Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Facility and Design
2.2. Field Measurements
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effects of Biochar, Nitrogen Fertilization, and Their Interaction, and Measurement Date on Switchgrass Physiology, Biomass, and Soil Respiration
3.2. Multiple Comparisons of Biochar Addition and Nitrogen Fertilization on Switchgrass Physiology, and Soil Respiration
3.3. Seasonal Variations of Leaf Photosynthesis, Transpiration, WUE, Soil Temperature, Moisture, and Respiration
3.4. Relationships Between Soil Respiration and Soil Temperature, Soil Moisture
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Haider, G.; Steffens, D.; Müller, C.; Kammann, C.I. Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar. J. Environ. Qual. 2016, 45, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, F.; Wang, X.; Zou, J.; Liu, S. Annual accounting of net greenhouse gas balance response to biochar addition in a coastal saline bioenergy cropping system in China. Soil Tillage Res. 2016, 158, 39–48. [Google Scholar] [CrossRef]
- Hui, D.; Yu, C.-L.; Deng, Q.; Dzantor, E.K.; Zhou, S.; Dennis, S.; Sauve, R.; Johnson, T.L.; Fay, P.A.; Shen, W.; et al. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. PLoS ONE 2018, 13, e0192555. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.B.; Adams Kszos, L. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Adler, P.R.; Boateng, A.A.; Casler, M.D.; Sarath, G. Switchgrass as a biofuels feedstock in the USA. Can. J. Plant Sci. 2006, 86, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Owens, V.N.; Viands, D.R.; Mayton, H.S.; Fike, J.H.; Farris, R.; Heaton, E.; Bransby, D.I.; Hong, C.O. Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass Bioenergy 2013, 58, 286–293. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Reed, R.L. Switchgrass growth and development: Water, nitrogen, and plant density effects. J. Range Manag. 2000, 53, 221–227. [Google Scholar] [CrossRef]
- Muir, J.P.; Sanderson, M.A.; Ocumpaugh, W.R.; Jones, R.M.; Reed, R.L. Biomass production of ‘Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron. J. 2001, 93, 896–901. [Google Scholar] [CrossRef]
- Vogel, K.P.; Brejda, J.J.; Walters, D.T.; Buxton, D.R. Switchgrass biomass production in the Midwest USA. Agron. J. 2002, 94, 413–420. [Google Scholar] [CrossRef]
- Filiberto, D.; Gaunt, J. Practicality of biochar additions to enhance soil and crop productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, L.; Cheng, H.; Yue, S.; Li, S. Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in northwest China. Sustainability 2017, 9, 1482. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Hawthorne, I.; Johnson, M.S.; Jassal, R.S.; Black, T.A.; Grant, N.J.; Smukler, S.M. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J. Environ. Manag. 2017, 192, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Hol, W.H.G.; Vestergård, M.; ten Hooven, F.; Duyts, H.; van de Voorde, T.F.J.; Bezemer, T.M. Transient negative biochar effects on plant growth are strongest after microbial species loss. Soil Biol. Biochem. 2017, 115, 442–451. [Google Scholar] [CrossRef]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 2011, 11, 930–939. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2009, 327, 235–246. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Novotny, E.H.; Maia, C.M.B.D.F.; Carvalho, M.T.D.M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. Ciênc. Solo 2015, 39, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- De Voorde, T.F.J.V.; Bezemer, T.M.; Van Groenigen, J.W.; Jeffery, S.; Mommer, L. Soil biochar amendment in a nature restoration area: Effects on plant productivity and community composition. Ecol. Appl. 2014, 24, 1167–1177. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Biochar application to a fertile sandy clay loam in boreal conditions: Effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 2013, 374, 89–107. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Hosseini Bai, S.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2016, 9, 743–755. [Google Scholar] [CrossRef]
