Myofibrillar Protein Profile of the Breast Muscle in Turkeys as a Response to the Variable Ratio of Limiting Amino Acids in Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Housing
2.2. Diets and Experimental Design
2.3. Sample Collection
2.4. Meat Quality Measurement
2.5. Extraction of Muscle Protein
2.6. Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandes, J.I.M.; Murakami, A.E.; Martins, E.N.; Sakamoto, M.I.; Garcia, E.R.M. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: Deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poult. Sci. 2009, 88, 1399–1406. [Google Scholar] [CrossRef]
- Zhai, W.; Araujo, L.F.; Burges, S.C.; Cooksey, A.M.; Pendarvis, K.; Mercier, Y.; Corzo, A. Protein expression in pectoral skeletal muscle of chicken as influenced by dietary methionine. Poult. Sci. 2012, 91, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.L.S.; Su, S.; Choi, H.; Koo, E.; Kim, W.K. L-Arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poult. Sci. 2019, 98, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Ognik, K.; Całyniuk, Z.; Stępniowska, A.; Konieczka, P.; Mikulski, D. The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal 2021, 15, 100183. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.R.; Field, C.J. The immune modifying efects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 2013, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.T.; Maynard, C.W.; Mullenix, G.J. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Żelechowska, E.; Przybylski, W.; Jaworska, D.; Sałek, P.; Kinsner, M.; Jankowski, J. The sarcoplasmic protein profile of breast muscle in turkeys in response to different ratios of limiting amino acids and Clostridium perfringens induced inflammation. Poult. Sci. 2022, 101, 102195. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.L.S.; Kim, W.K. Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review. Animals 2020, 10, 2106. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, G.; Kobayashi, H.; Shibata, M.; Kubota, M.; Kadowaki, M.; Fujimura, S. Reduction in dietary lysine increases muscle free amino acids through changes in protein metabolism in chickens. Poult. Sci. 2020, 99, 3102–3110. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, M.; Zhang, L.; Li, J.; Yu, L.; Lv, P.; Gao, F.; Zhou, G. Effect of in ovo feeding of l-arginine on the hatchability, growth performance, gastrointestinal hormones, and jejunal digestive and absorptive capacity of posthatch broilers. J. Anim. Sci. 2017, 95, 3079–3092. [Google Scholar]
- Huffman, K.; Zapata, I.; Reddish, J.M.; Lilburn, M.S.; Wick, M. Feed restriction delays developmental fast skeletal muscle myosin heavy chain isoforms in turkey poults selected for differential growth. Poult. Sci. 2012, 91, 3178–3183. [Google Scholar] [CrossRef]
- Majdeddin, M.; Golian, A.; Kermanshahi, H.; Michiels, J.; De Smet, S. Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets. Brit. Poult. Sci. 2019, 60, 554–563. [Google Scholar] [CrossRef]
- Ogunwole, O.A.; Babatunde, O.O.; Faboyede, R.A.; Adedeji, B.S.; Jemiseye, F.O. Calcium and phosphorus retention by broiler chickens fed groundnut cake based-diet supplemented with l-lysine and dl-methionine. J. Anim. Prod. Res. 2017, 29, 240–248. [Google Scholar]
- Lee, M.; Park, H.; Heo, J.M.; Choi, H.J.; Seo, S. Multi-tissue transcriptomic analysis reveals that L-methionine supplementation maintains the physiological homeostasis of broiler chickens than D-methionine under acute heat stress. PLoS ONE 2021, 16, e0246063. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–a comprehensive review. Vet. Quart. 2021, 41, 1–29. [Google Scholar] [CrossRef]
- Research Council National. Nutrient Requirements of Poultry; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Baker, D.H. Advances in protein–amino acid nutrition of poultry. Amino Acids 2009, 37, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lv, Z.; Li, H.; Guo, S.; Liu, D.; Guo, Y. Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens. Br. J. Nutr. 2017, 118, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Hendrix Genetics, B.V. Commercial Management. 2024. Available online: https://www.hybridturkeys.com/en/product/hybrid-converter/white-turkeys-hybrid-converter/ (accessed on 10 October 2021).
