Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Fuels, Additives, and Blends
R | W | R-W | R-SS | R-LM | R-LG | |
---|---|---|---|---|---|---|
Reed canary grass (R) | 100 | 0 | 50 | 97 | 97 | 97 |
Wood (W) | 0 | 100 | 50 | 0 | 0 | 0 |
Sewage sludge (SS) | 0 | 0 | 0 | 3 | 0 | 0 |
Limestone (LM) | 0 | 0 | 0 | 0 | 3 | 0 |
Lignosulfonate (LG) | 0 | 0 | 0 | 0 | 0 | 3 |
2.2. Combustion System
2.3. Gas and Particulate Measurements
2.4. Ash Analyses
3. Results and Discussion
3.1. Blends Physico-Chemical Properties
Biomass | Additive | Blend | |||||||
---|---|---|---|---|---|---|---|---|---|
R | W | SS | LM | LG | R-W | R-SS | R-LM | R-LG | |
HHV (MJ·kg−1) | 17.2 | 19.5 | 8.0 | n.a. | 17.0 | 18.0 | 17.3 | 16.7 | 17.2 |
Moisture (wt%) | 8.9 | 6.1 | 59.9 | 0.2 | 5.8 | 8.2 | 8.6 | 8.2 | 7.4 |
Ash (wt%) | 6.6 | 0.8 | 36.7 | 57.8 | 25.7 | 4.3 | 7.2 | 9.1 | 7.4 |
C (wt%) | 46.1 | 50.4 | 19.0 | 11.9 | 42.7 | 47.8 | 45.7 | 45.0 | 45.8 |
H (wt%) | 6.8 | 6.8 | 3.8 | 0.2 | 4.9 | 6.8 | 6.7 | 6.5 | 6.6 |
O (wt%) | 48.8 | 48.4 | 14.6 | 30.1 | 30.2 | 49.1 | 48.2 | 46.6 | 46.7 |
N (wt%) | 0.89 | 0.14 | 1.65 | 0.06 | 1.06 | 0.61 | 0.90 | 0.90 | 0.90 |
S (mg·kg−1) | 1686 | 256 | 4269 | 0 | 81,219 | 1013 | 1553 | 1582 | 3805 |
Cl (mg·kg−1) | 1226 | 167 | 105 | 32 | 6035 | 753 | 1219 | 1180 | 1218 |
K (mg·kg−1) | 9099 | 840 | 2584 | 21 | 754 | 5291 | 8511 | 8535 | 8813 |
Na (mg·kg−1) | 25 | 82 | 199 | 3780 | 80,885 | 46 | 29 | 121 | 2384 |
Si (mg·kg−1) | 10,696 | 623 | 46,765 | 30 | 57 | 6648 | 11,295 | 10,818 | 10,973 |
P (mg·kg−1) | 2510 | 93 | 26,923 | 1 | 30 | 1370 | 2528 | 2315 | 2404 |
Ca (mg·kg−1) | 4053 | 3252 | 10,277 | 388,815 | 1187 | 3191 | 3497 | 13,729 | 3995 |
Mg (mg·kg−1) | 1575 | 400 | 4555 | 211 | 226 | 998 | 1409 | 1437 | 1530 |
Al (mg·kg−1) | 281 | 231 | 55,194 | 0 | 13 | 235 | 931 | 255 | 268 |
R | W | R-W | R-SS | R-LM | R-LG | |
---|---|---|---|---|---|---|
Si/(K + Na) | 1.63 | 0.88 | 1.72 | 1.84 | 1.72 | 1.19 |
2S/Cl | 3.04 | 3.38 | 2.98 | 2.82 | 2.96 | 6.91 |
(Si + P + K + Na)/(Ca + Mg + Al) | 3.95 | 0.47 | 3.23 | 3.91 | 1.66 | 4.62 |
3.2. Gas and Particulate Emissions
R | W | R-W | R-SS | R-LM | R-LG | |
---|---|---|---|---|---|---|
CO | 383 | 208 | 409 | 356 | 431 | 357 |
CO2 | 140,106 | 137,929 | 143,021 | 138,418 | 139,257 | 139,184 |
CH4 | 3.58 | 3.40 | 3.30 | 3.18 | 3.52 | 4.33 |
N2O | 1.64 | n.a. | n.a. | 2.38 | 0.77 | 1.23 |
NH3 | n.a. | 0.15 | 0.02 | 0.03 | 0.06 | n.a. |
NOx | 222 | 63 | 185 | 221 | 234 | 239 |
SO2 | 137 | 16 | 66 | 139 | 73 | 423 |
HCl | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
PM | 1182 | 621 | 835 | 892 | 955 | 983 |
3.3. Ash Melts
R | W | R-W | R-SS | R-LM | R-LG | |
---|---|---|---|---|---|---|
Melted ash (wt%) | 3.90 | 0.00 | 2.84 | 0.87 | 0.07 | 5.48 |
Difference with R (%) | n.a. | −100 | −27 | −78 | −98 | +40 |
3.4. Ash Analyses
R | W | R-W | R-SS | R-LM | R-LG | |
---|---|---|---|---|---|---|
Combustion Ash | ||||||
S (g·kg−1) | 3.4 | 1.1 | 2 | 3.9 | 5.8 | 5.2 |
Cl (g·kg−1) | 2.2 | 0.7 | 1.2 | 1.7 | 2.1 | 2.4 |
K (g·kg−1) | 43.2 | 12 | 26.9 | 44 | 49.4 | 41.8 |
Na (g·kg−1) | 0.7 | 1.1 | 0.6 | 1.3 | 1.7 | 11.3 |
Si (g·kg−1) | 13.4 | 1.6 | 7.2 | 15.4 | 14 | 12.4 |
P (g·kg−1) | 22.1 | 30.4 | 18.5 | 23.1 | 86.4 | 21.6 |
Ca (g·kg−1) | 8 | 5.1 | 5.4 | 8.3 | 8.8 | 7.3 |
Mg (g·kg−1) | 2.8 | 3.8 | 2.2 | 9.3 | 3.1 | 2.6 |
