Organic Cultivation of Tomato in India with Recycled Slaughterhouse Wastes: Evaluation of Fertilizer and Fruit Safety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pathogenic Microorganisms in BBRDM
2.2. Lycopene Content in Cultivated Tomatoes
Soil Treatment | Season | Lycopene Content (mg·kg−1) | ||||
---|---|---|---|---|---|---|
Week 8 | Week 9 | Week 10 | Week 11 | Week 12 | ||
BBRDM | S 1 | 34.32 ± 4.23 ** | 44.62 ± 6.35 ** | 41.65 ± 5.6 ** | 45.7 ± 2.24 ** | 44.46 ± 3.56 ** |
DAP + potash | S 1 | 27.14 ± 5.32 | 24.34 ± 6.85 | 26.54 ± 5.48 | 21.32 ± 5.23 | 24.45 ± 3.34 |
BBRDM | S 2 | 32.29 ± 4.4 ** | 45 ± 6.03 ** | 41 ± 4.54 ** | 46 ± 2.23 ** | 45 ± 3.45 ** |
DAP + potash | S 2 | 29.03 ± 4.35 | 26 ± 4.56 | 27 ± 5.24 | 23 ± 4.25 | 25 ± 4.03 |
2.3. Nitrate and Nitrite Content in Tomatoes
2.4. Heavy Metal Content in BBRDM and Cultivated Tomatoes
2.5. Mutagenicity and Toxicity Study
Heavy Metals (mg·kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Pb | Cr | Cd | Cu | Zn | As | Ni | Mn | ||
Samples | |||||||||
BBRDM | S 1 | 0.0434 | 0.045 | 0.0041 | 0.2197 | 0.1659 | BDL | 0.0206 | 1.794 |
S 2 | 0.0412 | 0.039 | 0.0038 | 0.1984 | 0.1725 | BDL | 0.0198 | 1.823 | |
Tomato (grown with BBRDM) | S 1 | 0.1341 | 0.216 | 0.0093 | 0.3544 | 2.1629 | BDL | 0.0503 | 0.812 |
S 2 | 0.1265 | 0.198 | 0.0087 | 0.2965 | 2.3865 | BDL | 0.0498 | 0.796 | |
Tomato (grown with DAP + potash) | S 1 | 0.1256 | 0.185 | 0.0084 | 0.3865 | 2.4967 | BDL | 0.0462 | 0.836 |
S 2 | 0.1149 | 0.243 | 0.0088 | 0.3218 | 2.0298 | BDL | 0.0532 | 0.827 | |
Standards | |||||||||
Maximum permissible limit as per Government of India, Ministry of Agriculture and Rural Development, The Fertilizer (Control) Order 1985 [61] | 100 | 50 | 5 | 300 | 1000 | 10 | 50 | NA | |
Association of American Plant Food Control Officials * | 61 | NA | 10 | NA | 420 | 13 | 250 | NA | |
California Department of Food and Agriculture * | 20 | NA | 4 | NA | NA | 2 | NA | NA | |
Oregon State Department of Agriculture * | 43 | NA | 7.5 | NA | NA | 9 | 175 | NA | |
The Prevention of Food Adulteration Act and Rules as on 1 October 2004, Government of India [62] | 1 | NA | 1.5 | 100 | 5 | 0.2 | 1.5 | NA |
Test Substance | Season | Dose (μg·plate−1) | Number of Revertants (TA98) | Dose (μg·plate−1) | Number of Revertants (TA98) |
---|---|---|---|---|---|
Blank control | S 1 | 0 | 4 ± 2 | 0 | 4 ± 2 |