- Bollag, D.M.; Edelstein, S.J. Protein Methods; Wiley-Liss, Inc.: New York, NY, USA, 1999. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13. 2017. Available online: http://statistica.io (accessed on 10 June 2022).
- Çelen, M.F.; Bünyamin, S.; Zorba, Ö.; Demirulus, H.; Tekeli, A. Comparison of normal and PSE turkey breast meat for chemical composition, pH, color, myoglobin, and drip loss. R. Bras. Zootec. 2016, 45, 441–444. [Google Scholar] [CrossRef]
- Rammouz, R.E.; Babilé, R.; Fernandez, X. Effect of ultimate pH on the physicochemical and biochemical characteristics of turkey breast muscle showing normal rate of postmortem pH fall. Poult. Sci. 2004, 83, 1750–1757. [Google Scholar] [CrossRef]
- Wynveen, E.J.; Bowker, B.C.; Grant, A.L.; Demos, B.P.; Gerrard, D.E. Effects of muscle pH and chilling on development of PSE-like turkey breast meat. Br. Poult. Sci. 1999, b40, 253–256. [Google Scholar] [CrossRef]
- Zampiga, M.; Laghi, L.; Petracci, M.; Zhu, C.; Meluzzi, A.; Dridi, S. Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotechn. 2018, 9, 79. [Google Scholar] [CrossRef]
- Pekel, A.Y.; That, O.; Sevim, Ö.; Kuter, E.; Ahsan, U.; Karimiyan Khamseh, E.; Atmaca, G.; Köksal, B.H.; Özsoy, B.; Cengiz, Ö. Effects of reducing dietary amino acid density and stocking density on growth performance, carcass characteristics, meat quality, and occurrence of white striping in broiler chickens. Poult. Sci. 2020, 99, 7178–7191. [Google Scholar] [CrossRef] [PubMed]
- Bowker, B.; Zhuang, H. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poult. Sci. 2015, 94, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Shao, W.; Chen, X.; Campbell, Y.L.; Nair, M.N.; Suman, S.P.; Beach, C.M.; Guyton, M.C.; Schilling, M.W. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult. Sci. 2018, 97, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Virellia To, K.; Jarvis, T.R.; Campbell, Y.L.; Hendrix, J.D.; Suman, S.P.; Li, S.; Antonelo, D.S.; Zhai, W.; Chen, J.; et al. Broiler genetics influences proteome profiles of normal and woody breast muscle. Poult. Sci. 2021, 100, 100994. [Google Scholar] [CrossRef] [PubMed]
- Tasoniero, G.; Zhuang, H.; Gamble, G.R.; Bowker, B.C. Effect of spaghetti meat abnormality on broiler chicken breast meat composition and technological quality. Poult. Sci. 2020, 99, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Baldi, G.; Soglia, F.; Mazzoni, M.; Sirri, F.; Canonico, L.; Babini, E.; Laghi, L.; Cavani, C.; Petracci, M. Implications of white stripping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal 2018, 12, 164–173. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Tasoniero, G.; Puolanne, E.; Remignon, H.; Cecchiato, M.; Catelli, E.; Cullere, M. Effect of “wooden breast” appearance on poultry meat quality, histological traits, and lesions characterization. Czech. J. Anim. Sci. 2017, 62, 51–57. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development genetic and nutritional control and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef]
