Transboundary Impacts of NO2 on Soil Nitrogen Fixation and Their Effects on Crop Yields in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Yields of Major Grain Crops Modeling
2.2.1. Overview of the Methodology
2.2.2. Random Forest Regression Yield Prediction Model
2.2.3. XGBoost Yield Prediction Models
2.2.4. Analysis of Feature Variables
3. Results
3.1. Spatial Distribution of Soil Nitrogen Fixation and Changing Trends
3.2. Soil Nitrogen Fixation as a Buffer for NO2 Dispersion
3.3. Crop Yields’ Response to NO2 Concentration and Its Spatial Distribution
3.4. Crop Yields’ Response to All Feature Variables
3.5. Impacts of NO2 on Crop Yields at Different Soil Nitrogen Fixaiton Levels
4. Discussion
4.1. The Application of Machine Learning Modeling in Agriculture
4.2. Potential Explanations for the Insignificant Impact of NO2 on the Yields of Certain Crops
4.3. Mechanistic Insights into the Dynamic Yield Responses of Major Crops to NO2 Emissions
4.4. The Spatial Influence of NO2 Emissions on Environment Health
4.5. Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Q.; Zhu, J.; Wang, Q.; Zhang, Q.; Yu, G. Patterns and Drivers of Atmospheric Nitrogen Deposition Retention in Global Forests. Glob. Change Biol. 2024, 30, e17410. [Google Scholar] [CrossRef] [PubMed]
- Dahal, B.; NandaKafle, G.; Perkins, L.; Brözel, V.S. Diversity of Free-Living Nitrogen Fixing Streptomyces in Soils of the Badlands of South Dakota. Microbiol. Res. 2017, 195, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Qian, X.; Liu, Y.; Li, X.; Gao, H.; An, Y.; Qi, J.; Jiang, L.; Zhang, Y.; Chen, S.; et al. Land Conversion to Agriculture Induces Taxonomic Homogenization of Soil Microbial Communities Globally. Nat. Commun. 2024, 15, 3624. [Google Scholar] [CrossRef] [PubMed]
- Iizumi, T.; Sakai, T. The Global Dataset of Historical Yields for Major Crops 1981–2016. Sci. Data 2020, 7, 97. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-Effective Mitigation of Nitrogen Pollution from Global Croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Huang, L.; Fang, J.; Liao, J.; Yarwood, G.; Chen, H.; Wang, Y.; Li, L. Insights into Soil NO Emissions and the Contribution to Surface Ozone Formation in China. Atmos. Chem. Phys. 2023, 23, 14919–14932. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.; Li, Z.; Bai, W.; Deng, X. Factors Analysis for the Decoupling of Grain Production and Carbon Emissions from Crop Planting in China: A Discussion on the Regulating Effects of Planting Scale and Technological Progress. Environ. Impact Assess. Rev. 2023, 103, 107249. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C.; Hatano, R. Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy 2022, 12, 380. [Google Scholar] [CrossRef]
- Zarabska-Bożejewicz, D. The Impact of Nitrogen Pollution in the Agricultural Landscape on Lichens: A Review of Their Responses at the Community, Species, Biont and Physiological Levels. Agronomy 2020, 10, 1852. [Google Scholar] [CrossRef]
- Almaraz, M.; Bai, E.; Wang, C.; Trousdell, J.; Conley, S.; Faloona, I.; Houlton, B.Z. Agriculture Is a Major Source of NOx Pollution in California. Sci. Adv. 2018, 4, eaao3477. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Tian, W.H.; Jin, C.W. Nitrogen in Plants: From Nutrition to the Modulation of Abiotic Stress Adaptation. Stress Biol. 2022, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Snapp, S.; Sapkota, T.B.; Chamberlin, J.; Cox, C.M.; Gameda, S.; Jat, M.L.; Marenya, P.; Mottaleb, K.A.; Negra, C.; Senthilkumar, K.; et al. Spatially Differentiated Nitrogen Supply Is Key in a Global Food–Fertilizer Price Crisis. Nat. Sustain. 2023, 6, 1268–1278. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Wheat Responses in Semiarid Northern Ethiopia to N2 Fixation by Pisum Sativum Treated with Phosphorous Fertilizers and Inoculant. Nutr. Cycl. Agroecosyst 2006, 75, 247–255. [Google Scholar] [CrossRef]