S 2 | 0 | 5 ± 2 | 0 | 4 ± 2 | |
Positive control (sodium azide) | S 1 | 0.1 | 42 ± 10 | 0.2 | 68 ± 14 |
S 2 | 0.1 | 48 ± 10 | 0.2 | 72 ± 12 | |
TPS derived applying DAP + potash | S 1 | 0.1 | 4 ± 2 | 0.2 | 5 ± 2 |
S 2 | 0.1 | 5 ± 2 | 0.2 | 4 ± 2 | |
TPS derived applying BBRDM | S 1 | 0.1 | 4 ± 2 | 0.2 | 4 ± 2 |
S 2 | 0.1 | 4 ± 2 | 0.2 | 5 ± 2 |
Organs | Male (Control) | Male (Treated) | Female (Control) | Female (Treated) | |
---|---|---|---|---|---|
Liver | A | 5.4 ± 0.74 | 5.8 ± 0.72 | 5.3 ± 0.69 | 5.9 ± 0.71 |
R | 3.06 ± 0.11 | 3.31 ± 0.09 | 3.03 ± 0.08 | 3.37 ± 0.085 | |
Kidney | A | 0.7 ± 0.03 | 0.9 ± 0.02 | 0.6 ± 0.02 | 0.8 ± 0.03 |
R | 0.4 ± 0.01 | 0.52 ± 0.02 | 0.34 ± 0.01 | 0.45 ± 0.02 | |
Heart | A | 0.6 ± 0.02 | 0.8 ± 0.03 | 0.5 ± 0.04 | 0.7 ± 0.03 |
R | 0.34 ± 0.01 | 0.46 ± 0.02 | 0.29 ± 0.01 | 0.4 ± 0.02 | |
Stomach | A | 6.2 ± 2.48 | 7 ± 2.56 | 6.4 ± 2.3 | 7.3 ± 1.19 |
R | 3.54 ± 1.12 | 4 ± 1.35 | 3.65 ± 1.26 | 4.17 ± 1.43 |
Parameters | Male (Control) | Male (Treated) | Female (Control) | Female (Treated) | Normal Range |
---|---|---|---|---|---|
Haemoglobin (g·dL−1) | 10.9 ± 0.1 | 13.5 ± 0.2 | 12.6 ± 0.2 | 12.9 ± 0.3 | 11.5–16.1 1 |
Total erythrocytes (106 mm−3) | 6.55 ± 0.21 | 7.02 ± 0.01 | 7.02 ± 0.01 | 7.01 ± 0.01 | 6.76–9.75 1 |
Total leucocytes (103 mm−3) | 6.8 ± 0.1 | 7.1 ± 0.1 | 7.2 ± 0.1 | 8.1±0.1 | 6.6–12.6 1 |
Platelets count (103 mL−1) | 423 ± 3 | 440 ± 4 | 444 ± 4 | 443 ± 3 | 150–460 1 |
Neutrophils (103mm−3) | 2.1 ± 0.1 | 3.6 ± 0.1 | 4.5 ± 0.1 | 2 ± 0.5 | 1.77–3.38 1 |
Eosinophils (103 mm−3) | 0.04 ± 0.01 | 0.04 ± 0.1 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.03–0.08 1 |
Basophils (103 mm−3) | 0 | 0 | 0 | 0 | 0.00–0.03 1 |
Lymphocytes (103 mm−3) | 7.5 ± 0.1 | 7.3 ± 0.1 | 8.6 ± 0.2 | 7.7 ± 0.1 | 4.78–9.12 1 |
Monocytes (103 mm−3) | 0.02 ± 0.01 | 0.01 ± 0.002 | 0.02 ± 0.002 | 0.01 ± 0.002 | 0.01–0.04 1 |
PCV(%) | 33.1 ± 0.2 | 33.1 ± 0.2 | 32.8 ± 0.2 | 38.8 ± 0.1 | 37.6–50.6 1 |
MCV(cu μ) | 50.6 ± 0.3 | 50.6 ± 0.3 | 45.3 ± 0.1 | 51.4 ± 0.2 | 52 2 |
MCH(μμ·gm) | 16.3 ± 0.2 | 16.3 ± 0.2 | 16 ± 2 | 16.3 ± 0.1 | 17 2 |
MCHC(%) | 33.1 ± 0.1 | 33.1 ± 0.1 | 32.4 ± 0.2 | 33.4 ± 0.1 | 34 2 |
Blood glucose (mg·dL−1) | 115 ± 3 | 98 ± 2 | 97 ± 3 | 87 ± 2 | 50–135 1 |
Blood urea (mg·dL−1) | 36 ± 2 | 26 ± 2 | 18 ± 2 | 29 ± 1 | - |
Serum creatinine (mg·dL−1) | 0.64 ± 0.02 | 0.65 ± 0.01 | 0.71 ± 0.01 | 0.73 ± 0.01 | 0.2–0.81 |
