pp. 321–344. [Google Scholar]
- Mawang, C.-I.; Azman, A.-S.; Fuad, A.-S.M.; Ahamad, M. Actinobacteria: An Eco-Friendly and Promising Technology for the Bioaugmentation of Contaminants. Biotechnol. Rep. 2021, 32, e00679. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated Pest Management: Good Intentions, Hard Realities. A Review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. Front. Plant Sci. 2021, 12, 700507. [Google Scholar] [CrossRef]
- Fahad, S.; Saud, S.; Akhter, A.; Bajwa, A.A.; Hassan, S.; Battaglia, M.; Adnan, M.; Wahid, F.; Datta, R.; Babur, E.; et al. Bio-Based Integrated Pest Management in Rice: An Agro-Ecosystems Friendly Approach for Agricultural Sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 94–102. [Google Scholar] [CrossRef]
- Dannon, H.F.; Dannon, A.E.; Douro-Kpindou, O.K.; Zinsou, A.V.; Houndete, A.T.; Toffa-Mehinto, J.; Elegbede, I.A.T.M.; Olou, B.D.; Tamò, M. Toward the Efficient Use of Beauveria Bassiana in Integrated Cotton Insect Pest Management. J. Cotton Res. 2020, 3, 24. [Google Scholar] [CrossRef]
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.R.; Sederoff, H.; Chiang, V.L.; Borriss, R. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef] [PubMed]
- Benmrid, B.; Ghoulam, C.; Zeroual, Y.; Kouisni, L.; Bargaz, A. Bioinoculants as a Means of Increasing Crop Tolerance to Drought and Phosphorus Deficiency in Legume-Cereal Intercropping Systems. Commun. Biol. 2023, 6, 1016. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J. Cyanobacteria in Plant Health: Biological Strategy against Abiotic and Biotic Stresses. Crop Prot. 2021, 141, 105450. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Nath, S.; Bhattacharjee, S.; Yadav, M.R. Exploring the Synergy of Microbes and Plants: A Promising Strategy for Managing Moisture Stress in Medicinal and Aromatic Crops. In Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration; Elsevier: Amsterdam, The Netherlands, 2024; pp. 367–395. [Google Scholar]
- Sani, M.N.H.; Yong, J.W.H. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. Biology 2021, 11, 41. [Google Scholar] [CrossRef]
- Lin, P.-A.; Paudel, S.; Lai, P.-C.; GC, R.K.; Yang, D.-H.; Felton, G.W. Integrating Water and Insect Pest Management in Agriculture. J. Pest Sci. 2024, 97, 521–538. [Google Scholar] [CrossRef]
- Gvozdenac, S.; Dedić, B.; Mikić, S.; Ovuka, J.; Miladinović, D. Impact of Climate Change on Integrated Pest Management Strategies. In Climate Change and Agriculture; Wiley: Hoboken, NJ, USA, 2022; pp. 311–372. [Google Scholar]
- Sammauria, R.; Kumawat, S.; Kumawat, P.; Singh, J.; Jatwa, T.K. Microbial Inoculants: Potential Tool for Sustainability of Agricultural Production Systems. Arch. Microbiol. 2020, 202, 677–693. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil Amendments for Sustainable Agriculture: Microbial Organic Fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The Use of Microbial Inoculants for Biological Control, Plant Growth Promotion, and Sustainable Agriculture: A Review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Poveda, J.; Baptista, P. Filamentous Fungi as Biocontrol Agents in Olive (Olea europaea L.) Diseases: Mycorrhizal and Endophytic Fungi. Crop Prot. 2021, 146, 105672. [Google Scholar] [CrossRef]
- Vidal, C.; González, F.; Santander, C.; Pérez, R.; Gallardo, V.; Santos, C.; Aponte, H.; Ruiz, A.; Cornejo, P. Management of Rhizosphere Microbiota and Plant Production under Drought Stress: A Comprehensive Review. Plants 2022, 11, 2437. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.R.; Segrè, D.; Bhatnagar, J.M. Environmental Microbiome Engineering for the Mitigation of Climate Change. Glob. Change Biol. 2023, 29, 2050–2066. [Google Scholar] [CrossRef] [PubMed]
- Curiel-Alegre, S.; Velasco-Arroyo, B.; Rumbo, C.; Khan, A.H.A.; Tamayo-Ramos, J.A.; Rad, C.; Gallego, J.L.R.; Barros, R. Evaluation of Biostimulation, Bioaugmentation, and Organic Amendments Application on the Bioremediation of Recalcitrant Hydrocarbons of Soil. Chemosphere 2022, 307, 135638. [Google Scholar] [CrossRef]
- Bakina, L.G.; Chugunova, M.V.; Polyak, Y.M.; Mayachkina, N.V.; Gerasimov, A.O. Bioaugmentation: Possible Scenarios Due to Application of Bacterial Preparations for Remediation of Oil-Contaminated Soil. Environ. Geochem. Health 2021, 43, 2347–2356. [Google Scholar] [CrossRef]
- Galindo, F.S.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Jalal, A.; Rosa, P.A.L.; Buzetti, S.; Lavres, J.; Teixeira Filho, M.C.M. Enhancing Agronomic Efficiency and Maize Grain Yield with Azospirillum Brasilense Inoculation under Brazilian Savannah Conditions. Eur. J. Agron. 2022, 134, 126471. [Google Scholar] [CrossRef]
- Yasuda, M.; Dastogeer, K.M.G.; Sarkodee-Addo, E.; Tokiwa, C.; Isawa, T.; Shinozaki, S.; Okazaki, S. Impact of Azospirillum Sp. B510 on the Rhizosphere Microbiome of Rice under Field Conditions. Agronomy 2022, 12, 1367. [Google Scholar] [CrossRef]
- Ingrey, S.D.; Pearson, L.A.; Kalaitzis, J.A.; Neilan, B.A. Australian Bush Medicines Harbour Diverse Microbial Endophytes with Broad-spectrum Antibacterial Activity. J. Appl. Microbiol. 2021, 131, 2244–2256. [Google Scholar] [CrossRef]
- Mathur, P.; Roy, S. Insights into the Plant Responses to Drought and Decoding the Potential of Root Associated Microbiome for Inducing Drought Tolerance. Physiol. Plant. 2021, 172, 1016–1029. [Google Scholar] [CrossRef]
