Recycling Improves Soil Fertility Management in Smallholdings in Tanzania
Abstract
:1. Introduction
1.1. The Challenge of Closing the Loop
1.2. Monitoring and Assessing Soil Fertility Management Practices
1.3. Intersectional Resource Management for Subsistence Fertilizer Production
1.4. Research Objectives and Questions
2. Materials and Methods
2.1. Study Area & Case Studies
2.2. Research Methods: MFA & SNB
2.3. Systems Defined & Scenarios Studied
2.4. Specific Modelling Approach & Equations Applied
3. Results and Discussion
3.1. Soil Nutrient Balances
3.2. Potential for Subsistence Production of Compost
3.3. Environmental Emissions
3.4. Sustainability Aspects of Intersectional Resource Management
3.4.1. Replenishing Soil P
3.4.2. Combating Soil Acidification
3.4.3. Restoring SOM
3.4.4. Sequestering C
3.4.5. Integrated Environmental Emissions
3.5. Discussion of Methodology
4. Conclusions
- The IPNM strategies analyzed, i.e., utilizing resources recovered from cooking and sanitation, show a clear potential to decrease currently existing soil nutrient deficits. Specifically, net P balance is reversed, giving a positive result. This means that P depletion is avoided, while depletion rates of N are mitigated, but not avoided completely.
- Biogas slurry, standard compost, or CaSa-compost, are all feasible for completely meeting P demand of crops. All organic inputs analyzed require application in combination with a mineral fertilizer, such as urine, to compensate crop N-demand.
- Recovering and utilizing residues from households for composting allows for the production of adequate quantities of compost on-farm. Biochar recovered from cooking and/or sanitation specifically contributes to C contained in CaSa-compost, while residues from EcoSan significantly contribute to nutrient content of CaSa-compost.
- Environmental emissions greatly increase with the production and use of organic fertilizers, whereby the climate balance declines for all IPNM scenarios analyzed. The EP also demonstrates an increase in association with intensive subsistence production of composts.
- Using the CaSa-compost is a suitable method for sustainable soil fertility management, due to the following factors: (i) applied P amendments are appropriate to replenish P in exhausted soils, (ii) estimated liming effects are suitable for mitigating existing soil acidification, (iii) C inputs contribute to restoring the SOM, and (iv) potentially also to C sequestration, while (v) the overall GWP is maintained, and total EP is reduced.
- Regarding the aforementioned benefits identified for compost amendments, the potential of the CaSa-compost is superior to the standard compost, especially with respect to liming and SOM restoration. By contrast, the use of biogas slurry is inferior in all aspects when compared to compost amendments, especially for liming, SOM restoration, and emissions with GWP.
- Conduct an analysis from a system perspective around the nexus of energy-sanitation-agriculture, instead of focusing only on farming products and processes.
- Create a functional link between smallholder households, farming practices, soil nutrient stocks, and the environment.
- Shed light on how IPNM strategies that combine use of residues from cooking and sanitation affect local soil nutrient budgeting in comparison to the current state.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Von Liebig, J.F.; Playfair, L.P.B.; Webster, J.W. Organic Chemistry in Its Applications to Agriculture and Physiology; Owen, J., Ed.; Printed for Taylor and Walton: London, UK, 1841. [Google Scholar]
- McIntyre, B.D.; Herren, H.R.; Wakhungu, J.; Watson, R.T. Agriculture at a crossroads. In Synthesis Report of the Global and Sub-Global, IAASTD Reports; Island Press: Washington, DC, USA, 2009; 106p. [Google Scholar]
- De Schutter. Agroecology and the Right to Food. Report by the Special Rapporteur on the Right to Food; 16th Session of the United Nations Human Rights Council (A/HRC/16/49); United Nations General Assembly: Geneva, Switzerland, 2011; Available online: http://www.srfood.org/en/report-agroecology-and-the-right-to-food (accessed on 11 May 2017).
