Analysis of the Physico-Chemical Properties of Bean Seeds after Three Years of Digestate Use
Abstract
:1. Introduction
2. Materials and Methods
- Variant I—control object; the seeds were sown, but no digestate was applied.
- Variant II—total digestate dose of 25,000 L ha−1 (dose 1: 12,500 L ha−1; dose 2: 12,500 L ha−1),
- Variant III—total digestate dose of 37,500 L ha−1 (dose 1: 18,750 L ha−1; dose 2: 18,750 L ha−1),
- Variant IV—total digestate dose of 50,000 L ha−1 (dose 1: 25,000 L ha−1; dose 2: 25,000 L ha−1).
- Dose 1 at BBCH 10 (cotyledons completely unfolded;,
- Dose 2 at BBCH 13 (third true leaf unfolded).
3. Results
- Phosphorous—20.2 mg 100 g−1 soil in 2020, 16.5 mg 100 g−1 soil in 2021, and 18.4 mg 100 g−1 soil in 2022;
- Potassium—19.2 mg 100 g−1 soil in 2020, 21.0 mg 100 g−1 soil in 2021, and 20.5 mg 100 g−1 soil (in 2022);
- Magnesium—7.6 mg 100 g−1 soil in 2020, 7.3 mg 100 g−1 soil in 2021, and 7.5 mg 100 g−1 soil in 2022.
3.1. Influence of the Fertilisation Rate on the Physical Parameters of Multiflora Bean Plants
3.2. Digestate Dose vs. Multiflora Bean Yield
3.3. Impact of Digestate Dose on the Quality of Seeds after Harvesting Multiflora Beans
4. Discussion
5. Conclusions
- The digestate dose influences the yield and thousand-seed weight. Among the three digestate doses analysed, the highest is recommended. The highest tested dose of digestate resulted in a high seed yield and high macroelement content in the seeds.
- The digestate dose is a factor in the protein content of multiflora bean seeds.
- The digestate dose influences the macroelement content. Statistically significant differences were found between the different doses of digestate.
- The highest dose contains the most nitrogen, and as such is the recommended dose. It affects the physical parameters of the plants as well as the protein, fat, and macroelement contents of the beans.
- The above experiment was established on the Haplic LUVISOLS soil type according to the FAO classification in Poland. Completely different results could be obtained on other soil types; thus, it is necessary to carry out further tests on other soil types.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pink, M.; Wojnarowska, M. Biogospodarka—Wybrane Aspkety; Difin: Warszawa, Poland, 2020; pp. 135–136. [Google Scholar]
- Czekała, W.; Jasiński, T.; Grzelak, M.; Witaszek, K.; Dach, J. Biogas Plant Operation: Digestate as the Valuable Product. Energies 2022, 15, 8275. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Grzebisz, W. Biogas digestate—Benefits and risksfor soil fertility and crop quality—An evaluation of grain maize response. Open Chem. 2018, 16, 258–271. [Google Scholar] [CrossRef]
- Yirong, C.; Heaven, S.; Bank, C.J. Effect of a Trace Element Addition Strategy on Volatile Fatty Acid Accumulation in Thermophilic Anaerobic Digestion of Food Waste. Waste Biomass Valor 2015, 6, 1–12. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Arthurson, V. Closing the global energy and nutrient cycles through application of biogas residues to agricultural land. Energies 2009, 2, 226–242. [Google Scholar] [CrossRef]