3. Experimental Section
3.1. Preparation of BBRDM
3.2. Detection of Pathogenic Microorganisms in BBRDM
3.2.1. Presence/Absence of Fecal Coliforms
3.2.2. Presence/Absence of E. coli O157:H7
3.2.3. Presence/Absence of Mycobacteria
3.2.4. Presence/Absence of Clostridium sp.
3.2.5. Presence/Absence of Salmonella sp.
3.2.6. Presence/Absence of Bacillus sp.
3.2.7. Presence/Absence of Brucella sp.
3.3. Cultivation Site and Plot Arrangement
3.4. Soil Characteristics, Crop, Time of Experiment and Weather
3.5. Raising of Seedlings in Nursery
3.6. Main Experimental Field Preparation, Seedling Transplantation and Staking
3.7. Fertilizer Application
3.8. Control of Plant Diseases
3.9. Harvesting
3.10. Determination of Lycopene Content in Tomatoes Grown with BBRDM and DAP + potash
3.11. Determination of Nitrate and Nitrite Contents in Tomatoes Grown with BBRDM and DAP + potash
3.12. Assessment of Heavy Metal Contents in BBRDM and Tomatoes Grown with BBRDM
3.13. Ames Test for Mutagenicity
3.14. Sub-Acute Toxicity Study of Tomatoes Grown with BBRDM
3.15. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
References
- Haapapuro, E.R.; Barnard, N.D.; Simon, M. Review-Animal waste used as livestock feed: Dangers to human health. Prev. Med. 1997, 26, 599–602. [Google Scholar] [CrossRef]
- Ahmad, R.; Jilani, G.; Arshad, M.; Zahir, Z.A.; Khalid, A. Bio-conversion of organic wastes for their recycling in agriculture: An overview of perspectives and prospects. Ann. Microbiol. 2007, 57, 471–479. [Google Scholar] [CrossRef]
- Caris-Veyrat, C.; Amiot, M-J.; Tyssandier, V.; Grasselly, D.; Buret, M.; Mikolajczak, M.; Guilland, J-C.; Bouteloup-Demange, C.; Borel, P. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J. Agric. Food Chem. 2004, 52, 6503–6509. [Google Scholar] [CrossRef] [PubMed]
- Chassy, A.W.; Bui, L.; Renaud, E.N.C.; Van Horn, M.; Mitchell, A.E. Three-year comparison of the content of antioxidant microconstituents and several quality characteristics in organic and conventionally managed tomatoes and bell peppers. J. Agric. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef] [PubMed]
- Lester, G.E.; Saftner, R.A. Organically versus conventionally grown produce: Common production inputs, nutritional quality, and nitrogen delivery between the two systems. J. Agric. Food Chem. 2011, 59, 10401–10406. [Google Scholar] [CrossRef] [PubMed]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, S.; Marine, S.C.; Micallef, S.A.; Wang, F.; Pahl, D.M.; Melendez, M.V.; Kline, W.L.; Oni, R.A.; Walsh, C.S.; Everts, K.L.; Buchanan, R.L. Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes. Int. J. Food Microbiol. 2015, 196, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Brinton, W.F., Jr.; Storms, P.; Blewett, T.C. Occurrence and levels of fecal indicators and pathogenic bacteria in market-ready recycled organic matter composts. J. Food Protect. 2009, 72, 332–339. [Google Scholar]
- Avery, L.M.; Killham, K.; Jones, D.L. Survival of E. coli O157:H7 in organic wastes destined for land application. J Appl. Microbiol. 2005, 98, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Avery, L.M.; Hill, P.; Killham, K.; Jones, D.L. Escherichia coli O157 survival following the surface and sub-surface application of human pathogen contaminated organic waste to soil. Soil Biol. Biochem. 2004, 36, 2101–2103. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Insam, H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 2013, 39, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Avery, L.M.; Killham, K.; Jones, D.L. Survival of E. coli O157:H7 in organic waste-amended soils: Influence of a rhizosphere. J. Appl. Microbiol. 2007, 102, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Avery, L.M.; Williams, A.P.; Killham, K.; Jones, D.L. Heat and lime-treatment as effective control methods for E. coli O157:H7 in organic wastes. Bioresource Technol. 2009, 100, 2692–2698. [Google Scholar] [CrossRef] [PubMed]
- Dach, J.; Starmans, D. Heavy metals balance in Polish and Dutch agronomy: Actual state and previsions for the future. Agric. Ecosyst. Environ. 2005, 107, 309–316. [Google Scholar] [CrossRef]
- Habermeyer, M.; Roth, A.; Guth, S.; Diel, P.; Engel, K-H.; Epe, B.; Fürst, P.; Heinz, V.; Humpf, H-U.; Joost, H-G.; et al. Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Mol. Nutr. Food Res. 2015, 59, 106–128. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.R.; Lefferts, L.Y.; McKenzie, S.; Walker, P. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environ. Health Perspect. 2007, 115, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Meat Sector—DSIR. Available online: http://www.dsir.gov.in/reports/ittp_tedo/agro/AF_Animals_Meat_Intro.pdf (accessed on 10 June 2015).