- Etesami, H. Potential Advantage of Rhizosheath Microbiome, in Contrast to Rhizosphere Microbiome, to Improve Drought Tolerance in Crops. Rhizosphere 2021, 20, 100439. [Google Scholar] [CrossRef]
- Loiko, N.; Islam, M.N. Plant–Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought. Agronomy 2024, 14, 1949. [Google Scholar] [CrossRef]
- Kang, J.; Peng, Y.; Xu, W. Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int. J. Mol. Sci. 2022, 23, 9310. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Waheed, A.; Wahab, A.; Majeed, M.; Nazim, M.; Liu, Y.-H.; Li, L.; Li, W.-J. Soil Salinity and Drought Tolerance: An Evaluation of Plant Growth, Productivity, Microbial Diversity, and Amelioration Strategies. Plant Stress 2024, 11, 100319. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Ye, S.; Ding, Y.; Guo, S.; Fan, N. Inhibitory Action of Ginkgolic Acid against Pathogenic Fungi and Characterisation of Its Inhibitory Activities on Nigrospora oryzae. Folia Hortic. 2023, 35, 49–59. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Dai, M. Improving Crop Drought Resistance with Plant Growth Regulators and Rhizobacteria: Mechanisms, Applications, and Perspectives. Plant Commun. 2022, 3, 100228. [Google Scholar] [CrossRef]
- Sudheer, S.; Bai, R.G.; Usmani, Z.; Sharma, M. Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects. Curr. Genom. 2020, 21, 321–333. [Google Scholar] [CrossRef]
- Allison, S.D. Microbial Drought Resistance May Destabilize Soil Carbon. Trends Microbiol. 2023, 31, 780–787. [Google Scholar] [CrossRef]
- Azeem, M.; Sun, T.-R.; Jeyasundar, P.G.S.A.; Han, R.-X.; Li, H.; Abdelrahman, H.; Shaheen, S.M.; Zhu, Y.-G.; Li, G. Biochar-Derived Dissolved Organic Matter (BDOM) and Its Influence on Soil Microbial Community Composition, Function, and Activity: A Review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1912–1934. [Google Scholar] [CrossRef]
- Yadav, V.K.; Raghav, M.; Sharma, S.K.; Bhagat, N. Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. J. Pure Appl. Microbiol. 2020, 14, 73–92. [Google Scholar] [CrossRef]
- Fulcher, M.R.; Tancos, M.A.; Mueller, R.C.; Tannières, M. Importance of Pathobiomes to the Success of Microbial Weed Biocontrol Agents. Biol. Control 2024, 192, 105498. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Gardea-Torresdey, J.L.; White, J.C.; Li, B. Dynamic Interplay between Nano-Enabled Agrochemicals and the Plant-Associated Microbiome. Trends Plant Sci. 2023, 28, 1310–1325. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.; Belz, S.; Hoeveler, A.; Hugas, M.; Okuda, H.; Patri, A.; Rauscher, H.; Silva, P.; Slikker, W.; Sokull-Kluettgen, B.; et al. Regulatory Landscape of Nanotechnology and Nanoplastics from a Global Perspective. Regul. Toxicol. Pharmacol. 2021, 122, 104885. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and Recommendations for TMS Use in Healthy Subjects and Patient Populations, with Updates on Training, Ethical and Regulatory Issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J. Soil Quality and Fertility in Sustainable Agriculture, with a Contribution to the Biological Classification of Agricultural Soils. Soil Use Manag. 2022, 38, 1085–1112. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Razdan, N.; Saharan, K. Rhizospheric Microbiome: Bio-Based Emerging Strategies for Sustainable Agriculture Development and Future Perspectives. Microbiol. Res. 2022, 254, 126901. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Drought Stress Responses in Non-Transgenic and Transgenic Alfalfa—Current Status and Future Research Directions. Adv. Agron. 2021, 170, 35–100. [Google Scholar]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef]
- Sheoran, S.; Kaur, Y.; Kumar, S.; Shukla, S.; Rakshit, S.; Kumar, R. Recent Advances for Drought Stress Tolerance in Maize (Zea Mays L.): Present Status and Future Prospects. Front. Plant Sci. 2022, 13, 872566. [Google Scholar] [CrossRef]
- Akbar, S.; Coiera, E.; Magrabi, F. Safety Concerns with Consumer-Facing Mobile Health Applications and Their Consequences: A Scoping Review. J. Am. Med. Inform. Assoc. 2020, 27, 330–340. [Google Scholar] [CrossRef]
- Testa, C.J.; Hu, C.; Shvedova, K.; Wu, W.; Sayin, R.; Casati, F.; Halkude, B.S.; Hermant, P.; Shen, D.E.; Ramnath, A.; et al. Design and Commercialization of an End-to-End Continuous Pharmaceutical Production Process: A Pilot Plant Case Study. Org. Process Res. Dev. 2020, 24, 2874–2889. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.; Pereira, E.J.; Aguiar, R.W.; Oliveira, E.E. Rethinking Biorational Insecticides for Pest Management: Unintended Effects and Consequences. Pest. Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Karlsson Green, K.; Stenberg, J.A.; Lankinen, Å. Making Sense of Integrated Pest Management (IPM) in the Light of Evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef] [PubMed]
- Lundin, O.; Rundlöf, M.; Jonsson, M.; Bommarco, R.; Williams, N.M. Integrated Pest and Pollinator Management—Expanding the Concept. Front. Ecol. Environ. 2021, 19, 283–291. [Google Scholar] [CrossRef]
- Snyder, L.D.; Gómez, M.I.; Power, A.G. Crop Varietal Mixtures as a Strategy to Support Insect Pest Control, Yield, Economic, and Nutritional Services. Front. Sustain. Food Syst. 2020, 4, 60. [Google Scholar] [CrossRef]