- FAO. A Statement by FAO Director-General José Graziano da Silva; 24th Session of the Committee on Agriculture (COAG) Opening Statement; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014; Available online: http://www.fao.org/about/who-we-are/director-gen/faodg-statements/detail/en/c/250139/ (accessed on 24 October 2016).
- La Via Campesina. Declaration of the International Forum for Agroecology. Available online: https://viacampesina.org/en/index.php/main-issues-mainmenu-27/sustainable-peasants-agriculture-mainmenu-42/1749-declaration-of-the-international-forum-for-agroecology (accessed on 15 November 2016).
- Lal, R. Managing soils for feeding a global population of 10 billion. J. Sci. Food Agric. 2006, 86, 2273–2284. [Google Scholar] [CrossRef]
- Lal, R. Soils and world food security. Soil Till Res. 2009, 102, 1–4. [Google Scholar] [CrossRef]
- Tittonell, P. Feeding the world with soil science: embracing sustainability, complexity and uncertainty. SOILD 2016. [Google Scholar] [CrossRef]
- Kiers, E.T.; Leakey, R.R.; Izac, A.M.; Heinemann, J.A.; Rosenthal, E.; Nathan, D.; Jiggins, J. Agriculture at a crossroads. Science 2008, 320, 320–321. [Google Scholar] [CrossRef] [PubMed]
- Markwei, C.; Ndlovu, L.; Robinson, E.; Shah, W.P. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD): Sub-Saharan Africa Summary for Decision Makers; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- FAO. What is Integrated Plant Nutrient Management? FAO: Rome, Italy, 2016; Available online: http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managing-ecosystems/integrated-plant-nutrient-management/ipnm-what/en/ (accessed on 24 October 2016).
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L. Plant Nutrition for Food Security; A Guide for Integrated Nutrient Management, FAO Fertilizer and Plant Nutrition Bulletin 16; FAO: Rome, Italy, 2006. [Google Scholar]
- Amoding, A.; Tenywa, J.S.; Ledin, S.; Otabbong, E. Agronomic effectiveness of urban market crop waste compost on-farm in Uganda. In Proceedings of the African Crop Science Conference, Entebbe, Uganda, 5–9 December 2005; African Crop Science Society: Kampala, Uganda, 2005; pp. 1133–1138. [Google Scholar]
- Karungi, J.; Kyamanywa, S.; Ekbom, B. Organic soil fertility amendments and tritrophic relationships on cabbage in Uganda: Experiences from on-station and on-farm trials. Afr. J. Agric. Res. 2010, 5, 2862–2867. [Google Scholar]
- Tumuhairwe, J.B.; Tenywa, J.S.; Otabbong, E.; Ledin, S. Comparison of four low-technology composting methods for market crop wastes. Waste Manag. 2009, 29, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Palm, C.A.; Myers, R.J.K.; Nandwa, S.M. Combined Use of Organic and Inorganic Nutrient Sources for Soil Fertility Maintenance and Replenishment. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; Soil Science Society of America (SSSA) Special Publication 51: Madison, WI, USA, 1997; p. 217. [Google Scholar] [CrossRef]
- Buresh, R.J.; Smithson, P.C.; Hellums, D.T. Building soil phosphorus capital in Africa. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; SSSA Special Publication 51: Madison, WI, USA, 1997; pp. 111–149. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Vargas, R. World’s soils are under threat. SOIL 2016, 2, 79–82. [Google Scholar] [CrossRef]
- Sanginga, N.; Woomer, P.L. (Eds.) Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Process; Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture: Nairobi, Kenya, 2009; 263p. [Google Scholar]
- Nziguheba, G.; Zingore, S.; Kihara, J.; Merckx, R.; Njoroge, S.; Vanlauwe, B. Phosphorus in smallholder farming systems of sub-Saharan Africa: Implications for agricultural intensification. Nutr. Cycl. Agroecosys. 2016, 104, 321–340. [Google Scholar] [CrossRef]