- Koszel, M.; Kocira, A.; Lorencowicz, E. The evaluation of the use of biogas plant digestate as a fertilizer in alfalfa and spring wheat cultivation. Fresen. Environ. Bull. 2016, 25, 3258–3264. [Google Scholar]
- Makádi, M.; Tomócsik, A.; Eichler-Loebermann, B.; Schiemenz, K. Nutrient cycling by using residues of bioenergy production effects of biogas-digestate on plant and soil parameters. Cereal Res. Commun. 2008, 36, 1807–1810. [Google Scholar]
- Dubský, M.; Chaloupková, Š.; Kaplan, L.; Vondráčková, S.; Tlustoš, P. Use of solid phase of digestate for production of growing horticultural substrates. Hortic. Sci. 2019, 46, 34–42. [Google Scholar] [CrossRef]
- Velechovský, J.; Malík, M.; Kaplan, L.; Tlustoš, P. Application of Individual Digestate Forms for the Improvement of Hemp Production. Agriculture 2021, 11, 1137. [Google Scholar] [CrossRef]
- Heviánková, S.; Kyncl, M.; Langarová, S. Investigating the Current Management of Digestate in the Czech Republic. Inżynieria Miner. 2013, 14, 119–124. [Google Scholar]
- Sienkiewicz, S.; Wierzbowska, J.; Kovacik, P.; Krzbietke, S.; Zarczynski, P. Digestate as a Substitute of Fertilizers in the Cultivation of Virginia Fanpetals. Fresen. Environ. Bull. 2018, 27, 3970–3976. [Google Scholar]
- PN-EN ISO/IEC 17025:2005; General Requirements for the Competence of Testing and Calibration Laboratories. Polish Committee for Standardization: Warsaw, Poland, 2005.
- PN-EN 13654-1:2002; Soil Conditioners and Growing Media—Determination of Nitrogen—Part 1: Modified Kjeldahl Method. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Wysocka-Czubaszek, A. Dynamic of nitrogen transformations in the soil fertilized with digestate from agricultural biogas plant. J. Ecol. Eng. 2019, 20, 108–117. [Google Scholar] [CrossRef]
- Różyło, K.; Oleszczuk, P.; Jośko, I.; Kraska, P.; Kwiecińska-Poppe, E.; Andruszczak, S. An ecotoxicological evaluation of soil fertlized with biogas residues or mining waste. Environ. Sci. Pollut. Res. 2015, 22, 7833. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 11085:2015-10; Cereal Grains, Cereal Grain Products and Feedingstuffs—Determination of Crude Fat and Total Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN ISO 3946:2000; Starch and Derived Products—Determination of Total Phosphorus Content—Spectrophotometric Method. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-EN ISO 16181:2018-09; Determination of Polycyclic Aromatic Hydrocarbons (PAHs) by Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC). Polish Committee for Standardization: Warsaw, Poland, 2018.
- PN-EN ISO 1134:1999; Determination of Sodium, Potassium, Calcium and Magnesium by Atomic Absorption Spectrometry (AAS). Polish Committee for Standardization: Warsaw, Poland, 1999.