- Kumar, V.; Nautiyal, C.S. Plant Abiotic and Biotic Stress Alleviation: From an Endophytic Microbial Perspective. Curr. Microbiol. 2022, 79, 311. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Vega, A.; Castro, P.M.L. Plant Growth-Promoting Rhizobacteria (PGPR) Improve the Growth and Nutrient Use Efficiency in Maize (Zea Mays L.) under Water Deficit Conditions. Heliyon 2020, 6, e05106. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Häggblom, M.M.; Babalola, O.O. Sustainable Agriculture in Africa: Plant Growth-Promoting Rhizobacteria (PGPR) to the Rescue. Sci. Afr. 2020, 9, e00492. [Google Scholar] [CrossRef]
- Muter, O. Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms 2023, 11, 710. [Google Scholar] [CrossRef]
- Afridi, M.S.; Ali, S.; Salam, A.; César Terra, W.; Hafeez, A.; Sumaira; Ali, B.; Al Tami, M.S.; Ameen, F.; Ercisli, S.; et al. Plant Microbiome Engineering: Hopes or Hypes. Biology 2022, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Neshat, M.; Abbasi, A.; Hosseinzadeh, A.; Sarikhani, M.R.; Dadashi Chavan, D.; Rasoulnia, A. Plant Growth Promoting Bacteria (PGPR) Induce Antioxidant Tolerance against Salinity Stress through Biochemical and Physiological Mechanisms. Physiol. Mol. Biol. Plants 2022, 28, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Łotocka, B.; Wysokińska, E.; Pitera, E.; Szpadzik, E. Ultrastructure of Receptive Stigma and Transmitting Tissue at Anthesis in Two Pear Species. Acta Agrobot. 2023, 76, 169344. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-Soil-Microbes: A Tripartite Interaction for Nutrient Acquisition and Better Plant Growth for Sustainable Agricultural Practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Alsharif, W.; Saad, M.M.; Hirt, H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front. Microbiol. 2020, 11, 1666. [Google Scholar] [CrossRef]
- Wiesnerová, L.; Hřebečková, T.; Jablonský, I.; Koudela, M. Effect of Different Water Contents in the Substrate on Cultivation of Pleurotus ostreatus Jacq. P. Kumm. Folia Hortic. 2023, 35, 25–31. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Szot, I. The Possibility of Using Fruit-Bearing Plants of Temperate Climate in the Treatment and Prevention of Diabetes. Life 2023, 13, 1795. [Google Scholar] [CrossRef]
- Trivedi, P.; Mattupalli, C.; Eversole, K.; Leach, J.E. Enabling Sustainable Agriculture through Understanding and Enhancement of Microbiomes. New Phytol. 2021, 230, 2129–2147. [Google Scholar] [CrossRef]
- Ullah, S.; Bano, A.; Ullah, A.; Shahid, M.A.; Khan, N. A Comparative Study of Plant Growth Promoting Rhizobacteria (PGPR) and Sowing Methods on Nutrient Availability in Wheat and Rhizosphere Soil under Salinity Stress. Rhizosphere 2022, 23, 100571. [Google Scholar] [CrossRef]
- Shaffique, S.; Khan, M.A.; Imran, M.; Kang, S.-M.; Park, Y.-S.; Wani, S.H.; Lee, I.-J. Research Progress in the Field of Microbial Mitigation of Drought Stress in Plants. Front. Plant Sci. 2022, 13, 870626. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.-C.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and Biochemical Responses of Soybean Plants Inoculated with Arbuscular Mycorrhizal Fungi and Bradyrhizobium under Drought Stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef]
- Gehring, C.A.; Sthultz, C.M.; Flores-Rentería, L.; Whipple, A.V.; Whitham, T.G. Tree Genetics Defines Fungal Partner Communities That May Confer Drought Tolerance. Proc. Natl. Acad. Sci. USA 2017, 114, 11169–11174. [Google Scholar] [CrossRef]
- Alwutayd, K.M.; Rawat, A.A.; Sheikh, A.H.; Almeida-Trapp, M.; Veluchamy, A.; Jalal, R.; Karampelias, M.; Froehlich, K.; Alzaed, W.; Tabassum, N.; et al. Microbe-induced Drought Tolerance by ABA-mediated Root Architecture and Epigenetic Reprogramming. EMBO Rep. 2023, 24, e56754. [Google Scholar] [CrossRef]
- Xie, J.; Dawwam, G.E.; Sehim, A.E.; Li, X.; Wu, J.; Chen, S.; Zhang, D. Drought Stress Triggers Shifts in the Root Microbial Community and Alters Functional Categories in the Microbial Gene Pool. Front. Microbiol. 2021, 12, 744897. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Balodi, R.; Ghatak, A. Microbe-Mediated Mitigation of Plant Stress. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 271–282. [Google Scholar]
- Sood, G.; Kaushal, R.; Sharma, M. Alleviation of Drought Stress in Maize (Zea mays L.) by Using Endogenous Endophyte Bacillus subtilis in North West Himalayas. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 361–370. [Google Scholar] [CrossRef]
- Bauer, S.; McNamara, J.M.; Barta, Z. Environmental Variability, Reliability of Information and the Timing of Migration. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200622. [Google Scholar] [CrossRef]
- Sangare, N.; Lo-Yat, A.; Le Moullac, G.; Pecquerie, L.; Thomas, Y.; Lefebvre, S.; Gendre, R.L.; Beliaeff, B.; Andréfouët, S. Impact of Environmental Variability on Pinctada Margaritifera Life-History Traits: A Full Life Cycle Deb Modeling Approach. Ecol. Modell. 2020, 423, 109006. [Google Scholar] [CrossRef]
- Watson, J.W.; Boyd, R.; Dutta, R.; Vasdekis, G.; Walker, N.D.; Roy, S.; Everitt, R.; Hyder, K.; Sibly, R.M. Incorporating Environmental Variability in a Spatially-Explicit Individual-Based Model of European Sea Bass. Ecol. Modell. 2022, 466, 109878. [Google Scholar] [CrossRef]
- Castelo, W.F.L.; Martins, M.V.A.; Martínez-Colón, M.; Guerra, J.V.; Dadalto, T.P.; Terroso, D.; Soares, M.F.; Frontalini, F.; Duleba, W.; Socorro, O.A.A.; et al. Disentangling Natural vs. Anthropogenic Induced Environmental Variability during the Holocene: Marambaia Cove, SW Sector of the Sepetiba Bay (SE Brazil). Environ. Sci. Pollut. Res. 2021, 28, 22612–22640. [Google Scholar] [CrossRef]