- Ladha, J.K.; Reddy, P.M. Nitrogen Fixation in Rice Systems: State of Knowledge and Future Prospects. Plant Soil 2003, 252, 151–167. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Roetter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Deng, X.; Huang, Y.; Yuan, W.; Zhang, W.; Ciais, P.; Dong, W.; Smith, P.; Qin, Z. Building Soil to Reduce Climate Change Impacts on Global Crop Yield. Sci. Total Environ. 2023, 903, 166711. [Google Scholar] [CrossRef]
- Napoletano, P.; Barbarisi, C.; Maselli, V.; Rippa, D.; Arena, C.; Volpe, M.G.; Colombo, C.; Fulgione, D.; De Marco, A. Quantifying the Immediate Response of Soil to Wild Boar (Sus. scrofa L.) Grubbing in Mediterranean Olive Orchards. Soil Syst. 2023, 7, 38. [Google Scholar] [CrossRef]
- Napoletano, P.; Maselli, V.; Buglione, M.; Arena, C.; Zarrelli, A.; Fulgione, D.; De Marco, A. Wild Boar Grubbing Affects Soil Carbon Quantity and Fractions under Native, Reforested and Planted Vegetation. Catena 2025, 249, 108648. [Google Scholar] [CrossRef]
- Lobell, D.B.; Di Tommaso, S.; Burney, J.A. Globally Ubiquitous Negative Effects of Nitrogen Dioxide on Crop Growth. Sci. Adv. 2022, 8, eabm9909. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, C.; Xu, J.; Zhao, Q.; Chadwick, D.; Gao, X.; Zhou, F.; Lakshmanan, P.; Wang, X.; Guan, X.; et al. Co-Benefits for Net Carbon Emissions and Rice Yields through Improved Management of Organic Nitrogen and Water. Nat. Food 2024, 5, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Havlík, P.; Leclère, D.; de Vries, W.; Valin, H.; Deppermann, A.; Hasegawa, T.; Obersteiner, M. Reconciling Regional Nitrogen Boundaries with Global Food Security. Nat. Food 2021, 2, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil Quality Both Increases Crop Production and Improves Resilience to Climate Change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat Yield Prediction Using Machine Learning and Advanced Sensing Techniques. Comput. Electron. Agric. 2016, 121, 57–65. [Google Scholar] [CrossRef]
- Liu, S.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.; Jin, Y.; Li, S.; Li, Z.; Zou, J. A Meta-Analysis of Fertilizer-Induced Soil NO and Combined NO+N2O Emissions. Glob. Change Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Joint Research Centre; Crippa, M.; Guizzardi, D.; Schaaf, E.; Monforti-Ferrario, F.; Quadrelli, R.; Risquez Martin, A.; Rossi, S.; Vignati, E.; Muntean, M.; et al. GHG Emissions of All World Countries: 2023; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-07550-0. [Google Scholar]
- Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 Retrieval: Impact of Version v2.2 Improvements and Comparisons with OMI and Ground-Based Data. Atmos. Meas. Tech. 2022, 15, 2037–2060. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- International Food Policy Research Institute. Global Spatially-Disaggregated Crop Production Statistics Data for 2020 Version 1.0; International Food Policy Research Institute: Washington, DC, USA, 2024. [Google Scholar]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Multi-Temporal Land Use and Land Cover Remote Sensing Monitoring Dataset of China (CNLUCC). 2018. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on 24 September 2024).
- Liu, F.; Zhang, G. Basic Soil Property Dataset of High-Resolution China Soil Information Grids (2010–2018). 2021. Available online: https://soildata.issas.ac.cn/lists/details/view/view/id/59.html (accessed on 24 September 2024).