- Dostatny, D.F.; Tyburski, J.; Żurek, M. Vademecum Dawnych Roślin Uprawnych; Monografie i Rozprawy Naukowe IHAR—PIB: Radzików, Poland, 2020; pp. 146–192. [Google Scholar]
- Wondołowska-Grabowska, A. Wpływ terminu i sposobu zbioru fasoli zwyczajnej (Phaseolus vulgaris L.) na przyrost masy nasion i ich wartość użytkową. Część II. Masa 1000 nasion, energia i zdolność kiełkowania oraz wigor. Zesz. Nauk. Akad. Rol. We Wrocławiu 2001, 415, 117–128. [Google Scholar]
- Merga, J.T. Evaluation of common bean varieties (Phaseolus vulgaris L.) to different row-spacing in Jimma, South Western Ethiopia. Heliyon 2020, 6, e04822. [Google Scholar] [CrossRef] [PubMed]
- Mitiku, W.; Getachew, M. Effects of common bean varieties and densities intercropped with rice on the performance of associated components in Kaffa and Benchi Maji zones, Southwestern Ethiopia. Glob. J. Sci. Front Res. 2017, 17, 29–41. [Google Scholar] [CrossRef]
- Peeters, N.P.A.; Willick, I.R.; Nabben, R.H.M.; Waterer, D.R.; Verhoeven, T.M.O.; Tanino, K.K. Effect of location on dwarf French bean (Phaseolus vulgaris L.) seed production and seedling vigour. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 224–232. [Google Scholar] [CrossRef]
- Sosnowski, S. Przyczyny powstawania uszkodzeń mechanicznych nasion fasoli podczas zbioru. Acta Agrophysica Rozpr. Monogr. 2006, 130, 6–34. [Google Scholar]
- Kotecki, A.; Janeczek, E. Wpływ nawożenia mikroelementami na gromadzenie składników mineralnych przez fasolę zwyczajną. Zesz. Probl. Postępów Nauk Rol. 2000, 471, 353–360. [Google Scholar]
- Kapusta, F. Rośliny strączkowe źródłem białka dla ludzi i zwierząt. Nauk. Inżynierskie Technol. Eng. Sci. Technol. 2012, 1, 16–32. [Google Scholar]
- Dahmardeh, M.; Ramroodi, M.; Valizadeh, J. Effect of plant density and cultivars on growth, yield and yield components of faba bean (Vicia faba L.). Afr. J. Biotechnol. 2010, 9, 8643–8647. [Google Scholar]
- Masa, M.; Tana, T.; Ahmed, A. Effect of plant spacing on yield and yield related traits of common bean (Phaseolus vulgaris L.) varietes at areka, southern Etiopia. J. Plant. Biol. Soil Health 2017, 4, 13. [Google Scholar]
- Sinkovič, L.; Pipan, B.; Sinkovič, E.; Meglič, V. Morphological Seed Characterization of Common (Phaseolus vulgaris L.) and Runner (Phaseolus coccineus L.) bean germplasm: A Slovenian gene bank example. Hindawi Bio Med Res. Int. 2019, 2019, 6376948. [Google Scholar] [CrossRef]
- Montemurro, F.; Ferri, D.; Tittarelli, F.; Canali, S.; Vitti, C. Anaerobic digestate and on-farm compost application: Effects on lettuce (Lactusa sativa, L.) crop production and soil properties. Comp. Sci. Utilizat. 2010, 18, 184–193. [Google Scholar] [CrossRef]