- De Jager, A.; Nandwa, S.M.; Okoth, P.F. Monitoring nutrient flows and economic performance in African farming systems (NUTMON): I. Concepts and methodologies. Agric. Ecosyst. Environ. 1998, 71, 37–48. [Google Scholar] [CrossRef]
- Roy, R.N.; Misra, R.V.; Lesschen, J.P.; Smaling, E.M.A. Chapter 2 Methodologies for assessing soil nutrient balances—section “microlevel”. In Assessment of Soil Nutrient Balance: Approaches and Methodologies; FAO: Rome, Italy, 2003; Volume 14, pp. 46–70. [Google Scholar]
- Stoorvogel, J.J.; Smaling, E.M. Assessment of Soil Nutrient Depletion in Sub-Saharan Africa: 1983–2000; Volume II: Nutrient Balances per Crop and per Land Use Systems; Winand Staring Centre for Integrated Land, Soil and Water Research: Wageningen, The Netherlands, 1990. [Google Scholar]
- Zhou, M.; Brandt, P.; Pelster, D.; Rufino, M.C.; Robinson, T.; Butterbach-Bahl, K. Regional nitrogen budget of the Lake Victoria Basin, East Africa: Syntheses, uncertainties and perspectives. Environ. Res. Lett. 2014, 9, 105009. [Google Scholar] [CrossRef]
- Lederer, J.; Karungi, J.; Ogwang, F. The potential of wastes to improve nutrient levels in agricultural soils: A material flow analysis case study from Busia District, Uganda. Agric. Ecosyst. Environ. 2015, 207, 26–39. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Smaling, E.A.; Janssen, B.H. Calculating soil nutrient balances in Africa at different scales I Supra-national scale. Fertil. Res. 1993, 35, 227–235. [Google Scholar] [CrossRef]
- Baijukya, F.P.; de Steenhuijsen, P.B. Nutrient balances and their consequences in the banana-based land use systems of Bukoba district, northwest Tanzania. Agric. Ecosyst. Environ. 1998, 71, 147–158. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; p. 449. ISBN 978-1844076581. [Google Scholar]
- Taylor, P. (Ed.) The Biochar Revolution. In Transforming Agriculture & Environment; Global Publishing Group Mt Evelyn: Victoria, Australia, 2010; ISBN 978-1921630415. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Sombroek, W. Amazon Soils: A Reconnaissance of Soils of the Brazilian Amazon Region; Dissertation, Agricultural State University of Wageningen; Centre for Agricultural Publications and Documentation: Wageningen, The Netherlands, 1996. [Google Scholar]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Stephen, J. Plant growth improvement mediated by nitrate capture in co-composted biochar. Nat. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [PubMed]
- Esrey, S.A.; Andersson, I.; Hillers, A.; Sawyer, R. Closing the Loop—Ecological Sanitation for Food Security; Publications on Water Resources No. 18; Swedish International Development Cooperation Agency (SIDA): Tepoztlán, Mexico, 2001; ISBN 91-586-8935-4. [Google Scholar]
- Winblad, U.; Simpson-Hébert, M.; Calvert, P.; Morgan, P.; Rosemarin, A.; Sawyer, R.; Xiao, J. Ecological Sanitation—Revised And Enlarged Edition; SEI: Stockholm, Sweden, 2004. [Google Scholar]
- WHO. WHO guidelines for the safe use of wastewater, excreta and greywater. In Excreta and Greywater Use in Agriculture; World Health Organization (WHO) Press: Geneva, Switzerland, 2006; Volume 4, p. 222. ISBN 92-4-154685-9. [Google Scholar]
- Niwagaba, C.; Nalubega, M.; Vinnerås, B.; Sundberg, C.; Jönsson, H. Bench-scale composting of source-separated human faeces for sanitation. Waste Manag. 2009, 29, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Richert, A.; Gensch, R.; Jönsson, H.; Stenström, T.A.; Dagerskog, L. Practical Guidance on the Use of Urine in Crop Production; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2010; ISBN 978-918-612-521-9. [Google Scholar]
- Krause, A.; Kaupenjohann, M.; George, E.; Köppel, J. Nutrient recycling from sanitation and energy systems to the agroecosystem—Ecological research on case studies in Karagwe, Tanzania. Afr. J. Agric. Res. 2015, 10, 4039–4052. [Google Scholar] [CrossRef]