Al (g·kg−1) | 3.4 | 1.1 | 2 | 3.9 | 5.8 | 5.2 |
Heat Exchanger Ash | ||||||
S (g·kg−1) | 15.2 | 17.3 | 16.5 | 14.8 | 11.8 | 29 |
Cl (g·kg−1) | 16.4 | 9.4 | 11.5 | 12 | 9.9 | 17.6 |
K (g·kg−1) | 80.8 | 33.8 | 76.7 | 72.6 | 66.6 | 75.5 |
Na (g·kg−1) | 2.3 | 9.4 | 3.3 | 3.7 | 3.1 | 18.2 |
Si (g·kg−1) | 28.8 | 8.5 | 27.1 | 28.3 | 28.5 | 25.9 |
P (g·kg−1) | 54.9 | 138.7 | 79.7 | 54.3 | 190.8 | 71 |
Ca (g·kg−1) | 19.6 | 19.1 | 21.9 | 18.6 | 18.1 | 16.3 |
Mg (g·kg−1) | 7.4 | 28.5 | 10.4 | 12.3 | 7.1 | 6.9 |
Al (g·kg−1) | 15.2 | 17.3 | 16.5 | 14.8 | 11.8 | 29 |
Cyclone Ash | ||||||
S (g·kg−1) | 10.6 | 14.3 | 10 | 10.9 | 10.7 | 15.3 |
Cl (g·kg−1) | 13.3 | 25.2 | 12.3 | 13 | 9.9 | 18.2 |
K (g·kg−1) | 63.8 | 38.1 | 47.9 | 56.9 | 44.8 | 47.8 |
Na (g·kg−1) | 2.8 | 13.1 | 2.7 | 5 | 2.4 | 8.1 |
Si (g·kg−1) | 33 | 8.4 | 27.6 | 31.7 | 28.3 | 27.1 |
P (g·kg−1) | 77.5 | 140.7 | 97.1 | 89.8 | 200.8 | 133.3 |
Ca (g·kg−1) | 23.3 | 20.3 | 25 | 22.2 | 20 | 19.7 |
Mg (g·kg−1) | 9.6 | 35.8 | 11 | 10.9 | 8.2 | 8.9 |
Al (g·kg−1) | 10.6 | 14.3 | 10 | 10.9 | 10.7 | 15.3 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dhillon, R.S.; von Wuehlisch, G. Mitigation of global warming through renewable biomass. Biomass Bioenergy 2013, 48, 75–89. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Brodeur, C.; Cloutier, J.; Crowley, D.; Desmeules, X.; Pigeon, S.; St-Arnaud, R.M. La Production de Biocombustibles Solides à partir de Biomasse Résiduelle ou de Cultures Énergétiques; Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec: Quebec City, QC, Canada, 2008; pp. 1–14. [Google Scholar]
- McKendry, P. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Nussbaumer, T. Combustion and co-combustion of biomass: Fundamentals, technologies and primary measures for emission reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-firing; Earthscan: London, UK, 2008; pp. 291–303. [Google Scholar]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartgem, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Tissari, J.; Sippula, O.; Kouki, J.; Vuorio, K.; Jokiniemi, J. Fine particle and gas emissions from the combustion of agricultural fuels fired in a 20 kW burner. Energy Fuels 2008, 22, 2033–2042. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Baxter, L.L.; Miles, T.R.; Miles, T.R., Jr.; Jenkins, B.M.; Milne, T.; Dayton, D.; Bryers, R.W.; Oden, L.L. The behavior of inorganic material in biomass-fired power boilers: Field and laboratory experiences. Fuel Process. Technol. 1998, 54, 47–78. [Google Scholar] [CrossRef]
- Cherney, J.H.; Verma, V.K. Grass pellet Quality Index: A tool to evaluate suitability of grass pellets for small scale combustion systems. Appl. Energy 2013, 103, 679–684. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Vassileva, C.G. An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 2014, 117, 152–183. [Google Scholar] [CrossRef]
- Carroll, J.P.; Finnan, J.M.; Biedermann, F.; Brunner, T.; Obernberger, I. Air staging to reduce emissions from energy crop combustion in small scale applications. Fuel 2015, 155, 37–43. [Google Scholar] [CrossRef]
- Carroll, J.P.; Finnan, J.M. The use of additives and fuel blending to reduce emissions from the combustion of agricultural fuels in small scale boilers. Biosyst. Eng. 2015, 129, 127–133. [Google Scholar] [CrossRef]