- Lee, B.; Choi, Y.M. Research note: Comparison of histochemical characteristics, chicken meat quality, and heat shock protein expression between PSE-like condition and white-stripping features of pectoralis major muscle. Poult. Sci. 2021, 100, 101260. [Google Scholar] [CrossRef]
- Zampiga, M.; Soglia, F.; Petracci, M.; Meluzzi, A.; Sirri, F. Effect of different arginine-to-lysine ratios in broiler chicken diets on the occurrence of breast myopathies and meat quality attributes. Poult. Sci. 2019, 98, 2691–2697. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Y.Y.; Kang, Z.L.; Wang, P.; Han, M.Y.; Xu, X.L.; Zhou, G.H. Reduced functionality of PSE-like chicken breast meat batter resulting from alterations in protein conformation. Poult. Sci. 2015, 94, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Soglia, F.; Mudalal, S.; Babini, E.; Nunzio, M.D.; Mazzoni, M.; Sirri, F.; Cavani, C.; Petracci, M. Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality. Poult. Sci. 2016, 9, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Mudalal, S.; Babini, E.; Cavani, C.; Petracci, M. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping. Poult. Sci. 2014, 93, 2108–2116. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-S.; Stromer, M.H.; Chou, R.G.G. Effect of age on calpain changes in post mortem goose muscle. Poult. Sci. 2019, 98, 6131–6137. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, E.; Grześ, B.; Elminowska-Wenda, G. Post-slaughter transformations of proteins. In Meat-Basis of Science and Technology; Pospiech, E., Pisula, A., Eds.; SGGW-Warsaw Life Science Univ. Press: Warsaw, Poland, 2011; pp. 15–21. [Google Scholar]
- Chang, Y.-S.; Chou, R.-G.R. Postmortem role of calpains in Pekin duck skeletal muscles. J. Sci. Food Agric. 2012, 92, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Hnia, K.; Ramspacher, C.; Vermot, J.; Laporte, J. Desmin in muscle and associated diseases: Beyond the structural function. Cell Tissue Res. 2015, 360, 591–608. [Google Scholar] [CrossRef]
- Górska, M.; Wojtysiak, D. Desmin as an important cytoskeletal protein of myocytes. Vet. Life 2016, 91, 656–658. [Google Scholar]
Treatment 2 | Feeding Periods, Days | |||||
---|---|---|---|---|---|---|
From 1 to 28 | From 29 to 42 | |||||
Lys | Arg | Met | Lys | Arg | Met | |