- Hiranandani, A.; McCall, R.M.; Shaheen, S. India’s Holy Cash Cow. Available online: http://newint.org/columns/currents/2010/07/01/india-leather-cows/ (accessed on 10 June 2015).
- Slaughter House Waste and Dead Animals. Available online: http://localbodies.up.nic.in/swm/chap5.pdf (accessed on 10 June 2015).
- EUR-Lex. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0142 (accessed on 21 August 2015).
- Envis Newsletter. Available online: http://dste.puducherry.gov.in/envisnew/fourteenth-NL-JAN-MARCH-2009.pdf (accessed on 10 June 2015).
- Roy, M.; Karmakar, S.; Debsarcar, A.; Sen, P.K.; Mukherjee, J. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. Int. J. Recycl. Org. Waste Agric. 2013, 2, 1–11. [Google Scholar] [CrossRef]
- Roy, M.; Das, R.; Debsarcar, A.; Sen, P.K.; Mukherjee, J. Conversion of rural abattoir wastes to an organic fertilizer and its application in the field cultivation of tomato in India. Renew. Agr. Food Syst. 2015. [Google Scholar] [CrossRef]
- Miller, C.; Heringa, S.; Kim, J.; Jiang, X. Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers. Foodborne Pathog. Dis. 2013, 10, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Stringer, S.C.; George, S.M.; Peck, M.W. Thermal inactivation of Escherichia coli O157:H7. J. Appl. Microbiol. 2000, 88, 798–898. [Google Scholar] [CrossRef]
- Sahlström, L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 2003, 87, 161–166. [Google Scholar] [CrossRef]
- Avery, L.M.; Booth, P.; Campbell, C.; Tompkins, D.; Hough, R.L. Prevalence and survival of potential pathogens in source-segregated green waste compost. Sci. Total Environ. 2012, 431, 128–138. [Google Scholar] [CrossRef] [PubMed]
- de Motes, C.M.; Simon, S.; Grassi, J.; Torres, J.M.; Pumarola, M.; Girones, R. Assessing the presence of BSE and scrapie in slaughterhouse wastewater. J. Appl. Microbiol. 2008, 105, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, N.I.G.; Adeyemo, O.K. Waste management practices at the Bodija abattoir. Int. J. Environ. Stud. 2007, 64, 71–82. [Google Scholar] [CrossRef]
- Riahi, A.; Hdider, C.; Sanaa, M.; Tarchoun, N.; Ben Kheder, M.; Guezal, I. The influence of different organic fertilizers on yield and physico-chemical properties of organically grown tomato. J. Sustain. Agric. 2009, 33, 658–673. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.S.; Sumathi, S.; Shankar, M.; Reddy, N.N. Comparison of nutritional quality of organically versus conventionally grown tomato. Indian J. Hort. 2012, 69, 86–90. [Google Scholar]
- Vinha, A.F.; Barreira, S.V.P.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. 2014, 67, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Dumas, Y.; Dadomo, M.; Lucca, G.D.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Dorais, M. Organic production of vegetables: State of the art and challenges. Can. J. Plant Sci. 2007, 87, 1055–1066. [Google Scholar] [CrossRef]
- Beecher, G.R. Nutrient content of tomatoes and tomato products. Exp. Biol. Med. 1998, 218, 98–100. [Google Scholar] [CrossRef]
- Colla, G.; Mitchell, J.P.; Poudel, D.D.; Temple, S.R. Changes of tomato yield and fruit elemental composition in conventional, low input, and organic systems. J. Sustain. Agric. 2002, 20, 53–67. [Google Scholar] [CrossRef]