- Feachem, R.G.; Bradley, D.J.; Garelick, H.; Mara, D.D. Sanitation and Disease—Health Aspects of Excreta and Wastewater Management; World Bank Studies in Water Supply and Sanitation No. 3; John Wiley & Sons: Chichester, UK, 1983; p. 534. [Google Scholar]
- Krause, A.; Rotter, V.S. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania. Sci. Total Environ. 2017, 590, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Heinonen-Tanski, H.; van Wijk-Sijbesma, C. Human excreta for plant production. Bioresource Technol. 2005, 96, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Amlinger, F.; Peyr, S.; Cuhls, C. Green house gas emissions from composting and mechanical biological treatment. Waste Manag. Res. 2008, 26, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr. Cycl. Agroecosys. 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Baba, Y.; Tada, C.; Watanabe, R.; Fukuda, Y.; Chida, N.; Nakai, Y. Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: Methane production and application of digested sludge as fertiliser. Bioresource Technol. 2013, 140, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Clements, L.J.; Salter, A.M.; Banks, C.J.; Poppy, G.M. The usability of digestate in organic farming. Water Sci. Technol. 2012, 66, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Garfí, M.; Gelman, P.; Comas, J.; Carrasco, W.; Ferrer, I. Agricultural reuse of the digestate from low- cost tubular digesters in rural Andean communities. Waste Manag. 2011, 31, 2584–2589. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Kammann, C.I.; Linsel, S.; Go ̈ßling, J.W.; Koyro, H.W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Nehls, T. Fertility Improvement of a Terra Firme Oxisol in Central Amazonia by Charcoal Applica-Tions. Master’s Thesis, University of Bayreuth, Bayreuth, Germany, 2002. [Google Scholar]
- Petter, F.A.; Madari, B.E.; Silva, M.A.S.D.; Carneiro, M.A.C.; Carvalho, M.T.D.M.; Ju ́nior, M.; Pacheco, L.P. Soil fertility and upland rice yield after biochar application in the Cerrado. Pesqui. Agropecu. Bras. 2012, 47, 699–706. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef] [Green Version]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- SUSANA (n.d.) Sanitation Case Studies, an Online Collection of Fact Sheets on 95 Case Studies of EcoSan. Sustainable Sanitation Alliance (SuSanA). Available online: http://www.susana.org/en/resources/case-studies (accessed on 22 May 2017).
- Komakech, A.J.; Zurbrügg, C.; Semakula, D.; Kiggundu, N.; Vinnerås, B. Evaluation of the Performance of Different Organic Fertilisers on Maize Yield: A Case Study of Kampala, Uganda. J. Agric. Sci. 2015, 7, 28. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J.; Ngoze, S.O.; Mugendi, D.N.; Kinyangi, J.M.; Riha, S.; Pell, A.N. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Andersson, E. Turning waste into value: Using human urine to enrich soils for sustainable food production in Uganda. J. Clean. Prod. 2015, 96, 290–298. [Google Scholar] [CrossRef]
- Ogwang, F.; Tenywa, J.S.; Otabbong, E.; Tumuhairwe, J.B.; Amoding-Katusabe, A. Faecal Blending for Nutrient Enrichment and Speedy Sanitisation for Soil Fertility Improvement. ISRN Soil Sci. 2012, 2012, 424171. [Google Scholar] [CrossRef]
- Krause, A.; Nehls, T.; George, E.; Kaupenjohann, M. Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: A field experiment in a tropical Andosol. SOIL 2016, 2, 147–162. [Google Scholar] [CrossRef]
- Tanzania. National Sample Census of Agriculture 2007/2008, Regional Report—Kagera Region; United Republic of Tanzania, Ministry of Agriculture, Food Security and Cooperatives, The National Bureau of Statistics and the Office of the Chief Government Statistician: Zanzibar, Tanzania, 2012; Volume Vh.