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Liu, M.; Li, L. Spatial Differentiation of Carbon Emissions from Energy Consumption Based on Machine Learning Algorithm: A Case Study during 2015–2020 in Shaanxi, China. J. Environ. Sci. 2025, 149, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Penuelas, J.; McCabe, M.F.; Atzberger, C.; Jiao, X.; Wu, W.; Jin, X. Combining Multi-Indicators with Machine-Learning Algorithms for Maize Yield Early Prediction at the County-Level in China. Agric. For. Meteorol. 2022, 323, 109057. [Google Scholar] [CrossRef]
- Brouquisse, R. Multifaceted Roles of Nitric Oxide in Plants. J. Exp. Bot. 2019, 70, 4319–4322. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, W.; Yang, G.; Irfan, M. Crop Nitrogen (N) Utilization Mechanism and Strategies to Improve N Use Efficiency. Acta Physiol. Plant 2023, 45, 52. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Y.; Zhao, Z.; Zhou, Y.; Liao, Y.; Guan, Z.; Chen, S.; Fang, W.; Chen, F.; Zhao, S. Optimum Nitrogen, Phosphorous, and Potassium Fertilizer Application Increased Chrysanthemum Growth and Quality by Reinforcing the Soil Microbial Community and Nutrient Cycling Function. Plants 2023, 12, 4062. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P.; Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. In Nitrogen Fixation; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78984-649-2. [Google Scholar]
- Pan, S.-Y.; He, K.-H.; Liao, Y.-L. Fertilization-Induced Reactive Nitrogen Gases and Carbon Dioxide Emissions: Insight to the Carbon-Nitrogen Cycles. Sustain. Environ. Res. 2023, 33, 23. [Google Scholar] [CrossRef]
- Zheng, Q.; Ha, T.; Prishchepov, A.V.; Zeng, Y.; Yin, H.; Koh, L.P. The Neglected Role of Abandoned Cropland in Supporting Both Food Security and Climate Change Mitigation. Nat. Commun. 2023, 14, 6083. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Deng, X.; Sun, Z.; Accatino, F. Increasing Food and Feed Self-Sufficiency and Avoiding Manure N Surplus in Eastern Regions of China through a Spatial Crop-Livestock Optimisation Model. Agric. Syst. 2024, 217, 103911. [Google Scholar] [CrossRef]
- Yokamo, S.; Irfan, M.; Huan, W.; Wang, B.; Wang, Y.; Ishfaq, M.; Lu, D.; Chen, X.; Cai, Q.; Wang, H. Global Evaluation of Key Factors Influencing Nitrogen Fertilization Efficiency in Wheat: A Recent Meta-Analysis (2000–2022). Front. Plant Sci. 2023, 14, 1272098. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Minamisawa, K. Mitigation of Greenhouse Gas Emission by Nitrogen-Fixing Bacteria. Biosci. Biotechnol. Biochem. 2022, 87, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, H.; Hao, M.; Ren, Y.; Zhang, M.; Liu, R.; Zhang, Y.; Li, G.; Chen, J.; Ning, T.; et al. Nitrogen Fixation and Crop Productivity Enhancements Co-driven by Intercrop Root Exudates and Key Rhizosphere Bacteria. J. Appl. Ecol. 2021, 58, 2243–2255. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, Grain Yield, and Nitrogen Utilization in Rice and Wheat. Plant Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Yan, J.; Han, X.Z.; Zou, W.X.; Chen, X.; Lu, X.C. Effects of Nitrogen Application on Nodulation, Nitrogen Fixation, Yield and Protein Content of Soybean. J. Plant Nutr. Fertil. 2022, 28, 1457–1465. [Google Scholar] [CrossRef]