- Deng, Q.; Aras, S.; Yu, C.-L.; Dzantor, E.K.; Fay, P.A.; Luo, Y.; Shen, W.; Hui, D. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. Agric. Ecosyst. Environ. 2017, 248, 29–37. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Zhang, D.; Zhou, G.; Liu, J.; Liu, S.; Chu, G.; Li, J. Effects of precipitation increase on soil respiration: A three-year field experiment in subtropical forests in China. PLoS ONE 2012, 7, e41493. [Google Scholar] [CrossRef]
- Yu, C.-L.; Hui, D.; Deng, Q.; Dzantor, E.K.; Fay, P.A.; Shen, W.; Luo, Y. Responses of switchgrass soil respiration and its components to precipitation gradient in a mesocosm study. Plant Soil 2017, 420, 105–117. [Google Scholar] [CrossRef]
- Hui, D.; Jiang, C. Practical SAS Usage; Beijing University of Aeronautics & Astronautics Press: Beijing, China, 1996. [Google Scholar]
- Clough, T.; Condron, L.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Allaire, S.E.; Baril, B.; Vanasse, A.; Lange, S.F.; MacKay, J.; Smith, D.L. Carbon dynamics in a biochar-amended loamy soil under switchgrass. Can. J. Soil Sci. 2015, 95, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Prendergast-Miller, M.T.; Duvall, M.; Sohi, S.P. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 2243–2246. [Google Scholar] [CrossRef]
- Unger, R.; Killorn, R. Effect of the application of biochar on selected soil chemical properties, corn grain, and biomass yields in Iowa. Commun. Soil Sci. Plant Anal. 2011, 42, 2441–2451. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Elsevier: New York, NY, USA, 2010; pp. 47–82. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, G.M.; van Kessel, C.; Six, J.; Putnam, D.H.; Linquist, B.A. Productivity, 15N dynamics and water use efficiency in low- and high-input switchgrass systems. GCB Bioenergy 2014, 6, 704–716. [Google Scholar] [CrossRef]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 2011, 43, 296–301. [Google Scholar] [CrossRef]
- Fernández, J.M.; Nieto, M.A.; López-de-Sá, E.G.; Gascó, G.; Méndez, A.; Plaza, C. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci. Total Environ. 2014, 482–483, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghpour, A.; Hashemi, M.; Jahanzad, E.; Herbert, S.J. Switchgrass stand density and yield as influenced by seedbed preparation methods in a sandy loam soil. BioEnergy Res. 2015, 8, 1840–1846. [Google Scholar] [CrossRef]
- Lemus, R.; Parrish, D.J.; Wolf, D.D. Switchgrass cultivar/ecotype selection and management for biofuels in the upper southeast USA. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guretzky, J.A.; Biermacher, J.T.; Cook, B.J.; Kering, M.K.; Mosali, J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 2010, 339, 69–81. [Google Scholar] [CrossRef]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2013, 50, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Waramit, N.; Moore, K.J.; Heaton, E. Nitrogen and harvest date affect developmental morphology and biomass yield of warm-season grasses. GCB Bioenergy 2013, 6, 534–543. [Google Scholar] [CrossRef]
- Hartnett, D.C. Regulation of clonal growth and dynamics of Panicum virgatum (Poaceae) in tallgrass prairie: Effects of neighbor removal and nutrient addition. Am. J. Bot. 1993, 80, 1114–1120. [Google Scholar] [CrossRef]
- Aliero, A.A.; Abdullahi, A.A.; Aliero, B.L.; Zuru, A.A. Effects of irrigation regime, organic and inorganic mineral source on growth and yield components of switchgrass (Panicum virgatum L.) in upland and lowland conditions in Sokoto, Nigeria. Pak. J. Biol. Sci. 2013, 16, 51–58. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Karyotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, L.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS Wagening. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Thomason, W.E.; Raun, W.R.; Johnson, G.V.; Taliaferro, C.M.; Freeman, K.W.; Wynn, K.J.; Mullen, R.W. Switchgrass response to harvest frequency and time and rate of applied nitrogen. J. Plant Nutr. 2005, 27, 1199–1226. [Google Scholar] [CrossRef]