- Kumar, R.E.; Tiihonen, A.; Sun, S.; Fenning, D.P.; Liu, Z.; Buonassisi, T. Opportunities for Machine Learning to Accelerate Halide-Perovskite Commercialization and Scale-Up. Matter 2022, 5, 1353–1366. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Lukk, T.; Tuohy, M.G.; Gong, L.; Nguyen-Tri, P.; Goddard, A.D.; Bill, R.M.; Nayak, S.C.; et al. Lignocellulosic Biorefineries: The Current State of Challenges and Strategies for Efficient Commercialization. Renew. Sustain. Energy Rev. 2021, 148, 111258. [Google Scholar] [CrossRef]
- Saini, R.; Osorio-Gonzalez, C.S.; Hegde, K.; Brar, S.K.; Magdouli, S.; Vezina, P.; Avalos-Ramirez, A. Lignocellulosic Biomass-Based Biorefinery: An Insight into Commercialization and Economic Standout. Curr. Sustain./Renew. Energy Rep. 2020, 7, 122–136. [Google Scholar] [CrossRef]
- Mula, C.; Zybura, N.; Hipp, T. From Digitalized Start-up to Scale-up: Opening the Black Box of Scaling in Digitalized Firms towards a Scaling Process Framework. Technol. Forecast. Soc. Change 2024, 202, 123275. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Ma, W.; Xu, L.; Lai, C.; Zhang, X.; Guan, Q.; Zhang, Z.; Chen, Y.; Lai, Z.; et al. AGL61/80 Regulates BGAL9, Which Participates in Early Somatic Embryogenesis and Increases Longan Resistance to Heat Stress. Fruit Res. 2024, 4, e013. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D. Combined Use of Trichoderma and Beneficial Bacteria (Mainly bacillus and Pseudomonas): Development of Microbial Synergistic Bio-Inoculants in Sustainable Agriculture. Biol. Control 2022, 176, 105100. [Google Scholar] [CrossRef]
- Paravar, A.; Piri, R.; Balouchi, H.; Ma, Y. Microbial Seed Coating: An Attractive Tool for Sustainable Agriculture. Biotechnol. Rep. 2023, 37, e00781. [Google Scholar] [CrossRef]
- Ebrahimi-Zarandi, M.; Etesami, H.; Glick, B.R. Fostering Plant Resilience to Drought with Actinobacteria: Unveiling Perennial Allies in Drought Stress Tolerance. Plant Stress 2023, 10, 100242. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated Applications of Organic Amendments Promote Beneficial Microbiota, Improve Soil Fertility and Increase Crop Yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Imran; Amanullah; Arif, M.; Shah, Z.; Bari, A. Integration of Peach (Prunus persica L.) Residues, Beneficial Microbes and Phosphorous Enhance Phenology, Growth and Yield of Soybean. Russ. Agric. Sci. 2020, 46, 223–230. [Google Scholar] [CrossRef]
- Warrad, M.; Hassan, Y.M.; Mohamed, M.S.M.; Hagagy, N.; Al-Maghrabi, O.A.; Selim, S.; Saleh, A.M.; AbdElgawad, H. A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress. J. Microbiol. Biotechnol. 2020, 30, 1156–1168. [Google Scholar] [CrossRef]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a Promising Alternative to Synthetic Pesticides: A Case for Microbial Pesticides, Phytopesticides, and Nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Morales-Quintana, L.; Moya, M.; Santelices-Moya, R.; Cabrera-Ariza, A.; Rabert, C.; Pollmann, S.; Ramos, P. Improvement in the Physiological and Biochemical Performance of Strawberries under Drought Stress through Symbiosis with Antarctic Fungal Endophytes. Front. Microbiol. 2022, 13, 939955. [Google Scholar] [CrossRef]
- Li, M.; Ren, Y.; He, C.; Yao, J.; Wei, M.; He, X. Complementary Effects of Dark Septate Endophytes and Trichoderma Strains on Growth and Active Ingredient Accumulation of Astragalus Mongholicus under Drought Stress. J. Fungi 2022, 8, 920. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Djebaili, R.; Pellegrini, M.; Rossi, M.; Forni, C.; Smati, M.; Del Gallo, M.; Kitouni, M. Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum Durum of Actinomycetes Isolates under Salt Stress Conditions. Soil Syst. 2021, 5, 26. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Fiaz, S.; Hafeez, S.; Zahra, S.; Shah, A.N.; Gul, B.; Aziz, O.; Mahmood-Ur-Rahman; Fakhar, A.; Rafique, M.; et al. Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review. Front. Plant Sci. 2022, 13, 875774. [Google Scholar] [CrossRef]
- Afridi, M.S.; Fakhar, A.; Kumar, A.; Ali, S.; Medeiros, F.H.V.; Muneer, M.A.; Ali, H.; Saleem, M. Harnessing Microbial Multitrophic Interactions for Rhizosphere Microbiome Engineering. Microbiol. Res. 2022, 265, 127199. [Google Scholar] [CrossRef]
- Yan, S.; Li, J.; Zhang, Q.; Jia, S.; Zhang, Q.; Wang, R.; Ju, M.; Gu, P. Transcriptional Response of Wolfberry to Infestation with the Endophytic Fusarium nematophilum Strain NQ8GII4. Plant Dis. 2024, 108, 1514–1525. [Google Scholar] [CrossRef]
- Iqbal, S.; Iqbal, M.A.; Li, C.; Iqbal, A.; Abbas, R.N. Overviewing Drought and Heat Stress Amelioration—From Plant Responses to Microbe-Mediated Mitigation. Sustainability 2023, 15, 1671. [Google Scholar] [CrossRef]
- Singh, D.; Thapa, S.; Singh, J.P.; Mahawar, H.; Saxena, A.K.; Singh, S.K.; Mahla, H.R.; Choudhary, M.; Parihar, M.; Choudhary, K.B.; et al. Prospecting the Potential of Plant Growth-Promoting Microorganisms for Mitigating Drought Stress in Crop Plants. Curr. Microbiol. 2024, 81, 84. [Google Scholar] [CrossRef]
- Gu, Z.; Hu, C.; Gan, Y.; Zhou, J.; Tian, G.; Gao, L. Role of Microbes in Alleviating Crop Drought Stress: A Review. Plants 2024, 13, 384. [Google Scholar] [CrossRef]
- Khan, N.; Ali, S.; Tariq, H.; Latif, S.; Yasmin, H.; Mehmood, A.; Shahid, M.A. Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. Agronomy 2020, 10, 1683. [Google Scholar] [CrossRef]