- European Food Safety Authority. Nitrate in vegetables scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 689, 1–79. [Google Scholar]
- World Health Organization. Task Group on Environmental Health Criteria for Nitrates, Nitrites and N-Nitroso Compounds; WHO: Geneva, Switzerland, 1978. [Google Scholar]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Catsburg, C.E.; Gago-Dominguez, M.; Yuan, J-M.; Castelao, J.E.; Cortessis, V.K.; Pike, M.C.; Stern, M.C. Dietary sources of N-nitroso compounds and bladder cancer risk: Findings from the Los Angeles bladder cancer study. Int. J. Cancer 2014, 134, 125–135. [Google Scholar] [CrossRef] [PubMed]
- DellaValle, C.T.; Daniel, C.R.; Aschebrook-Kilfoy, B.; Hollenbeck, A.R.; Cross, A.J.; Sinha, R.; Ward, M.H. Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP Diet and Health Study. Br. J. Cancer 2013, 108, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Keszei, A.P.; Goldbohm, A.R.; Schouten, L.J.; Jakszyn, P.; van den Brandt, P.A. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in The Netherlands Cohort Study. Am. J. Clin. Nutr. 2013, 97, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Jones, R.R.; Anderson, K.E.; Cantor, K.P.; Cerhan, J.R.; Krasner, S.; Robien, K.; Weyer, P.J.; Ward, M.H. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int. J. Cancer 2015, 137, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qu, Y.-H.; Chu, X.-D.; Wang, R.; Nelson, H.H.; Gao, Y-T.; Yuan, J.-M. Urinary levels of n-nitroso compounds in relation to risk of gastric cancer: Findings from the Shanghai cohort study. PLoS ONE 2015, 10, e0117326. [Google Scholar] [CrossRef] [PubMed]
- DellaValle, C.T.; Xiao, Q.; Yang, G.; Shu, X.-O.; Aschebrook-Kilfoy, B.; Zheng, W.; Li, H.L.; Ji, B.-T.; Rothman, N.; Chow, W-H.; et al. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int. J. Cancer 2014, 134, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Aschebrook-Kilfoy, B.; Ward, M.H.; Dave, B.J.; Smith, S.M.; Weisenburger, D.D.; Chiu, B.C.-H. Dietary nitrate and nitrite intake and risk of non-Hodgkin lymphoma. Leuk. Lymphoma 2013, 54, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, Y.; Ho, S-M.; Giovannucci, E. Plasma levels of nitrate and risk of prostate cancer: A prospective study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Ghasemi, A.; Kabir, A.; Azizi, F.; Hadaegh, F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide 2015, 47, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Sušin, J.; Kmecl, V.; Gregorčič, A. A survey of nitrate and nitrite content of fruit and vegetables grown in Slovenia during 1996–2002. Food Addit. Contam. 2006, 23, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Simion, V.; Câmpeanu, G.H.; Vasile, G.; Artimon, M.; Catanǎ, L.; Negoiţǎ, M. Nitrate and nitrite accumulation in tomatoes and derived products. Rom. Biotechnol. Lett. 2008, 13, 3785–3790. [Google Scholar]
- Centre for Food Safety. Nitrate and Nitrite in Vegetables Available in Hong Kong. Available online: http://www.cfs.gov.hk/english/programme/programme_rafs/files/Nitrate_and_Nitrite_Vegetables_Available_HK_e.pdf (accessed on 10 June 2015).