Arg90Met30 | 1.63 | 1.46 | 0.50 | 1.48 | 1.37 | 0.42 |
Arg90Met45 | 1.56 | 1.43 | 0.69 | 1.45 | 1.39 | 0.66 |
Arg100Met30 | 1.58 | 1.52 | 0.51 | 1.53 | 1.53 | 0.42 |
Arg100Met45 | 1.66 | 1.56 | 0.71 | 1.56 | 1.56 | 0.7 |
Arg110Met30 | 1.55 | 1.69 | 0.52 | 1.56 | 1.71 | 0.44 |
Arg110Met45 | 1.64 | 1.67 | 0.74 | 1.55 | 1.73 | 0.66 |
Ingredients | Feeding Periods, Days | |
---|---|---|
From 1 to 28 | From 29 to 42 | |
Wheat | 43.98 | 47.72 |
Maize | 10.00 | 10.00 |
Soybean meal | 28.77 | 26.54 |
Rapeseed meal | 3.00 | 3.00 |
Potato protein | 5.00 | 5.00 |
Soibean oil | 0.95 | 2.85 |
Maize gluten meal | 3.50 | 3.00 |
Sodium bicarbonate | 0.20 | 0.20 |
Sodium chloride | 0.15 | 0.16 |
Limestone | 2.07 | 1.87 |
Monocalcium phosphate | 1.94 | 1.55 |
L-Threonine | 0.09 | 0.10 |
Choline chloride | 0.10 | 0.10 |
Vitamin-mineral premix 2 | 0.25 | 0.25 |
Calculated nutrients content | ||
Metabolizable energy, kcal/kg | 2820 | 2950 |
Crude potein | 27.0 | 24.5 |
Arginine | 1.58 | 1.44 |
Lysine | 1.36 | 1.19 |
Methionine | 0.44 | 0.39 |
Met + Cys | 0.91 | 0.83 |
Threonine | 1.02 | 1.01 |
Calcium | 1.30 | 1.15 |
Avaiable phosphorus | 0.70 | 0.60 |
Treatment | BW, kg | BWG, kg | DFI, g/day | FCR, kg/kg |
---|---|---|---|---|
Arginine (Arg) level, % (A) | ||||
90 | 2.33 a | 2.47 | 91.4 | 1.64 |
100 | 2.43 ab | 2.46 | 91.7 | 1.65 |
110 | 2.50 b | 2.46 | 91.8 | 1.65 |
Methionine (Met) level, %, (B) | ||||
30 | 2.41 | 2.45 | 90.8 | 1.64 |
45 | 2.44 | 2.47 | 92.4 | 1.66 |
SEM | 0.023 | 0.016 | 0.732 | 0.006 |
p-value | ||||
Arg | 0.004 | 0.993 | 0.967 | 0.713 |
Met | 0.521 | 0.518 | 0.305 | 0.142 |
Interactions | ||||
A × B | 0.014 | 0.934 | 0.900 | 0.694 |
Traits | Dietary Treatments 1 | |||||||
---|---|---|---|---|---|---|---|---|
Arg (%) Level | Met (%) Level | |||||||
90 | 100 | 110 | p-Value | 30 | 45 | p-Value | SEM | |
pH | 5.68 | 5.68 | 5.67 | 0.95 | 5.68 | 5.67 | 0.69 | 0.01 |
Color L* | 49.62 | 50.85 | 50.47 | 0.27 | 50.33 | 50.3 | 0.96 | 0.31 |
Color a* | −0.51 | −0.32 | −0.10 | 0.52 | −0.23 | −0.39 | 0.57 | 0.15 |
Color b* | 5.84 | 6.24 | 6.45 | 0.68 | 6.70 | 5.65 | 0.07 | 0.32 |
Traits | Nutritional Effect of Arg–Met Ratio | SEM | ||||||
---|---|---|---|---|---|---|---|---|
Met 30(%) Level | Met 45(%) Level | p-Value | ||||||
Arg (%) Level | Arg (%) Level | |||||||
90 | 100 | 110 | 90 | 100 | 110 | |||
pH | 5.70 | 5.68 | 5.67 | 5.66 | 5.68 | 5.68 | 0.71 | 0.01 |
Color L* | 48.93 | 50.97 | 51.09 | 50.31 | 50.74 | 49.85 | 0.24 | 0.31 |
Color a* | −0.88 | 0.03 | 0.16 | −0.15 | −0.66 | −0.37 | 0.11 | 0.15 |
Color b* | 5.04 a | 7.39 b | 7.68 b | 6.65 ab | 5.09 a | 5.20 a | 0.05 | 0.32 |
Traits | Dietary Treatments 1 | |||||||