- Wang, L.; Hustad, J.E.; Skreiberg, Ø.; Skjevrak, G.; Grønli, M. A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia 2012, 20, 20–29. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Preto, F.; Zhu, J.; Xu, C. Ash deposition in biomass combustion or co-firing for power/heat generation. Energies 2012, 5, 5171–5189. [Google Scholar] [CrossRef]
- Bäfver, L.S.; Rönnbäck, M.; Leckner, B.; Claesson, F.; Tullin, C. Particle emission from combustion of oat grain and its potential reduction by addition of limestone or kaolin. Fuel Process. Technol. 2009, 90, 353–359. [Google Scholar] [CrossRef]
- Bäfver, L.; Boman, C.; Rönnbäck, M. Reduction of Particle Emissions by Using Additives. Available online: http://www.ieabcc.nl/workshops/task32_2011_graz_aerosols/04_Bafver.pdf (accessed on 30 January 2015).
- Boman, C.; Boström, D.; Öhman, M. Effect of Fuel Additive Sorbents (Kaolin and Calcite) on Aerosol Particle Emission and Characteristics during Combustion of Pelletized Woody Biomass. Available online: http://pure.ltu.se/portal/files/2208136/22._Effect_of_fuel_additives_on_particle_characteristics_Valencia_2008.pdf (accessed on 30 January 2015).
- Boström, D.; Grimm, A.; Boman, C.; Björnbom, E.; Öhman, M. Influence of kaolin and calcite additives on ash transformations in small-scale combustion of oat. Energy Fuels 2009, 23, 5184–5190. [Google Scholar] [CrossRef]
- Öhman, M.; Hedman, H.; Boström, D.; Nordin, A. Effect of kaolin and limestone addition on slag formation during combustion of wood fuels. Energy Fuels 2004, 18, 1370–1376. [Google Scholar] [CrossRef]
- Xiong, S.; Burvall, J.; Örberg, H.; Kalen, G.; Thyrel, M.; Öhman, M.; Boström, D. Slagging characteristics during combustion of corn stovers with and without kaolin and calcite. Energy Fuels 2008, 22, 3465–3470. [Google Scholar] [CrossRef]
- Steenari, B.-M.; Lundberg, A.; Pettersson, H.; Wilewska-Bien, M.; Andersson, D. Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuels 2009, 23, 5655–5662. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I.; Kienzl, N.; Kanzian, W. Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/kaolin and straw/kaolin mixtures. Energy Fuels 2013, 27, 5192–5206. [Google Scholar] [CrossRef]
- Aho, M. Reduction of chlorine deposition in FB boilers with aluminium-containing additives. Fuel 2001, 80, 1943–1951. [Google Scholar] [CrossRef]
- Aho, M.; Silvennoinen, J. Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive. Fuel 2004, 83, 1299–1305. [Google Scholar] [CrossRef]
- Wang, L.; Skjevrak, G.; Hustad, J.E.; Skreiberg, O. Investigation of biomass ash sintering characteriscs and the effet of additives. Energy Fuels 2014, 28, 208–218. [Google Scholar] [CrossRef]
- Åmand, L.-E.; Leckner, B.; Eskilsson, D.; Tullin, C. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge. Fuel 2006, 85, 1313–1322. [Google Scholar] [CrossRef]
- Pettersson, A.; Zevenhoven, M.; Steenari, B.-M.; Åmand, L.-E. Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes. Fuel 2008, 87, 3183–3193. [Google Scholar] [CrossRef]
- Paradelo, R.; Virto, I.; Chenu, C. Net effect of liming on soil organic carbon stocks: A review. Agric. Ecosyst. Environ. 2015, 202, 98–107. [Google Scholar] [CrossRef]