- Ayaz, A.; Topcu, A.; Yurttagul, M. Survey of nitrate and nitrite levels of fresh vegetables in turkey. J. Food Technol. 2007, 5, 177–179. [Google Scholar]
- Zamrik, M.A. Determination of nitrate and nitrite contents in tomato and processed tomato products in Syrian market. Int. J. Pharm. Sci. Rev. Res. 2013, 19, 1–5. [Google Scholar]
- Zhu, Z.; Zhang, F.; Wang, C.; Ran, W.; Shen, Q. Treating fermentative residues as liquid fertilizer and its efficacy on the tomato growth. Sci. Hortic. 2013, 164, 492–498. [Google Scholar] [CrossRef]
- Begum, A. Evaluation of municipal sewage sludge vermicompost on two cultivars of tomato (Lycopersicon esculentum) plants. Int. J. ChemTech Res. 2011, 3, 1184–1188. [Google Scholar]
- Castaldi, P.; Melis, P. Growth and yield characteristics and heavy metal content on tomatoes grown in different growing media. Commun. Soil Sci. Plan. 2004, 35, 85–98. [Google Scholar] [CrossRef]
- Radin, A.M.; Warman, P.R. Effect of municipal solid waste compost and compost tea as fertility amendments on growth and tissue element concentration in container-grown tomato. Commun. Soil Sci. Plan. 2011, 42, 1349–1362. [Google Scholar] [CrossRef]
- Samaras, V.; Tsadilas, C.D.; Tsialtas, J.T. Use of treated wastewater as fertilization and irrigation amendment in pot-grown processing tomatoes. J. Plant Nutr. 2009, 32, 741–754. [Google Scholar] [CrossRef]
- Arumugam, M.; Mitra, A.; Jaisankar, P.; Dasgupta, S.; Sen, T.; Gachhui, R.; Mukhopadhyay, U.K.; Mukherjee, J. Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl. Microbiol. Biotechnol. 2010, 86, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Fertilizer Policy. Available online: http://www.fert.nic.in/page/fertilizer-policy (accessed on 15 September 2015).
- The Prevention of Food Adulteration Act and Rules. Available online: http://www.cgsiindia.org/ (accessed on 15 September 2015).
- OMRI Report. Available online: http://www.horticulture.umn.edu/amarkhar/courses/Hort4072-2008/Heavy%20Metals%20and%20Fertilizers/OMRI%20Report%20Metals_in_Fertilizers-b6-2005-02-14.pdf (accessed on 10 June 2015).
- Velimirov, A.; Lueck, L.; Shiel, R.; Plöger, A.; Leifert, C. Preference of laboratory rats for food based on wheat grown under organic versus conventional production conditions. NJAS Wagen. J. Life Sci. 2011, 58, 85–88. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cho, H.-D.; Jeong, J.-H.; Lee, M.-K.; Jeong, Y.-K.; Shim, K.-H.; Seo, K.-I. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model. Food Chem. 2013, 141, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Delaney, C.A. Exotic Animal Companion Medicine Handbook for Veterinarians, Zoological Education Network. Available online: http://www.vetpraxis.net/campus/wp-content/uploads/group-documents/24/1335274203-ExoticHandbook2.pdf (accessed on 10 June 2015).
- Cameron, D.G.; Watson, G.M. The blood counts of the adult albino rat. Blood 1949, 4, 816–818. [Google Scholar] [PubMed]
- Indocert. Available online: http://www.indocert.org/index.php/en/ (accessed on 10 June 2015).
- Bustamante, M.A.; Perez-Murcia, M.D.; Paredes, C.; Moral, R.; Perez-Espinosa, A.; Moreno-Caselles, J. Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes. Bioresource Technol. 2007, 98, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; pp. 2005–2605. [Google Scholar]
- March, S.B.; Ratnam, S. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J. Clin. Microbiol. 1986, 23, 869–872. [Google Scholar] [PubMed]
- Dey, D.; Ray, R.; Hazra, B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother. Res. 2014, 28, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Balemi, T. Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisol in Ethiopia. Acta Agric. Slov. 2008, 91, 103–119. [Google Scholar] [CrossRef]
- Sortino, O.; Dipasquale, M.; Montoneri, E.; Tomasso, L.; Perrone, D.G.; Vindrola, D.; Negre, M.; Piccone, G. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity. Waste Manag. 2012, 32, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Agele, S.O.; Iremiren, G.O.; Ojeniyi, S.O. Effects of plant density and mulching on the performance of late-season tomato (Lycopersicon esculentum) in southern Nigeria (Article). J. Agric. Sci. 1999, 133, 397–402. [Google Scholar] [CrossRef]
- Thampi, C.J.; Mukhopadhyay, A.K. Studies on the structural stability of some soils of West Bengal. Proc. Indian Nat. Sci. Acad. Part B: Biol. Sci. 1975, 41, 47–53. [Google Scholar]
- Law-Ogbomo, K.E.; Egharevba, R.K.A. Effects of planting density and NPK fertilizer application on yield and yield components of tomato (Lycospersicon Esculentum mill.) in forest location. World J. Agric. Sci. 2009, 5, 152–158. [Google Scholar]
- Gupta, A.; Shukla, V. Response of tomato (Lycopersicon Esculentum mill.) to plant spacing, nitrogen, phosphorus and potassium fertilization. Indian J. Hort. 1977, 34, 270–276. [Google Scholar]
- Hinman, T.; Baier, A.; Riesselman, L. Organic Tomato Production. Available online: http://www.attra.ncat.org (accessed on 10 June 2015).