- Batjes, N.H. Global Distribution of Soil Phosphorus Retention Potential; ISRIC Report; Wageningen University and Research Centre: Wageningen, The Netherlands, 2011; p. 41. [Google Scholar]
- Baijukya, F.P.; De Ridder, N.; Giller, K.E. Nitrogen release from decomposing residues of leguminous cover crops and their effect on maize yield on depleted soils of Bukoba District, Tanzania. Plant Soil 2006, 279, 77–93. [Google Scholar] [CrossRef]
- UNEP. Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing; United Nations Environment Programme (UNEP): Paris, France, 2007; 56p. [Google Scholar]
- Baccini, P.; Brunner, P.H. Metabolism of the Anthroposphere: Analysis, Evaluation, Design; MIT Press: Cambridge, MA, USA, 2012; 408p. [Google Scholar]
- Brunner, P.H.; Rechberger, H. Practical handbook of material flow analysis; CRC Press: Boca Raton, FL, USA, 2004; 336p. [Google Scholar]
- Lesschen, J.P.; Stoorvogel, J.J.; Smaling, E.M.; Heuvelink, G.B.; Veldkamp, A. A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr. Cycl. Agroecosys. 2007, 78, 111–131. [Google Scholar] [CrossRef]
- Van den Bosch, H.; Gitari, J.N.; Ogaro, V.N.; Maobe, S.; Vlaming, J. Monitoring nutrient flows and economic performance in African farming systems (NUTMON): III. Monitoring nutrient flows and balances in three districts in Kenya. Agric. Ecosyst. Environ. 1998, 71, 63–80. [Google Scholar] [CrossRef]
- Rugalema, G.H.; Okting’Ati, A.; Johnsen, F.H. The homegarden agroforestry system of Bukoba district, North-Western Tanzania. 1. Farming system analysis. Agrofor. Syst. 1994, 26, 53–64. [Google Scholar] [CrossRef]
- Smaling, E.M.; Fresco, L.O.; Jager, A.D. Classifying, monitoring and improving soil nutrient stocks and flows in African agriculture. Ambio 1996, 25, 492–496. [Google Scholar]
- Eghball, B.; Power, J.F. Phosphorus-and nitrogen-based manure and compost applications corn production and soil phosphorus. Soil Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Zhang, H. Anthropogenic and Natural Radiative Forcing—Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the IPCC; Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Heijungs, R.; Guinée, J.B.; Huppes, G.; Lankreijer, R.M.; Udo de Haes, H.A.; De Goede, H.P. Environmental Life Cycle Assessment of Products: Guide and Backgrounds (Part 1). Available online: https://openaccess:.leidenuniv.nl/handle/1887/8061 (accessed on 3 September 2016).
- Guinée, J.B. Handbook on life cycle assessment: Operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311–313. [Google Scholar] [CrossRef]
- Laner, D.; Rechberger, H.; Astrup, T. Systematic evaluation of uncertainty in material flow analysis. J. Ind. Eng. 2014, 18, 859–870. [Google Scholar] [CrossRef]
- FAU Physics (n.d.) Anleitung zur Fehlerrechnung. Friedrich Alexander Universität (FAU) Erlangen-Nuremberg, Department of Physics. Available online: http://www.physik.uni-erlangen.de/lehre/daten/NebenfachPraktikum/Anleitung%20zur%20Fehlerrechnung.pdf (accessed on 15 June 2016).