- Fincheira, P.; Quiroz, A.; Tortella, G.; Diez, M.C.; Rubilar, O. Current Advances in Plant-Microbe Communication via Volatile Organic Compounds as an Innovative Strategy to Improve Plant Growth. Microbiol. Res. 2021, 247, 126726. [Google Scholar] [CrossRef]
- Inbaraj, M.P. Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review. Front. Agron. 2021, 3, 667903. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant Growth Promoting Rhizobacteria as Biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.A.; del Cerro, P.; Espuny, M.R.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.J.; Cubo, T. Plant Growth Promotion in Cereal and Leguminous Agricultural Important Plants: From Microorganism Capacities to Crop Production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Ryan, M.H.; Graham, J.H. Is There a Role for Arbuscular Mycorrhizal Fungi in Production Agriculture? Plant Soil 2002, 244, 263–271. [Google Scholar] [CrossRef]
- Herrmann, L.; Lesueur, D. Challenges of Formulation and Quality of Biofertilizers for Successful Inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient Soil Microorganisms: A New Dimension for Sustainable Agriculture and Environmental Development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef]
- Bakos, J.L.; Ladányi, M.; Szalay, L. Frost Hardiness of Flower Buds of 16 Apricot Cultivars during Dormancy. Folia Hortic. 2024, 36, 81–93. [Google Scholar] [CrossRef]
- Barrios, E. Soil Biota, Ecosystem Services and Land Productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Tubiello, F. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- EL-Bauome, H.A.; Doklega, S.M.; Saleh, S.A.; Mohamed, A.S.; Suliman, A.A.; Abd El-Hady, M.A.M. Effects of Melatonin on Lettuce Plant Growth, Antioxidant Enzymes and Photosynthetic Pigments under Salinity Stress Conditions. Folia Hortic. 2024, 36, 1–17. [Google Scholar] [CrossRef]
- San-Martín-Hernández, C.; Martínez-Téllez, M.Á.; Valenzuela-Amavizca, O.N.; Aispuro-Hernández, E.; Sánchez-Sánchez, M.; Hernández-Camarillo, E.; López-Martínez, L.X.; Quintana-Obregón, E.A. Byrsonima crassifolia L. Kunth a Bio-Resource with Potential: Overview and Opportunities. Folia Hortic. 2023, 35, 61–75. [Google Scholar] [CrossRef]
- Compant, S.; Clément, C.; Sessitsch, A. Plant Growth-Promoting Bacteria in the Rhizo- and Endosphere of Plants: Their Role, Colonization, Mechanisms Involved and Prospects for Utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- O’Callaghan, M. Microbial Inoculation of Seed for Improved Crop Performance: Issues and Opportunities. Appl. Microbiol. Biotechnol. 2016, 100, 5729–5746. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Weather Conditions, Orchard Age and Nitrogen Fertilization Influences Yield and Quality of ‘Łutówka’ Sour Cherry Fruit. Agriculture 2022, 12, 2008. [Google Scholar] [CrossRef]
- Siddique, S.; Naveed, M.; Yaseen, M.; Shahbaz, M. Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.). Sustainability 2022, 14, 673. [Google Scholar] [CrossRef]
- Hwang, H.-H.; Chien, P.-R.; Huang, F.-C.; Yeh, P.-H.; Hung, S.-H.W.; Deng, W.-L.; Huang, C.-C. A Plant Endophytic Bacterium Priestia Megaterium StrainBP-R2 Isolated from the Halophyte Bolboschoenus Planiculmis Enhances Plant Growth under Salt and Drought Stresses. Microorganisms 2022, 10, 2047. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Nawaz, T.; Saud, S.; Gu, L.; Khan, I.; Fahad, S.; Zhou, R. Cyanobacteria: Harnessing the Power of Microorganisms for Plant Growth Promotion, Stress Alleviation, and Phytoremediation in the Era of Sustainable Agriculture. Plant Stress 2024, 11, 100399. [Google Scholar] [CrossRef]
- Sharma, A.; Usha; Gupta, S.; Chaubey, K.K.; Singh, S.V. An Overview of Microbial-Mediated Alleviation of Abiotic Stress Response in Plant. In Plant Stress Mitigators; Springer Nature Singapore: Singapore, 2022; pp. 581–596. [Google Scholar]
- Verma, H.; Kumar, D.; Kumar, V.; Kumari, M.; Singh, S.K.; Sharma, V.K.; Droby, S.; Santoyo, G.; White, J.F.; Kumar, A. The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants. Microorganisms 2021, 9, 1729. [Google Scholar] [CrossRef]
- Castaño, C.; Suarez-Vidal, E.; Zas, R.; Bonet, J.A.; Oliva, J.; Sampedro, L. Ectomycorrhizal Fungi with Hydrophobic Mycelia and Rhizomorphs Dominate in Young Pine Trees Surviving Experimental Drought Stress. Soil Biol. Biochem. 2023, 178, 108932. [Google Scholar] [CrossRef]
- Ullah, S.; Ikram, M.; Sarfaraz, S.; ul Haq, I.; Khan, A.; Murad, Z.; Munsif, F. Influence of Plant Growth Promoting Rhizobacteria (PGPR) on the Growth and Yield of Sunflower (Helianthus annus L.) Under Salt Stress. J. Crop Health 2024, 76, 1221–1234. [Google Scholar] [CrossRef]
- Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E.; Huang, C.-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef] [PubMed]
- Meier, M.A.; Lopez-Guerrero, M.G.; Guo, M.; Schmer, M.R.; Herr, J.R.; Schnable, J.C.; Alfano, J.R.; Yang, J. Rhizosphere Microbiomes in a Historical Maize-Soybean Rotation System Respond to Host Species and Nitrogen Fertilization at the Genus and Subgenus Levels. Appl. Environ. Microbiol. 2021, 87, e03132-20. [Google Scholar] [CrossRef]