- Pan, Z.; Qi, G.; Adriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Nishida, T.; Tangtaweewipat, S.; Umetsu, K. Potential of anaerobic digestate of dairy manure in suppressing soil-borne plant disease. Anim. Sci. J. 2018, 89, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of digestate as an alternative to mineral fertilizer: Effect of growth and crop quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- Prusiński, J.; Olach, T. Plonowanie fasoli szparagowej (Phaseolus vulgaris L.) w zależności od intensywności technologii uprawy. Część I. Wysokość i jakość plonu strąków. Biul. Inst. Hod. I Aklim. Roślin 2007, 243, 251–266. [Google Scholar] [CrossRef]
- Waryka, J.; Zdrojewicz, Z. Fasola—Ważny składnik zdrowej diety. Analiza wartości odżywczych. Pediatr. Med. Rodz. 2016, 12, 394–403. [Google Scholar] [CrossRef]
- Wieczorek, C.; Sionek, B.; Przybylski, W.; Lahuta, L.B. Wpływ obróbki kulinarnej nasion roślin strączkowych na zawartość rozpuszczalnych węglowodanów. Zesz. Probl. Postępów Nauk Rol. 2016, 584, 139–150. [Google Scholar]
- Sahasakul, Y.; Aursalung, A.; Thangsiri, S.; Wongchang, P.; Sangkasa-ad, P.; Wongpia, A.; Polpanit, A.; Inthachat, W.; Temviriyanukul, P.; Suttsansanee, U. Nutritional Compositions, Phenolic Contents, and Antioxidant Potentials of The Original Lineage Beans in Thailand. Foods 2022, 11, 2062. [Google Scholar] [CrossRef]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef]
- Brigide, P.; Canniatti-Brazaca, S.G.; Silva, M.O. Nutritional characteristics biofortified common beans. Food Sci. Technol. 2014, 34, 493–500. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. A short review of health benefits and nutritional values of mung bean in sustainable agriculture. Pol. J. Agron. 2019, 37, 31–36. [Google Scholar] [CrossRef]
- Herrera-Hernádez, I.M.; Armendáriz-Fernádez, K.V.; Muñoz-Márquez, E.; Sida-Arreola, J.; Sánchez, E. Characterization of Bioactive Compounds, Mineral Content and Antioxidant Capacity in Bean Varietes Grown in Semi-Arid Conditions in Zacatecas, Mexico. Foods 2018, 7, 199. [Google Scholar] [CrossRef]
- García-Capparós, P.; Lao, M.T.; Preciado-Rangel, P.; Sanchez, E. Phosphorus and Carbohydrate Metabolism in Green Bean Plants Subjected to Increasing Phosphorus Concentration in the Nutrient Solution. Agronomy 2021, 11, 245. [Google Scholar] [CrossRef]
Analysed Feature | Digestate for Bean Seed Cultivation | Standard Deviation | |||
---|---|---|---|---|---|
2020 | 2021 | 2022 | |||
Nitrogen (g L−1) | 4.22 | 4.15 | 4.24 | 4.20 | 0.05 |
Phosphorus (g L−1) | 0.16 | 0.15 | 0.19 | 0.17 | 0.02 |
Potassium (g L−1) | 5.38 | 5.25 | 5.40 | 5.34 | 0.08 |
Calcium (g L−1) | 0.34 | 0.32 | 0.35 | 0.34 | 0.02 |
Magnesium (g L−1) | 0.09 | 0.07 | 0.10 | 0.09 | 0.02 |
Cadmium (mg L−1) | <0.43 | <0.43 | <0.43 | <0.43 | 0 |
Lead (mg L−1) | <0.43 | <0.43 | <0.43 | <0.43 | 0 |
Nickel (mg L−1) | <0.43 | <0.43 | <0.43 | <0.43 | 0 |
Chromium (mg L−1) | <0.43 | <0.43 | <0.43 | <0.43 | 0 |
Copper (mg L−1) | 0.48 | 0.44 | 0.51 | 0.48 | 0.04 |
Zinc (mg L−1) | 1.99 | 2.03 | 2.07 | 2.03 | 0.04 |
Manganese (mg L−1) | 2.17 | 2.21 | 2.26 | 2.21 | 0.05 |
Iron (mg L−1) | 77.64 | 79.23 | 76.34 | 77.74 | 1.45 |
