Adaptation and Grain Yield Stability Analysis of Winter Wheat Cultivars with and Without Fungicides Treatment from National Variety Trials in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Statistical Analysis
3. Results
3.1. Analysis of Variance and AMMI Biplots
3.2. Mega-Environments and Which-Won-Where
3.3. Grain Yield Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Data Atlas. Sweden—Wheat Production Quantity. Available online: https://knoema.com/atlas/Sweden/topics/Agriculture/Crops-Production-Quantity-tonnes/Wheat-production (accessed on 27 April 2021).
- Statistics Sweden. Largest Winter Wheat Acreage Ever. Available online: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/agriculture-forestry-and-fishery/agricultural-structure/areas-sown-in-the-autumn/pong/statistical-news/areas-sown-in-autumn-2020/ (accessed on 16 April 2021).
- De Leon, N.; Jannink, J.-L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a Special Issue on Genotype by Environment Interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef]
- Kang, M.S. Using Genotype-by-Environment Interaction for Crop Cultivar Development. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1997; pp. 199–252. [Google Scholar]
- Cucolotto, M.; Valéria Carpentieri, P.; Deoclécio Domingos, G.; Nelson da Silva Fonseca, J.; Destro, D.; Marcos Kazuyuki, K. Genotype x environment interaction in soybean: Evaluation through three methodologies. Crop Breed. Appl. Biotechnol. 2007, 7. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Nehe, A.; Martinsson, U.D.; Johansson, E.; Chawade, A. Genotype and environment interaction study shows fungal diseases and heat stress are detrimental to spring wheat production in Sweden. PLoS ONE 2023, 18, e0285565. [Google Scholar] [CrossRef] [PubMed]
- Thuraga, V.; Martinsson, U.D.; Vetukuri, R.R.; Chawade, A. Delineation of Genotype X Environment Interaction for Grain Yield in Spring Barley Under Untreated and Fungicide-Treated Environments. Plants 2023, 12, 715. [Google Scholar] [CrossRef] [PubMed]
- Gauch, H.G.; Zobel, R.W. Identifying Mega-Environments and Targeting Genotypes. Crop Sci. 1997, 37, 311–326. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties1. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Chatterjee, C.; Debnath, M.; Karmakar, N.; Sadhukhan, R. Stability of grass pea (Lathyrus sativus L.) genotypes in different agroclimatic zone in eastern part of India with special reference to West Bengal. Genet. Resour. Crop Evol. 2019, 66, 1515–1531. [Google Scholar] [CrossRef]
- Gauch, H.G. A Simple Protocol for AMMI Analysis of Yield Trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Hongyu, K.; García-Peña, M.; Araújo, L.B.d.; Dias, C.T.d.S. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biom. Lett. 2014, 51, 89–102. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G., Jr. Statistical Analysis of a Yield Trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs, 1st ed.; Gauch, H.G., Jr., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Gauch, H.G. Model Selection and Validation for Yield Trials with Interaction. Biometrics 1988, 44, 705. [Google Scholar] [CrossRef]
- Crossa, J. Statistical analyses of multilocation trials. Adv. Agron. 1990, 44, 55–85. [Google Scholar]
- Gauch, H.G.; Piepho, H.-P.; Annicchiarico, P. Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop Sci. 2008, 48, 866. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Kang, M.S. Simultaneous Selection for Yield and Stability in Crop Performance Trials: Consequences for Growers. Agron. J. 1993, 85, 754–757. [Google Scholar] [CrossRef]
- Neisse, A.; Kirch, J.; Hongyu, K. AMMI and GGE Biplot for genotype × environment interaction: A medoid—based hierarchical cluster analysis approach for high—dimensional data. Biom. Lett. 2018, 55, 97–121. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Miranda, G.V.; Souza, L.V.D.; Guimarães, L.J.M.; Namorato, H.; Oliveira, L.R.; Soares, M.O. Multivariate analyses of genotype x environment interaction of popcorn. Pesqui. Agropecuária Bras. 2009, 44, 45–50. [Google Scholar] [CrossRef]
- Buntaran, H. Assessment of Statistical Analysis of Swedish Cultivar Testing—A Cross-Validation Study for Model Selection. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2019. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Ángela Pacheco, M.; Vargas, G.; Alvarado, F.; Rodríguez, J.; Crossa, J. Burgueño GEA-R (Genotype × Environment Analysis with R for Windows), 2; CIMMYT: El Batan, Mexico, 2016. [Google Scholar]
- Frutos, E.; Galindo, M.P.; Leiva, V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk Assess. 2014, 28, 1629–1641. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Bates, D. lme4: Linear Mixed-Effects Models Using Eigen and S4; R Package Version; 2016; Volume 1, p. 1. Available online: https://cir.nii.ac.jp/crid/1370285710777568771 (accessed on 1 September 2023).
- Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.; Thompson, R. ASReml-R Reference Manual Version 4; VSN International Ltd.: Hertfordshire, UK, 2017. [Google Scholar]
- Wilcke, R.A.I.; Kjellström, E.; Lin, C.; Matei, D.; Moberg, A.; Tyrlis, E. The extremely warm summer of 2018 in Sweden–set in a historical context. Earth Syst. Dynam. 2020, 11, 1107–1121. [Google Scholar] [CrossRef]
- Grusson, Y.; Wesström, I.; Joel, A. Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need. Agric. Water Manag. 2021, 251, 106858. [Google Scholar] [CrossRef]
- Gauch, H.G.; Zobel, R.W. AMMI analysis of yield trials. In Genotype-by-Environment Interaction; Kang, M.S., Gauch, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 1–40. [Google Scholar]
- Arbenz, M.; Gould, D.; Stopes, C. Organic 3.0—For Truly Sustainable Farming and Consumption, 2nd ed.; Denise, G., Ed.; IFOAM—Organics International and SOAAN: Bonn, Germany, 2016. [Google Scholar]
- Milestad, R.; Röös, E.; Stenius, T.; Wivstad, M. Tensions in future development of organic production—Views of stakeholders on Organic 3.0. Org. Agric. 2020, 10, 509–519. [Google Scholar] [CrossRef]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- EU. Commission Implementing Regulation (EU) No 354/2014 of 8 April 2014 Amending and Correcting Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; European Union: Brussels, Belgium, 2014; pp. 7–14. [Google Scholar]
- Roy, D.; Kharkwal, M.C. Breeding for Wider Adaptability; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Yan, W. GGEbiplot-A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
Year | DF | SS | MS | F | p-Value | |
---|---|---|---|---|---|---|
2016 | G | 57 | 702 | 11.7 | 9.167 | <0.001 *** |
E | 9 | 22,252 | 2781.5 | 2177.877 | <0.001 *** | |
G×E | 513 | 1424 | 3.0 | 3.303 | <0.001 *** | |
Trt | 1 | 174 | 174.4 | 136.573 | <0.001 *** | |
Residuals | 2092 | 2672 | 1.3 | - | - | |
2017 | G | 53 | 815 | 15.1 | 6.383 | <0.001 *** |
E | 9 | 11,163 | 1240.3 | 524.842 | <0.001 *** | |
G×E | 477 | 1760 | 3.6 | 1.451 | <0.001 *** | |
Trt | 1 | 686 | 685.7 | 290.135 | <0.001 *** | |
Residuals | 2018 | 4769 | 2.4 | - | - | |
2018 | G | 58 | 706 | 12 | 8.262 | <0.001 *** |
E | 9 | 14,053 | 1561.4 | 1130.542 | <0.001 *** | |
G×E | 522 | 758.4128 | 1.4529 | 0.92664 | 0.81417 NS | |
Trt | 1 | 11 | 11.3 | 7.810 | <0.00524 ** | |
Residuals | 2326 | 3369 | 1.4 | - | - | |
2019 | G | 54 | 1283 | 23.8 | 14.543 | <0.001 *** |
E | 9 | 16,551 | 1839 | 1125.616 | <0.001 *** | |
G×E | 486 | 1524 | 3.1 | 1.248 | <0.001 *** | |
Trt | 1 | 2147 | 2147.4 | 1314.363 | <0.001 *** | |
Residuals | 2130 | 3480 | 1.6 | - | - | |
2020 | G | 57 | 1290 | 22.2 | 19.015 | <0.001 *** |
E | 9 | 27,453 | 3050.3 | 2607.869 | <0.001 *** | |
G×E | 513 | 1008 | 1.9 | 1.696 | <0.001 *** | |
Trt | 1 | 205.084 | 3.15514 | 12.67328 | <0.001 *** | |
Residuals | 2284 | 2672 | 1.2 | - | - |
Source | Years | ||||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | |
Genotype | 1.6358318 | 3.4125225 | 3.1980683 | 4.734364 | 3.494132 |
Env | 87.7523246 | 60.9966980 | 76.5970001 | 74.63924 | 87.02654 |
Genotype:Env | 4.1392496 | 6.6509106 | 1.6903638 | 5.596941 | 1.788598 |
Genotype:Trt | 0.2888352 | 0.1388348 | 0.1114204 | 0.482911 | 0.076533 |
Env:Trt | 0.4414176 | 10.2452944 | 1.9304268 | 6.031131 | 2.218385 |
Genotype:Env:Trt | 0.8661147 | 0.0915487 | 0.0000000 | 0.509868 | 0.442382 |
Residual | 3.6667502 | 8.3943257 | 6.6456719 | 4.157752 | 3.475491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemu, A.; Singh, P.K.; Chawade, A. Adaptation and Grain Yield Stability Analysis of Winter Wheat Cultivars with and Without Fungicides Treatment from National Variety Trials in Sweden. Agriculture 2024, 14, 2229. https://doi.org/10.3390/agriculture14122229
Alemu A, Singh PK, Chawade A. Adaptation and Grain Yield Stability Analysis of Winter Wheat Cultivars with and Without Fungicides Treatment from National Variety Trials in Sweden. Agriculture. 2024; 14(12):2229. https://doi.org/10.3390/agriculture14122229
Chicago/Turabian StyleAlemu, Admas, Pawan K. Singh, and Aakash Chawade. 2024. "Adaptation and Grain Yield Stability Analysis of Winter Wheat Cultivars with and Without Fungicides Treatment from National Variety Trials in Sweden" Agriculture 14, no. 12: 2229. https://doi.org/10.3390/agriculture14122229
APA StyleAlemu, A., Singh, P. K., & Chawade, A. (2024). Adaptation and Grain Yield Stability Analysis of Winter Wheat Cultivars with and Without Fungicides Treatment from National Variety Trials in Sweden. Agriculture, 14(12), 2229. https://doi.org/10.3390/agriculture14122229