- Davis, A.R.; Fish, W.W.; Perkins-Veazie, P. A rapid spectrophotometric method for analyzing lycopene content in tomato and tomato products. Postharvest Biol. Technol. 2003, 28, 425–430. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Comp. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Standard ISO 6635. In Fruits, Vegetables and Derived Products—Determination of Nitrite and Nitrate Content—Molecular Absorption Spectrometric Method; International Organization for Standardization: Geneva, Switzerland, 1984. [Google Scholar]
- Li, B.; Jin, Y.; Xu, Y.; Wu, Y.; Xu, J.; Tu, Y. Safety evaluation of tea (Camellia sinensis (L.) O. Kuntze) flower extract: Assessment of mutagenicity, and acute and subchronic toxicity in rats. J. Ethnopharmacol. 2011, 133, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Durston, W.E.; Yamasaki, E.; Lee, F.D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 1973, 70, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
- Atsamo, A.D.; Nguelefack, T.B.; Datté, J.Y.; Kamanyi, A. Acute and subchronic oral toxicity assessment of the aqueous extract from the stem bark of Erythrina senegalensis DC (Fabaceae) in rodents. J. Ethnopharmacol. 2011, 34, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Konan, N.A.; Bacchi, E.M.; Lincopan, N.; Varela, S.D.; Varanda, E.A. Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). J. Ethnopharmacol. 2007, 110, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Harizal, S.N.; Mansor, S.M.; Hasnan, J.; Tharakan, J.K.J.; Abdullaha, J. Acute toxicity study of the standardized methanolic extract of Mitragyna speciosa Korth in rodent. J. Ethnopharmacol. 2010, 131, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, K.; Zhong, Y.; Luo, X.; Xiao, R.; Hou, Y.; Bao, W.; Yang, W.; Yan, H.; Yao, P.; Liu, L. Acute and subchronic oral toxicities of Pu-erh black tea extract in Sprague-Dawley rats. J. Ethnopharmacol. 2011, 134, 156–164. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Statistics for Windows, Version 20.0; IBM Corp.: Armonk, NY, USA, 2011.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, M.; Das, R.; Kundu, A.; Karmakar, S.; Das, S.; Sen, P.K.; Debsarcar, A.; Mukherjee, J. Organic Cultivation of Tomato in India with Recycled Slaughterhouse Wastes: Evaluation of Fertilizer and Fruit Safety. Agriculture 2015, 5, 826-856. https://doi.org/10.3390/agriculture5030826
Roy M, Das R, Kundu A, Karmakar S, Das S, Sen PK, Debsarcar A, Mukherjee J. Organic Cultivation of Tomato in India with Recycled Slaughterhouse Wastes: Evaluation of Fertilizer and Fruit Safety. Agriculture. 2015; 5(3):826-856. https://doi.org/10.3390/agriculture5030826
Chicago/Turabian StyleRoy, Malancha, Rimi Das, Amit Kundu, Sanmoy Karmakar, Satadal Das, Pradip Kumar Sen, Anupam Debsarcar, and Joydeep Mukherjee. 2015. "Organic Cultivation of Tomato in India with Recycled Slaughterhouse Wastes: Evaluation of Fertilizer and Fruit Safety" Agriculture 5, no. 3: 826-856. https://doi.org/10.3390/agriculture5030826
APA StyleRoy, M., Das, R., Kundu, A., Karmakar, S., Das, S., Sen, P. K., Debsarcar, A., & Mukherjee, J. (2015). Organic Cultivation of Tomato in India with Recycled Slaughterhouse Wastes: Evaluation of Fertilizer and Fruit Safety. Agriculture, 5(3), 826-856. https://doi.org/10.3390/agriculture5030826