- Li, H.-P.; Han, Q.-Q.; Liu, Q.-M.; Gan, Y.-N.; Rensing, C.; Rivera, W.L.; Zhao, Q.; Zhang, J.-L. Roles of Phosphate-Solubilizing Bacteria in Mediating Soil Legacy Phosphorus Availability. Microbiol. Res. 2023, 272, 127375. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.; Mendes, R.; Costa, L.A.S.; Bueno, C.G.; Meng, Y.; Folimonova, S.Y.; Garrett, K.A.; Martins, S.J. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front. Microbiol. 2021, 12, 743512. [Google Scholar] [CrossRef]
- Mushtaq, A.; Rawat, S. Plant–Microbe Interactions: An Insight into the Underlying Mechanisms to Mitigate Diverse Environmental Stresses. In Microbes and Signaling Biomolecules Against Plant Stress; Springer: Berlin/Heidelberg, Germany, 2021; pp. 127–150. [Google Scholar]
- Panda, D.; Mishra, S.S.; Behera, P.K. Drought Tolerance in Rice: Focus on Recent Mechanisms and Approaches. Rice Sci. 2021, 28, 119–132. [Google Scholar] [CrossRef]
- Bashir, S.S.; Hussain, A.; Hussain, S.J.; Wani, O.A.; Zahid Nabi, S.; Dar, N.A.; Baloch, F.S.; Mansoor, S. Plant Drought Stress Tolerance: Understanding Its Physiological, Biochemical and Molecular Mechanisms. Biotechnol. Biotechnol. Equip. 2021, 35, 1912–1925. [Google Scholar] [CrossRef]
- Wicław, H.; Podlasiński, M. Morphological Differences between Natural Populations of Carex viridula (Cyperaceae): Effects of Soil Conditions. Ann. Bot. Fenn. 2013, 50, 13–22. [Google Scholar] [CrossRef]
- Murali, M.; Singh, S.B.; Gowtham, H.G.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N. Induction of Drought Tolerance in Pennisetum glaucum by ACC Deaminase Producing PGPR- Bacillus amyloliquefaciens through Antioxidant Defense System. Microbiol. Res. 2021, 253, 126891. [Google Scholar] [CrossRef]
- French, E.; Kaplan, I.; Iyer-Pascuzzi, A.; Nakatsu, C.H.; Enders, L. Emerging Strategies for Precision Microbiome Management in Diverse Agroecosystems. Nat. Plants 2021, 7, 256–267. [Google Scholar] [CrossRef]
- Markuszewski, B.; Bieniek, A.A.; Wachowska, U.; Bieniek, A.; Krzymińska, I. Effect of Biological Treatment Used before Harvesting and Storage Methods on the Quality, Health and Microbial Characteristics of Unripe Hazelnut in the Husk (Corylus avellana L.). PeerJ 2022, 10, e12760. [Google Scholar] [CrossRef] [PubMed]
- Dellagnezze, B.M.; Sierra-Garcia, I.N. Immobilization of Microbial Inoculants for Improving Soil Nutrient Bioavailability. In Microbial Inoculants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 161–181. [Google Scholar]
- Ulukapi, K.; Nasircilar, A.G. The Role of Exogenous Glutamine on Germination, Plant Development and Transcriptional Expression of Some Stress-Related Genes in Onion under Salt Stress. Folia Hortic. 2024, 36, 19–34. [Google Scholar] [CrossRef]
- Abbasi, S.; Sadeghi, A.; Safaie, N. Streptomyces Alleviate Drought Stress in Tomato Plants and Modulate the Expression of Transcription Factors ERF1 and WRKY70 Genes. Sci. Hortic. 2020, 265, 109206. [Google Scholar] [CrossRef]
- Tymoszuk, A.; Szałaj, U.; Wojnarowicz, J.; Kowalska, J.; Antkowiak, M.; Kulus, D. Zinc Oxide and Silver Effects on the Growth, Pigment Content and Genetic Stability of Chrysanthemums Propagated by the Node Culture Method. Folia Hortic. 2024, 36, 35–66. [Google Scholar] [CrossRef]
- Demir, H.; Yalçi, H.K.; Katgici, A. Ameliorative Effects of Microbial Fertiliser on Yield and Quality Parameters of Curly Lettuce and Cucumber with Fertiliser Saving. Folia Hortic. 2023, 35, 91–106. [Google Scholar] [CrossRef]
- Ahmad, R.; Anjum, M.A.; Ercisli, S.; Malik, W.; Sakar, E.; Marc, R.A.; Karunakaran, R. Physico-Chemical Properties Revealed Huge Diversity in 50 Date Palm (Phoenix dactylifera L.) Genotypes. Folia Hortic. 2023, 35, 107–122. [Google Scholar] [CrossRef]
- Bahmani, R.; Razavi, F.; Mortazavi, S.N.; Juárez-Maldonado, A.; Gohari, G. Chitosan–Putrescine Nanoparticle Coating Attenuates Postharvest Decay and Maintains ROS Scavenging System Activity of Strawberry Cv. ‘Camarosa’ during Cold Storage. Folia Hortic. 2024, 36, 149–160. [Google Scholar] [CrossRef]
- Kunc, N.; Hudina, M.; Osterc, G.; Mikulic-Petkovsek, M. Changes in Various Secondary Metabolites by Crossing Modern Rose Cultivars. Folia Hortic. 2024, 36, 161–185. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Licznar-Małańczuk, M. Living Mulch Persistence in an Apple Orchard and Its Effect on the Weed Flora in Temperate Climatic Conditions. Weed Res. 2022, 62, 85–99. [Google Scholar] [CrossRef]
- Bieniek, A.; Lachowicz-Wiśniewska, S.; Bojarska, J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules 2022, 27, 2719. [Google Scholar] [CrossRef]
- Bokszczanin, K.Ł.; Przybyłko, S.; Molska-Kawulok, K.; Wrona, D. Tree Root-Associated Microbial Communities Depend on Various Floor Management Systems in an Intensive Apple (Malus × domestica Borkh.) Orchard. Int. J. Mol. Sci. 2023, 24, 9898. [Google Scholar] [CrossRef]
- Sosna, I.; Fudali, E. Living Mulches In-Rows as an Alternative for Herbicide Fallow in a Pear Pyrus communis L. Orchard. Hortic. Sci. 2024, 51, 160–167. [Google Scholar] [CrossRef]
Microbe Type | Examples | Key Characteristics | Role in Drought Tolerance |
---|---|---|---|
Plant Growth-Promoting Rhizobacteria (PGPR) | Pseudomonas spp., Bacillus subtilis, Azospirillum brasilense [38] | Nitrogen fixation, phosphate solubilization, root colonization, production of phytohormones [39] | Enhances root growth, improves nutrient uptake, induces osmotic adjustment, modulates hormone levels [40] |
Mycorrhizal Fungi | Glomus intraradices (arbuscular mycorrhizae), Rhizopogon spp. (ectomycorrhizae) [41] | Symbiotic association with plant roots, extensive hyphal networks, nutrient exchange [42] | Increases water uptake capacity, improves soil structure, enhances nutrient availability, reduces plant water stress [43] |