- Kassman, H.; Pettersson, J.; Steenari, B.-M.; Åmand, L.-E. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—Injection of ammonium sulphate and co-combustion with peat. Fuel Process. Technol. 2013, 105, 170–180. [Google Scholar] [CrossRef]
- Tarasov, D.; Shahi, C.; Leitch, M. Effect of additives on wood pellet physical and thermal characteristics: A review. ISRN Forestry 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Nikolaisen, L.; Jensen, T.N.; Hjuler, K.; Busk, J.; Junker, H.; Sander, B.; Baxter, L.; Bloch, L. Quality Characteristics of Biofuel Pellets; Danish Technological Institute: Aarhus, Denmark, 2002; p. 24. [Google Scholar]
- Skjevrak, G. Wood Pellets Utilized in the Commercial and Residential Sectors—An In-depth Study of Selected Barriers for Increased Use; Norwegian University of Science and Technology: Trondheim, Norway, 2013; p. 130. [Google Scholar]
- Kortelainen, M.; Jokiniemi, J.; Nuutinen, I.; Torvela, T.; Lamberg, H.; Karhunen, T.; Tissari, J.; Sippula, O. Ash behaviour and emission formation in a small-scale reciprocating-grate combustion reactor operated with wood chips, reed canary grass and barley straw. Fuel 2015, 143, 80–88. [Google Scholar] [CrossRef]
- Lamberg, H.; Tissari, J.; Jokiniemi, J.; Sippula, O. Fine particle and gaseous emissions from a small-scale boiler fueled by pellets of various raw materials. Energy Fuels 2013, 27, 7044–7053. [Google Scholar] [CrossRef]
- Fournel, S.; Palacios, J.H.; Morissette, R.; Villeneuve, J.; Godbout, S.; Heitz, M.; Savoie, P. Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops. Appl. Energy 2015, 141, 247–259. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I. Fuel Indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
- Fournel, S.; Palacios, J.H.; Morissette, R.; Villeneuve, J.; Godbout, S.; Heitz, M.; Savoie, P. Particulate concentrations during on-farm combustion of energy crops of different shapes and harvest seasons. Atmos. Environ. 2015, 104, 50–58. [Google Scholar] [CrossRef]
- Carvalho, L.; Wopienka, E.; Pointner, C.; Lundgren, J.; Verma, V.K.; Haslinger, W.; Schmidl, C. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 2013, 104, 286–296. [Google Scholar] [CrossRef]
- Theis, N.; Skrifvars, B.J.; Zevenhoven, M.; Hupa, M.; Tran, H. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel 2006, 85, 1992–2001. [Google Scholar] [CrossRef]
- Pisupati, S.V.; Bhalla, S. Influence of calcium content of biomass-based materials on simultaneous NOx and SO2 reduction. Environ. Sci. Technol. 2008, 42, 2509–2514. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournel, S.; Palacios, J.H.; Godbout, S.; Heitz, M. Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass. Agriculture 2015, 5, 561-576. https://doi.org/10.3390/agriculture5030561
Fournel S, Palacios JH, Godbout S, Heitz M. Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass. Agriculture. 2015; 5(3):561-576. https://doi.org/10.3390/agriculture5030561
Chicago/Turabian StyleFournel, Sébastien, Joahnn H. Palacios, Stéphane Godbout, and Michèle Heitz. 2015. "Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass" Agriculture 5, no. 3: 561-576. https://doi.org/10.3390/agriculture5030561
APA StyleFournel, S., Palacios, J. H., Godbout, S., & Heitz, M. (2015). Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass. Agriculture, 5(3), 561-576. https://doi.org/10.3390/agriculture5030561