---|---|---|---|---|---|---|---|---|
Arg (%) Level | Met (%) Level | |||||||
90 | 100 | 110 | p-Value | 30 | 45 | p-Value | SEM | |
1-Miosin HC | 11.40 a | 10.87 ab | 10.27 b | 0.05 | 11.19 a | 10.49 b | 0.03 | 0.19 |
2–140 kDa | 7.46 a | 7.72 a | 8.52 b | 0.05 | 7.79 | 8 | 0.30 | 0.13 |
3-α-actinin | 3.90 a | 4.03 a | 4.49 b | 0.05 | 3.99 | 4.28 | 0.07 | 0.09 |
4-α-actinin | 4.5 | 4.53 | 4.32 | 0.42 | 4.44 | 4.46 | 0.91 | 0.08 |
5–60 kDa | 5.15 a | 4.81 a | 4.33 b | 0.05 | 4.92 | 4.61 | 0.09 | 0.11 |
6–55 kDa | 0.79 | 0.96 | 0.98 | 0.41 | 0.84 | 0.98 | 0.25 | 0.06 |
7-Desmin | 1.50 a | 1.66 a | 1.95 b | 0.05 | 1.83 a | 1.58 b | 0.05 | 0.06 |
8–48 kDa | 3.83 | 3.82 | 3.95 | 0.73 | 3.95 | 3.78 | 0.28 | 0.07 |
9–45 kDa | 0.66 a | 1.11 a | 1.83 b | 0.05 | 1.16 | 1.24 | 0.76 | 0.16 |
10-Actin | 17.3 | 17.65 | 18.38 | 0.09 | 17.96 | 17.59 | 0.36 | 0.22 |
11-TnT | 5.15 | 4.99 | 5.55 | 0.09 | 5.26 | 5.2 | 0.77 | 0.11 |
12-Tropomyosin | 7.41 a | 7.68 a | 6.14 b | 0.05 | 7.45 a | 6.70 b | 0.05 | 0.18 |
13–34 kDa | 0.54 a | 0.67 a | 2.59 b | 0.05 | 1.1 | 1.43 | 0.90 | 0.10 |
14–33 kDa | 4.18 a | 4.29 a | 3.71 b | 0.05 | 4.06 | 4.06 | 0.96 | 0.07 |
15–32 kDa | 2.48 a | 2.36 a | 1.56 b | 0.05 | 2.18 | 2.09 | 0.52 | 0.10 |
16–30 kDa | 0.83 | 1.03 | 1.06 | 0.35 | 0.96 | 0.99 | 0.88 | 0.07 |
17–28 kDa | 3.15 a | 2.60 b | 2.28 b | 0.05 | 2.58 | 2.77 | 0.32 | 0.10 |
18–26 kDa | 1.06 a | 1.03 a | 0.74 b | 0.05 | 0.93 | 0.96 | 0.62 | 0.06 |
19-Myosin LC1 | 4.06 | 4.01 | 3.72 | 0.07 | 3.81 | 4.05 | 0.07 | 0.08 |
20-TnI | 4.1 | 4.01 | 3.88 | 0.58 | 3.84 | 4.16 | 0.08 | 0.10 |
21-TnC | 1.84 | 1.53 | 1.64 | 0.15 | 1.51 a | 1.83 b | 0.05 | 0.07 |
22-Myosin LC2 | 3.77 | 4.41 | 3.87 | 0.19 | 3.67 a | 4.36 b | 0.05 | 0.19 |
23–16 kDa | 2.67 | 2.16 | 2.39 | 0.10 | 2.43 | 2.39 | 0.80 | 0.10 |
24–14 kDa | 2.23 a | 2.05 ab | 1.83 b | 0.05 | 2.09 | 1.99 | 0.37 | 0.06 |
Traits | Nutritional Effect of Arg × Met 1 | SEM | ||||||
---|---|---|---|---|---|---|---|---|
Met 30 (%) Level | Met 45 (%) Level | p-Value | ||||||
Arg (%) Level | Arg (%) Level | |||||||
90 | 100 | 110 | 90 | 100 | 110 | |||
1-Miosin HC | 11.15 ab | 11.78 a | 10.65 bc | 11.65 ab | 9.95 c | 9.88 c | 0.05 | 0.19 |
2–140 kDa | 7.62 ac | 7.21 a | 8.55 b | 7.29 a | 8.21 bc | 8.49 b | 0.05 | 0.13 |
3-α-actinin | 3.90 | 3.61 | 4.47 | 3.90 | 4.45 | 4.50 | 0.06 | 0.09 |
4-α-actinin | 4.86 a | 4.46 abc | 4.00 b | 4.13 bc | 4.60 ac | 4.65 a | 0.05 | 0.08 |
5–60 kDa | 5.44 | 5.08 | 4.25 | 4.85 | 4.55 | 4.42 | 0.17 | 0.11 |
6–55 kDa | 0.93 | 0.80 | 0.79 | 0.66 | 1.11 | 1.16 | 0.07 | 0.06 |
7-Desmin | 1.60 | 1.91 | 2.00 | 1.42 | 1.42 | 1.90 | 0.32 | 0.06 |
8–48 kDa | 3.75 | 4.09 | 3.99 | 3.90 | 3.54 | 3.90 | 0.17 | 0.07 |