- Cumming, G.; Fidler, F.; Vaux, D.L. Error bars in experimental biology. J. Cell Biol. 2007, 177, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Nkonya, E.; Kaizzi, C.; Pender, J. Determinants of nutrient balances in a maize farming system in eastern Uganda. Agric. Syst. 2005, 85, 155–182. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Kaizzi, C.K. Nutrient balances and expected effects of alternative practices in farming systems of Uganda. Agric. Ecosyst. Environ. 1998, 71, 115–129. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Shepherd, K.D.; Soule, M.J.; Place, F.M.; Buresh, R.J.; Woomer, P.L. Soil fertility replenishment in Africa: An investment in natural resource capital. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1997; pp. 1–46. [Google Scholar]
- Finck, A. Pflanzenernährung und Düngung in Stichworten (Plant Nutrition and Fertilization in Keywords), 6th ed.; Borntraeger: Stuttgart, Germany, 2007. [Google Scholar]
- Mafongoya, P.L.; Bationo, A.; Kihara, J.; Waswa, B.S. Appropriate technologies to replenish soil fertility in southern Africa. In Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2007; Volume 1, pp. 29–44. [Google Scholar]
- Möller, K.; Stinner, W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur. J. Agron. 2009, 30, 1–16. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Singh, B.P.; Joseph, S.; Van Zwieten, L.; Cowie, A.; Harden, S.; Smillie, R. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 2016, 61, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Larsen, O.; Horneber, D. Einfluss von Biokohle auf Treibhausgasemissionen während der Kompostierung. In Book of Abstracts of the scientific Workshop Biokohle im Gartenbau–Verwertung von Organischen Reststoffen zur Schließung von Energie—und Stoffkreisläufen; Terytze, K., Ed.; Freie Universität Berlin: Berlin, Germany, 2015; pp. 33–34. [Google Scholar]
- Sonoki, T.; Furukawa, T.; Jindo, K.; Suto, K.; Aoyama, M.; Sánchez-Monedero, M.Á. Influence of biochar addition on methane metabolism during thermophilic phase of composting. J. Basic Microb. 2013, 53, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Vandecasteele, B.; Mondini, C.; D’Hose, T.; Russo, S.; Sinicco, T.; Quero, A.A. Effect of biochar amendment during composting and compost storage on greenhouse gas emissions, N losses and P availability. In Proceedings of the 15th RAMIRAN International Conference, Recycling of Organic Residues in Agriculture, Versailles, France, 3–5 June 2013; Institut National de la Recherche Agronomique (INRA): Thiverval-Grignon, France, 2013. [Google Scholar]
- Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M. Effects of fresh and aged biochars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. SOILD 2015, 2, 29–65. [Google Scholar] [CrossRef]
- Laner, D.; Cencic, O.; Lederer, J. Quantification and Handling of Uncertainties in MFA; Class Notes, Course‚ Material Flow Analysis of Resource and Recycling Systems’; Vienna University of Technology: Vienna, Austria, 2013. [Google Scholar]
- Batjes, N.H.; Sombroek, W.G. Possibilities for carbon sequestration in tropical and subtropical soils. Glob. Chang. Biol. 1997, 3, 161–173. [Google Scholar] [CrossRef]
- Nziguheba, G. Improving Phosphorus Availability and Maize Production through Organic and Inorganic Amendments in Phosphorus Deficient Soils in Western Kenya. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2011. [Google Scholar]