Year | Acidity | Phosphorus | Potassium | Magnesium |
---|---|---|---|---|
(pH) | (mg 100 g−1 Soil) | (mg 100 g−1 Soil) | (mg 100 g−1 Soil) | |
2020 | 7.10 | 47.59 | 48.22 | 11.03 |
2021 | 6.95 | 47.56 | 48.69 | 10.57 |
2022 | 7.05 | 47.73 | 48.25 | 10.72 |
7.03 | 47.63 | 48.39 | 10.77 |
Year | Acidity | Phosphorus | Potassium | Magnesium |
---|---|---|---|---|
(pH) | (mg 100 g−1 Soil) | (mg 100 g−1 Soil) | (mg 100 g−1 Soil) | |
2020 | 6.95 | 24.02 | 34.69 | 9.41 |
2021 | 6.80 | 24.29 | 33.15 | 8.34 |
2022 | 6.70 | 24.36 | 34.47 | 9.50 |
6.82 | 24.22 | 34.10 | 9.08 |
Parameter | Units | Dose (D) d.f. = 3 | Vegetation Year (Y) d.f. = 2 | DxY d.f. = 6 | R2adj |
---|---|---|---|---|---|
Average pod length | (cm) | F = 2010.9, p < 0.001 * | F = 4.1, p = 0.076 | F = 20.0, p < 0.001 * | 0.999 |
Average pod width | (cm) | F = 49.2, p < 0.001 * | F = 8.2, p = 0.019 * | F = 0.95, p = 0.466 | 0.557 |
Pod count per plant | (pcs) | F = 8821.0, p < 0.001 * | F = 1083.0, p < 0.001 * | F = 0.014, p = 0.999 | 0.770 |
Pod count per plant | (pcs) | F = 466.0, p < 0.001 * | F = 0.0, p = 0.986 | F = 4.0, p = 0.002 * | 0.978 |
Yield | (t ha−1) | F = 3404.3, p < 0.001 * | F = 7.4, p = 0.024 * | F = 1.2, p = 0.310 | 0.990 |
Thousand seed weight | (g) | F = 190.9, p < 0.001 * | F = 14.2, p = 0.005 * | F = 7.38, p < 0.001 * | 0.974 |
Protein content | (%) | F = 1045.4, p < 0.001 * | F = 10.0, p < 0.001 * | F = 10.6, p < 0.001 * | 0.996 |
Fat content | (%) | F = 163.8, p < 0.001 * | F = 2.24, p = 0.188 | F = 6.55, p < 0.001 * | 0.965 |
Carbohydrate content in 100 g of bean | (g) | F = 115,108.0, p < 0.001 * | F = 7.0, p = 0.026 * | F = 0.0, p = 1.0 | 0.959 |
Calcium content in 100 g of bean | (mg) | F = 10,369.0, p < 0.001 * | F = 1.0, p = 0.323 | F = 32.0, p < 0.001 * | 0.999 |
Magnesium content in 100 g of bean | (mg) | F = 150,135.0, p < 0.001 * | F = 6.0, p = 0.039 * | F = 1.0, p = 0.330 | 0.999 |
Phosphorus content in 100 g of bean | (mg) | F = 19,317.3, p < 0.001 * | F = 0.4, p = 0.684 | F = 2.6, p = 0.022 * | 0.999 |
Potassium content in 100 g of bean | (mg) | F = 194,573.9, p < 0.001 * | F = 0.4, p = 0.727 | F = 1.6, p = 0.163 | 0.999 |
Variant | Average Pod Length (cm) | Average Pod Width (cm) | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |||
I | 8.66 | 8.80 | 8.77 | 8.74 | 0.63 | 0.62 | 0.64 | 0.63 |
II | 9.68 | 9.70 | 9.78 | 9.72 | 0.65 | 0.66 | 0.67 | 0.66 |
III | 10.41 | 10.40 | 10.49 | 10.43 | 0.66 | 0.67 | 0.69 | 0.67 |
IV | 11.00 | 11.01 | 11.01 | 11.01 | 0.69 | 0.70 | 0.70 | 0.70 |
Variant | Average Pod Count per Plant (pcs) | Average Seed Count per Plant (pcs) | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |||
I | 7.0 | 7.0 | 8.0 | 7.3 | 25.0 | 25.0 | 26.0 | 25.3 |
II | 8.0 | 8.0 | 9.0 | 8.3 | 31.0 | 31.0 | 31.0 | 31.0 |
III | 10.0 | 10.0 | 10.9 | 10.3 | 40.0 | 39.2 | 40.0 | 39.7 |
IV | 11.0 | 11.0 | 11.9 | 11.3 | 43.0 | 44.0 | 42.3 | 43.1 |