Endophytes | Bacillus amyloliquefaciens, Fusarium spp., Trichoderma harzianum [44] | Internal colonization of plant tissues, production of bioactive compounds, resistance to pathogens [45] | Produces osmolytes and antioxidants, enhances root architecture, stimulates plant defense mechanisms [46] |
Actinomycetes | Streptomyces spp., Micromonospora spp. [47] | Filamentous growth, production of antibiotics and enzymes, decomposition of organic matter [48] | Improves soil fertility, enhances nutrient cycling, promotes plant growth under drought conditions [49] |
Cyanobacteria | Anabaena spp., Nostoc spp., Spirulina spp. [50] | Photosynthetic, nitrogen-fixing, formation of biofilms, secretion of extracellular polysaccharides [51] | Enhances soil moisture retention, fixes atmospheric nitrogen, improves soil structure, provides organic matter [52] |
Other Beneficial Microorganisms | Trichoderma spp., Penicillium spp., Rhizobium spp. [53] | Diverse metabolic capabilities, symbiotic relationships, production of growth-promoting substances [54] | Suppresses soil pathogens, enhances nutrient uptake, stimulates plant growth, improves stress resilience [55] |
Mechanism | Microbial Actions | Examples |
---|---|---|
Osmotic Adjustment | Production of osmolytes (proline, trehalose), secretion of extracellular polymeric substances (EPS) [78] | Bacillus subtilis producing trehalose and EPS, Pseudomonas putida producing proline [79] |
Root Architecture Enhancement | Synthesis of auxins (IAA), promotion of root elongation and branching, stimulation of root hair development [80] | Bacillus amyloliquefaciens producing IAA, mycorrhizal fungi enhancing root surface area [81] |
Phytohormone Production | Modulation of phytohormones (auxins, gibberellins, cytokinins, ethylene), production of ACC deaminase to reduce ethylene levels [82] | Azospirillum brasilense producing auxins, Bacillus subtilis producing ACC deaminase [83] |
Antioxidant Defense Induction | Induction of antioxidant enzymes (SOD, CAT, POD), production of antioxidants (ascorbate, glutathione), secretion of antioxidant metabolites [84] | Trichoderma harzianum inducing SOD and CAT in plants, Pseudomonas fluorescens producing antioxidants [85] |
Gene Expression Regulation | Activation of drought-responsive genes, epigenetic modifications, regulation of transcription factors [86] | Bacillus subtilis activating drought-responsive genes, mycorrhizal fungi inducing expression of stress-related genes [87] |
Innovation Type | Techniques/Methods | Impact on Ecosystem Resilience |
---|---|---|
Soil Microbiome Engineering | Metagenomic analysis, tailored microbial consortia introduction, CRISPR–Cas mediated microbial modifications [130] | Improved soil structure, enhanced nutrient cycling, increased microbial diversity, enhanced plant resilience [131]. |
Bioaugmentation | Introduction of specific beneficial microbial strains, application of liquid or granular inoculants, slow-release formulations [132] | Enhanced soil fertility, improved water retention, increased plant growth and drought tolerance, restoration of degraded soils [133] |
Integrated Pest Management Synergies | Combining beneficial microbes with biological control agents, simultaneous application of PGPR and entomopathogenic fungi, integrated microbial and cultural practices [134] | Reduced pest outbreaks, enhanced plant defense mechanisms, improved crop health and yield, minimized reliance on chemical pesticides [135] |
Sustainable Agricultural Practices | Conservation tillage with microbial amendments, crop rotation incorporating microbial inoculants, use of organic amendments (compost, biochar) to support microbial communities [136] | Enhanced soil moisture retention, improved soil health and structure, increased nutrient availability, sustained plant productivity under drought conditions [137] |
Location | Crop Type | Microbial Strains Used | Interventions Applied | Outcomes Achieved |
---|---|---|---|---|
Sub-Saharan Africa [179] | Maize, Sorghum | Azospirillum brasilense, Bacillus subtilis | PGPR inoculation, microbial consortia application | Increased crop yields by 20%, improved water use efficiency by 15%, enhanced root development |
Mediterranean Europe [174] | Grapevines | Glomus intraradices, Trichoderma harzianum | Mycorrhizal fungi introduction, bioaugmentation | Improved soil moisture retention, increased grape quality and yield, reduced soil erosion |
Southeast Asia [180] | Rice | Azospirillum brasilense, Rhizobium spp. | PGPR inoculation, microbial consortia application | Enhanced water use efficiency, increased rice yields by 25%, improved nutrient uptake |
California (USA) [92] | Grapevines | Glomus intraradices, Bacillus subtilis | Mycorrhizal fungi introduction, PGPR inoculation | Increased grapevine health and productivity, improved soil structure, reduced irrigation needs |
Australia [181] | Native Vegetation | Cyanobacteria spp., Actinomycetes spp. | Cyanobacteria restoration, actinomycetes inoculation | Restoration of native plant communities, enhanced soil moisture retention, improved soil fertility |
Southeast Asia [182] | Rice | Trichoderma harzianum, Pseudomonas fluorescens | Microbial consortia application, bioaugmentation | Increased grain yield by 30%, enhanced plant resilience to drought stress, improved soil health |