- Van der Eijk, D.; Janssen, B.H.; Oenema, O. Initial and residual effects of fertilizer phosphorus on soil phosphorus and maize yields on phosphorus fixing soils: A case study in south-west Kenya. Agric. Ecosyst. Environ. 2006, 116, 104–120. [Google Scholar] [CrossRef]
- Sattari, S.Z.; Bouwman, A.F.; Giller, K.E.; van Ittersum, M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA 2012, 109, 6348–6353. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.; Brümmer, G.W.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel—Lehrbuch der Bodenkunde (Textbook of Soil Science), 16th ed.; Springer: Heidelberg, Germany, 2010; 570p. [Google Scholar]
- Van Breemen, N.; Mulder, J.; Driscoll, C.T. Acidification and alkalinization of soils. Plant Soil 1983, 75, 283–308. [Google Scholar] [CrossRef]
- Wong, M.T.F.; Nortcliff, S.; Swift, R.S. Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils. Commun. Soil Sci. Plant Anal. 1998, 29, 2927–2937. [Google Scholar] [CrossRef]
- KTBL. Faustzahlen für die Landwirtschaft (Rule-of-Thumb Figures for Agriculture), 14th ed.; Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL): Darmstadt, Germany, 2009. [Google Scholar]
- Zakharova, A.; Beare, M.H.; Cieraad, E.; Curtin, D.; Turnbull, M.H.; Millard, P. Factors controlling labile soil organic matter vulnerability to loss following disturbance as assessed by measurement of soil-respired δ13CO2. Eur. J. Soil Sci. 2015, 66, 135–144. [Google Scholar] [CrossRef]
- Chesworth, W. (Ed.) Encyclopedia of Soil Science; Springer: Dordrecht, The Netherlands, 2008; p. 902. [Google Scholar]
- Christensen, T.H.; Gentil, E.; Boldrin, A.; Larsen, A.; Weidema, B.; Hauschild, M. C balance, carbon dioxide emissions and global warming potentials. Waste Manag. Res. 2009, 27, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.; Weiske, A.; Möller, K. The effect of biogas digestion on the environmental impact and energy balances in organic cropping systems using the life-cycle assessment methodology. Renew. Agric. Food Syst. 2010, 25, 204–218. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. The biochar dilemma. Soil Res. 2014, 52, 217–230. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kammann, C.; Cayuela, M.; Singh, B.P.; Joseph, S.; Kimber, S.; Donne, S.; Clough, T.; Spokas, K.A. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 489–520. [Google Scholar]
No. | Organic Input to Maize & Beans | Organic Input to Onion & Cabbage | Mineral Input to all Crops | Cooking Alternative | Sanitation Alternative | Comment |
---|---|---|---|---|---|---|
AM1 | None | Standard compost (cabbage only) | None | Three-stone fire | Pit latrine | |
AM2 | Biogas slurry | Standard compost | Urine | Biogas digester & burner | UDDT | |
AM3 | CaSa-compost | Standard compost | Urine | Microgasifier | UDDT & thermal sanitation | |
AM4 | CaSa-compost | Standard compost | Urine | Microgasifier | UDDT & thermal sanitation | like AM3, but with lower yield prognosis |
AM5 | CaSa-compost | Standard compost | Urine | Microgasifier | UDDT & thermal sanitation | like AM3, but with larger application of composts every 3 years |
Substrates | Recovery Potential | Subsistence Production | Total C | Total N | Total P |