Variant | Yield (t ha−1) | Thousand-Seed Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |||
I | 1.80 | 1.80 | 1.82 | 1.81 | 167.71 | 166.82 | 171.15 | 168.56 |
II | 2.06 | 2.05 | 2.10 | 2.07 | 169.56 | 172.06 | 172.85 | 171.49 |
III | 2.33 | 2.34 | 2.36 | 2.34 | 177.32 | 178.96 | 179.84 | 178.71 |
IV | 2.61 | 2.60 | 2.62 | 2.61 | 183.33 | 184.00 | 186.00 | 184.44 |
Variant | Protein Content (%) | Fat Content (%) | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |||
I | 18.85 | 18.87 | 18.89 | 18.87 | 0.40 | 0.41 | 0.42 | 0.41 |
II | 19.42 | 19.41 | 19.70 | 19.51 | 0.47 | 0.48 | 0.47 | 0.47 |
III | 20.83 | 20.81 | 21.02 | 20.89 | 0.53 | 0.52 | 0.54 | 0.53 |
IV | 21.38 | 21.42 | 21.58 | 21.46 | 0.60 | 0.59 | 0.63 | 0.61 |
Variant | Carbohydrates in 100 g of Bean (g) | Calcium in 100 g of Bean (mg) | Magnesium in 100 g of Bean (mg) | Phosphorous in 100 g of Bean (mg) | Potassium in 100 g of Bean (mg) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | ||||||
I | 47.00 | 47.00 | 47.00 | 47.00 | 103.00 | 103.12 | 103.59 | 103.24 | 119.99 | 119.96 | 120.00 | 119.98 | 361.15 | 361.23 | 361.09 | 361.16 | 1325.06 | 1325.16 | 1325.02 | 1325.08 |
II | 49.77 | 49.76 | 49.82 | 49.78 | 109.22 | 109.23 | 109.25 | 109.23 | 129.90 | 129.88 | 129.94 | 129.91 | 367.01 | 367.00 | 366.97 | 366.99 | 1341.20 | 1341.18 | 1341.21 | 1341.20 |
III | 51.35 | 51.37 | 51.40 | 51.37 | 119.56 | 119.56 | 119.59 | 119.57 | 131.98 | 132.00 | 132.13 | 132.04 | 372.89 | 372.88 | 372.90 | 372.89 | 1393.99 | 1394.00 | 1394.04 | 1394.01 |
IV | 53.99 | 54.00 | 54.03 | 54.01 | 124.00 | 123.99 | 124.02 | 124.00 | 136.98 | 137.00 | 137.05 | 137.01 | 386.97 | 387.00 | 387.04 | 387.00 | 1394.04 | 1394.05 | 1394.09 | 1394.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koszel, M.; Parafiniuk, S.; Kocira, S.; Bochniak, A.; Przywara, A.; Lorencowicz, E.; Findura, P.; Atanasov, A.Z. Analysis of the Physico-Chemical Properties of Bean Seeds after Three Years of Digestate Use. Agriculture 2024, 14, 486. https://doi.org/10.3390/agriculture14030486
Koszel M, Parafiniuk S, Kocira S, Bochniak A, Przywara A, Lorencowicz E, Findura P, Atanasov AZ. Analysis of the Physico-Chemical Properties of Bean Seeds after Three Years of Digestate Use. Agriculture. 2024; 14(3):486. https://doi.org/10.3390/agriculture14030486
Chicago/Turabian StyleKoszel, Milan, Stanisław Parafiniuk, Sławomir Kocira, Andrzej Bochniak, Artur Przywara, Edmund Lorencowicz, Pavol Findura, and Atanas Zdravkov Atanasov. 2024. "Analysis of the Physico-Chemical Properties of Bean Seeds after Three Years of Digestate Use" Agriculture 14, no. 3: 486. https://doi.org/10.3390/agriculture14030486
APA StyleKoszel, M., Parafiniuk, S., Kocira, S., Bochniak, A., Przywara, A., Lorencowicz, E., Findura, P., & Atanasov, A. Z. (2024). Analysis of the Physico-Chemical Properties of Bean Seeds after Three Years of Digestate Use. Agriculture, 14(3), 486. https://doi.org/10.3390/agriculture14030486