- Chen, F.; Fahey, T.J.; Yu, M.; Gan, L. Key Nitrogen Cycling Processes in Pine Plantations along a Short Urban–Rural Gradient in Nanchang, China. For. Ecol. Manag. 2010, 259, 477–486. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Z.; Sheng, N.; Song, Q. Uneven Agricultural Contraction within Fast-Urbanizing Urban Agglomeration Decreases the Nitrogen Use Efficiency of Crop Production. Nat. Food 2024, 5, 390–401. [Google Scholar] [CrossRef]
- Babu, S.; Singh Rathore, S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring Agricultural Waste Biomass for Energy, Food and Feed Production and Pollution Mitigation: A Review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, J.; Kattel, G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, M.; Yu, Y.; Wang, L.; Cui, L.; Li, C.; Liu, Y.; Zheng, Y. Rice N-Biofertilization by Inoculation with an Engineered Photosynthetic Diazotroph. World J. Microbiol. Biotechnol. 2024, 40, 136. [Google Scholar] [CrossRef]
- Cen, X.; Müller, C.; Kang, X.; Zhou, X.; Zhang, J.; Yu, G.; He, N. Nitrogen Deposition Contributed to a Global Increase in Nitrous Oxide Emissions from Forest Soils. Commun. Earth Environ. 2024, 5, 532. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, T.; Li, J.; Li, N.; Bai, X.; Liu, X.; Ao, J.; Chang, R. Temporal-Scale-Dependent Mechanisms of Forest Soil Nitrous Oxide Emissions under Nitrogen Addition. Commun. Earth Environ. 2024, 5, 512. [Google Scholar] [CrossRef]
Crop | CV MSE | CV R2 | Train MSE | Test MSE | Train R2 | Test R2 |
---|---|---|---|---|---|---|
Maize | 2 × 106 | 0.452 | 3 × 104 | 2 × 106 | 0.993 | 0.451 |
Rice | 2 × 106 | 0.498 | 2 × 105 | 2 × 106 | 0.946 | 0.548 |
Soybean | 4 × 105 | 0.463 | 1 × 104 | 3 × 105 | 0.982 | 0.608 |
Wheat | 1 × 106 | 0.541 | 2 × 104 | 1 × 106 | 0.991 | 0.597 |
Crop | Term | Df | Sumsq | Meansq | Statistic | p Value |
---|---|---|---|---|---|---|
Maize | TNC | 2 | 4 × 108 | 2 × 108 | 87.850 | <0.001 *** |
NO2 | 3 | 2 × 107 | 7 × 106 | 2.889 | 0.034 * | |
Rice | TNC | 2 | 2 × 105 | 1 × 105 | 0.045 | 0.956 |
NO2 | 3 | 5 × 107 | 2 × 107 | 7.491 | <0.001 *** | |
Soybean | TNC | 2 | 3 × 108 | 2 × 108 | 387.147 | <0.001 *** |
NO2 | 3 | 8 × 105 | 3 × 105 | 0.654 | 0.580 | |
Wheat | TNC | 2 | 6 × 106 | 3 × 106 | 1.604 | 0.201 |
NO2 | 3 | 4 × 106 | 1 × 106 | 0.699 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Yu, P.; Deng, X. Transboundary Impacts of NO2 on Soil Nitrogen Fixation and Their Effects on Crop Yields in China. Agriculture 2025, 15, 208. https://doi.org/10.3390/agriculture15020208
Xie J, Yu P, Deng X. Transboundary Impacts of NO2 on Soil Nitrogen Fixation and Their Effects on Crop Yields in China. Agriculture. 2025; 15(2):208. https://doi.org/10.3390/agriculture15020208
Chicago/Turabian StyleXie, Jinhui, Peiheng Yu, and Xiangzheng Deng. 2025. "Transboundary Impacts of NO2 on Soil Nitrogen Fixation and Their Effects on Crop Yields in China" Agriculture 15, no. 2: 208. https://doi.org/10.3390/agriculture15020208
APA StyleXie, J., Yu, P., & Deng, X. (2025). Transboundary Impacts of NO2 on Soil Nitrogen Fixation and Their Effects on Crop Yields in China. Agriculture, 15(2), 208. https://doi.org/10.3390/agriculture15020208