Challenge | Description | Strategies to Overcome |
---|---|---|
Environmental Variability | The performance and efficacy of beneficial microbes are highly influenced by environmental factors such as soil type, temperature, moisture levels, pH, and the presence of native microbial communities. These variables can lead to inconsistent outcomes in microbial activity and plant drought tolerance across different regions and seasons [230]. | - Selection and Engineering of Resilient Strains: Identify and develop microbial strains with inherent tolerance to a wide range of environmental conditions [231]. - Protective Formulations: Utilize encapsulation techniques and protective carriers to shield microbes from extreme conditions [232]. - Site-Specific Application: Tailor microbial inoculants to specific environmental contexts through localized testing and customization [233]. - Integration with Agronomic Practices: Combine microbial applications with practices like conservation tillage and organic amendments to create favorable soil environments [113]. |
Scale-Up and Commercialization | Transitioning microbial technologies from controlled laboratory settings to large-scale field applications involves challenges related to maintaining microbial viability, ensuring consistent performance, and managing production costs. Additionally, scaling up requires robust formulation and delivery systems that can withstand storage and transportation conditions [234]. | - Cost-Effective Production Methods: Develop scalable and economically viable microbial cultivation and formulation processes [235]. - Robust Formulation Techniques: Implement advanced encapsulation and stabilization methods to preserve microbial viability during storage and transport [236]. - Quality Control and Standardization: Establish stringent quality control protocols to ensure consistency and reliability of microbial products [237] - Economic Incentives and Support: Provide financial incentives, subsidies, and support programs to encourage investment and adoption by farmers and agricultural businesses [204]. |
Regulatory and Safety Concerns | The deployment of beneficial microbes must comply with stringent regulatory standards to ensure safety for humans, non-target organisms, and the environment. Regulatory frameworks vary across regions, and navigating these can be complex and time-consuming. Additionally, there is a need to address potential non-target effects and ensure that microbial applications do not disrupt existing ecosystems [203]. | - Comprehensive Risk Assessments: Conduct thorough evaluations of microbial strains to assess potential risks and non-target effects (Imathiu I in. 2020). - Adherence to Regulatory Standards: Ensure all microbial products meet the regulatory requirements of target markets through rigorous testing and documentation (Rossi I in. 2021). - Transparent Communication: Maintain transparency with stakeholders about the safety and benefits of microbial interventions to build trust and acceptance [195]. - Development of Best Practices: Establish standardized guidelines and protocols for the safe and effective use of beneficial microbes in agriculture [238]. |
Complex Microbe-Plant-Environment Interactions | The interactions between microbes, plants, and their environment are intricate and dynamic, making it challenging to predict and optimize microbial behavior and plant responses consistently. Factors such as plant genotype, microbial community composition, and fluctuating environmental conditions add layers of complexity that are not fully understood [83]. | - Interdisciplinary Research Initiatives: Foster collaboration among microbiologists, plant scientists, ecologists, and data scientists to gain a holistic understanding of microbe–plant–environment interactions [194]. - Advanced Omics Technologies: Utilize genomics, transcriptomics, proteomics, and metabolomics to dissect the molecular mechanisms underlying microbe-mediated drought tolerance [239]. - Longitudinal Field Studies: Implement long-term studies to monitor microbial and plant dynamics across multiple growing seasons and environmental conditions [193]. - Modeling and Simulation:Develop predictive models using machine learning and bioinformatics to anticipate microbial behavior and optimize interventions based on environmental variables [191]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikiciuk, G.; Miller, T.; Kisiel, A.; Cembrowska-Lech, D.; Mikiciuk, M.; Łobodzińska, A.; Bokszczanin, K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture 2024, 14, 2228. https://doi.org/10.3390/agriculture14122228
Mikiciuk G, Miller T, Kisiel A, Cembrowska-Lech D, Mikiciuk M, Łobodzińska A, Bokszczanin K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture. 2024; 14(12):2228. https://doi.org/10.3390/agriculture14122228
Chicago/Turabian StyleMikiciuk, Grzegorz, Tymoteusz Miller, Anna Kisiel, Danuta Cembrowska-Lech, Małgorzata Mikiciuk, Adrianna Łobodzińska, and Kamila Bokszczanin. 2024. "Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations" Agriculture 14, no. 12: 2228. https://doi.org/10.3390/agriculture14122228
APA StyleMikiciuk, G., Miller, T., Kisiel, A., Cembrowska-Lech, D., Mikiciuk, M., Łobodzińska, A., & Bokszczanin, K. (2024). Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture, 14(12), 2228. https://doi.org/10.3390/agriculture14122228