9–45 kDa | 0.68 a | 0.56 a | 2.25 b | 0.65 a | 1.66 b | 1.41 ab | 0.05 | 0.16 |
10-Actin | 18.08 ab | 17.08 ac | 18.73 b | 16.53 c | 18.22 ab | 18.04 ab | 0.05 | 0.22 |
11-TnT | 5.15 | 4.76 | 5.87 | 5.15 | 5.21 | 5.24 | 0.13 | 0.11 |
12-Tropomyosin | 7.38 ab | 7.92 b | 7.06 a | 7.44 ab | 7.45 ab | 5.22 c | 0.05 | 0.18 |
13–34 kDa | 0.53 | 0.68 | 2.11 | 0.55 | 0.67 | 3.06 | 0.21 | 0.10 |
14–33 kDa | 4.29 | 4.15 | 3.74 | 4.07 | 4.43 | 3.67 | 0.28 | 0.07 |
15–32 kDa | 2.38 ad | 2.69 a | 1.47 b | 2.59 a | 2.02 cd | 1.65 bc | 0.05 | 0.1 |
16–30 kDa | 0.79 | 1.16 | 0.94 | 0.86 | 0.90 | 1.18 | 0.36 | 0.07 |
17–28 kDa | 2.72 ab | 2.85 b | 2.17 a | 3.58 c | 2.35 ab | 2.38 ab | 0.05 | 0.10 |
18–26 kDa | 0.88 a | 1.32 c | 0.57 b | 1.25 c | 0.74 ab | 0.90 a | 0.05 | 0.06 |
19-Myosin LC1 | 3.66 ab | 4.31 cd | 3.46 a | 4.46 d | 3.70 ab | 3.98 bc | 0.05 | 0.08 |
20-TnI | 3.82 ab | 4.23 a | 3.47 b | 4.39 a | 3.79 ab | 4.29 a | 0.05 | 0.10 |
21-TnC | 1.65 | 1.46 | 1.42 | 2.02 | 1.61 | 1.86 | 0.62 | 0.07 |
22-Myosin LC2 | 3.98 a | 3.28 a | 3.77 a | 3.56 a | 5.54 b | 3.98 a | 0.05 | 0.19 |
23–16 kDa | 2.34 ab | 2.54 a | 2.42 ab | 3.00 a | 1.79 b | 2.37 ab | 0.05 | 0.10 |
24–14 kDa | 2.39 | 2.06 | 1.83 | 2.07 | 2.05 | 1.84 | 0.41 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczka, P.; Przybylski, W.; Jaworska, D.; Żelechowska, E.; Sałek, P.; Szkopek, D.; Drażbo, A.; Kozłowski, K.; Jankowski, J. Myofibrillar Protein Profile of the Breast Muscle in Turkeys as a Response to the Variable Ratio of Limiting Amino Acids in Feed. Agriculture 2024, 14, 197. https://doi.org/10.3390/agriculture14020197
Konieczka P, Przybylski W, Jaworska D, Żelechowska E, Sałek P, Szkopek D, Drażbo A, Kozłowski K, Jankowski J. Myofibrillar Protein Profile of the Breast Muscle in Turkeys as a Response to the Variable Ratio of Limiting Amino Acids in Feed. Agriculture. 2024; 14(2):197. https://doi.org/10.3390/agriculture14020197
Chicago/Turabian StyleKonieczka, Paweł, Wiesław Przybylski, Danuta Jaworska, Elżbieta Żelechowska, Piotr Sałek, Dominika Szkopek, Aleksandra Drażbo, Krzysztof Kozłowski, and Jan Jankowski. 2024. "Myofibrillar Protein Profile of the Breast Muscle in Turkeys as a Response to the Variable Ratio of Limiting Amino Acids in Feed" Agriculture 14, no. 2: 197. https://doi.org/10.3390/agriculture14020197
APA StyleKonieczka, P., Przybylski, W., Jaworska, D., Żelechowska, E., Sałek, P., Szkopek, D., Drażbo, A., Kozłowski, K., & Jankowski, J. (2024). Myofibrillar Protein Profile of the Breast Muscle in Turkeys as a Response to the Variable Ratio of Limiting Amino Acids in Feed. Agriculture, 14(2), 197. https://doi.org/10.3390/agriculture14020197