- Makaju, S.O.; Wu, Y.Q.; Zhang, H.; Kakani, V.G.; Taliaferro, C.M.; Anderson, M.P. Switchgrass winter yield, year-round elemental concentrations, and associated soil nutrients in a zero input environment. Agron. J. 2013, 105, 463–470. [Google Scholar] [CrossRef]
- Parrish, D.J.; Fike, J.H. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Barney, J.N.; Mann, J.J.; Kyser, G.B.; Blumwald, E.; Van Deynze, A.; DiTomaso, J.M. Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Sci. 2009, 177, 724–732. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, X.; Zhang, B.; Lu, M.; Luo, Y.; Liu, L.; Li, B. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2332–2343. [Google Scholar] [CrossRef] [PubMed]
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lessard, R. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure. J. Environ. Qual. 1998, 27, 209–214. [Google Scholar] [CrossRef]
- Mbonimpa, E.G.; Hong, C.O.; Owens, V.N.; Lehman, R.M.; Osborne, S.L.; Schumacher, T.E.; Clay, D.E.; Kumar, S. Nitrogen fertilizer and landscape position impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass. GCB Bioenergy 2014, 7, 836–849. [Google Scholar] [CrossRef]
- Lee, D.K.; Doolittle, J.J.; Owens, V.N. Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biol. Biochem. 2007, 39, 178–186. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kiniry, J.R.; Taliaferro, C.M.; De La Torre Ugarte, D. Projecting yield and utilization potential of switchgrass as an energy crop. In Advances in Agronomy; Elsevier: New York, NY, USA, 2006; pp. 267–297. [Google Scholar]
- Cordero, Á.; Osborne, B.A. Variation in leaf-level photosynthesis among switchgrass genotypes exposed to low temperatures does not scale with final biomass yield. GCB Bioenergy 2016, 9, 144–152. [Google Scholar] [CrossRef]
- Hartman, J.C.; Nippert, J.B. Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive air temperature manipulation. GCB Bioenergy 2012, 5, 683–692. [Google Scholar] [CrossRef]
- Hartman, J.C.; Nippert, J.B.; Springer, C.J. Ecotypic responses of switchgrass to altered precipitation. Funct. Plant Biol. 2012, 39, 126–136. [Google Scholar] [CrossRef] [Green Version]
Source | Pn | E | WUE | Biomass | Soil T | Soil M | Soil R |
---|---|---|---|---|---|---|---|
Block | 24.44 ** | 36.9 ** | 132.0 ** | 1.2 | 564.1 ** | 0.05 | 36.7 ** |
Measurement Date | 33.94 ** | 142.0 ** | 318.2 ** | – | 42133 ** | 191.0 ** | 527.0 ** |
Biochar | 0.4 | 6.7 ** | 9.9 ** | 0.3 | 0.05 | 10.5 ** | 12.4 ** |
N fertilization | 0.8 | 0.4 | 0.7 | 1.1 | 5.7 * | 0.5 | 116.5 ** |
Biochar × N fertilization | 0.6 | 0.5 | 2.4 | 1.7 | 8.7 ** | 0.5 | 22.1 ** |
Biochar Treatment | E | WUE | Biomass | Soil M | Soil R |
---|---|---|---|---|---|
Control | 4.64 ± 0.08 a | 5.09 ± 0.06 a | 15.32 ± 0.93 a | 22.79 ± 0.31 a | 4.39 ± 0.07 a |
Biochar addition | 4.92 ± 0.09 b | 4.91 ± 0.06 b | 16.40 ± 0.95 a | 23.48 ± 0.31 b | 4.24 ± 0.07 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, D.; Yu, C.-L.; Deng, Q.; Saini, P.; Collins, K.; Koff, J.D. Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration. Agriculture 2018, 8, 143. https://doi.org/10.3390/agriculture8090143
Hui D, Yu C-L, Deng Q, Saini P, Collins K, Koff JD. Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration. Agriculture. 2018; 8(9):143. https://doi.org/10.3390/agriculture8090143
Chicago/Turabian StyleHui, Dafeng, Chih-Li Yu, Qi Deng, Priya Saini, Kenya Collins, and Jason De Koff. 2018. "Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration" Agriculture 8, no. 9: 143. https://doi.org/10.3390/agriculture8090143
APA StyleHui, D., Yu, C. -L., Deng, Q., Saini, P., Collins, K., & Koff, J. D. (2018). Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration. Agriculture, 8(9), 143. https://doi.org/10.3390/agriculture8090143