---|---|---|---|---|---|
kg∙year−1 | kg∙year−1 | g∙kg−1 (in FM) | g∙kg−1 (in FM) | g∙kg−1 (in FM) | |
Biogas slurry | 14955 ± 4409 | 15.3 ± 0.3 | 0.9 ± 0.0 | 0.3 ± 0.0 | |
Biochar & ash (from cooking) | 301 ± 29 | 751 ± 296 | 2.9 ± 2.2 | 1.9 ± 0.8 | |
Biochar & ash (from sanitation) | 15 ± 6 | 694 ± 461 | 3.1 ± 1.2 | 5.2 ± 2.7 | |
Stored urine | 780 ± 80 | 7.9 ± 3.2 | 5.0 ± 1.2 | 0.5 ± 0.2 | |
Sanitized solids | 506 ± 186 | 106 ± 51 | 7.5 ± 3.5 | 2.1 ± 1.0 | |
Standard compost | 292 ± 20 | 60 ± 11 | 3.5 ± 0.6 | 0.8 ± 0.1 | |
CaSa-compost | 2350 ± 132 | 78 ± 9 | 4.0 ± 0.4 | 2.1 ± 0.2 |
Input flows of partial balance | |
IN1c | Urine |
IN2a | Grass carpet |
IN2b | Mulching with crop residues |
IN2c | Standard compost |
IN2d | CaSa-compost |
IN2e | Biogas slurry |
Input flows of natural balance | |
IN3a | Atmospheric deposition |
IN4a | Symbiotic BNF |
IN4b | Non-symbiotic BNF |
Output flows of partial balance | |
OUT1a | Food products for self-consumption |
OUT1b | Food products sold to market |
OUT2 | Crop residues |
Output flows of natural balance | |
OUT3 | Leaching |
OUT4a | Gaseous losses (from denitrification) |
Nutrient Requirement of Crops | Nutrient Supply with Organic Fertilization | Nutrient Supply with Organic and Mineral Fertilization | Natural Balance | Full SNB with Organic Fertilization | Full SNB with Organic and Mineral Fertilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB I | PB II–PB I | PB III–PB I | NB | SNB I | SNB II | |||||||
Kg∙ha−1 year−1 | ||||||||||||
Alternatives | N | P | N | P | N | P | N | P | N | P | N | P |
AM1 | −46 ± 2 | −11 ± 1 | 4.1 ± 0.1 | 1.5 ± 0.0 | 4.1 ± 0.1 | 1.5 ± 0.0 | −13 ± 2 | 0.9 ± 0.3 | −54 ± 3 | −8 ± 1 | −54 ± 3 | −8 ± 1 |
AM2 | −87 ± 3 | −20 ± 2 | 57 ± 7 | 22 ± 2 | 88 ± 14 | 25 ± 4 | −11 ± 2 | 0.9 ± 0.3 | −41 ± 10 | 2 ± 3 | −11 ± 14 | 6 ± 3 |
AM3 | −139 ± 5 | −38 ± 3 | 87 ± 5 | 38 ± 2 | 105 ± 9 | 39 ± 5 | 9 ± 2 | 0.9 ± 0.3 | −43 ± 10 | 1 ± 5 | −25 ± 10 | 2 ± 4 |
AM4 | −104 ± 8 | −25 ± 4 | 58 ± 4 | 25 ± 2 | 97 ± 18 | 37 ± 7 | −8 ± 5 | 0.9 ± 0.3 | −54 ± 13 | 1 ± 6 | −15 ± 17 | 12 ± 5 |
AM5 | −139 ± 5 | −38 ± 3 | 88 ± 9 | 38 ± 5 | 108 ± 12 | 41 ± 6 | 9 ± 2 | 0.9 ± 0.3 | −41 ± 7 | 1 ± 4 | −22 ± 11 | 3 ± 6 |
IPNM Based on the Use of | Replenishing Soil P | Liming Potential | SOM Reproduction Potential | C-Sequestration Potential | Integrated Emissions |
---|---|---|---|---|---|
Standard compost * | ++/++ | =/+ | =/+ | ?/? | na |
Biogas slurry and urine | + | = | − | − | GWP: −, EP: = |
CaSa-compost and urine | ++/++ | ++/++ | +/+ | ?/? | GWP & EP: = |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, A.; Rotter, V.S. Recycling Improves Soil Fertility Management in Smallholdings in Tanzania. Agriculture 2018, 8, 31. https://doi.org/10.3390/agriculture8030031
Krause A, Rotter VS. Recycling Improves Soil Fertility Management in Smallholdings in Tanzania. Agriculture. 2018; 8(3):31. https://doi.org/10.3390/agriculture8030031
Chicago/Turabian StyleKrause, Ariane, and Vera Susanne Rotter. 2018. "Recycling Improves Soil Fertility Management in Smallholdings in Tanzania" Agriculture 8, no. 3: 31. https://doi.org/10.3390/agriculture8030031
APA StyleKrause, A., & Rotter, V. S. (2018). Recycling Improves Soil Fertility Management in Smallholdings in Tanzania. Agriculture, 8(3), 31. https://doi.org/10.3390/agriculture8030031