Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery
Abstract
:1. Introduction
2. Study Site
3. Methodology
3.1. Image Acquisition and Processing
3.2. Assessment of Errors
3.3. Assessment of Beach Changes
3.4. Wave Measurements
4. Results
4.1. Beach Shoreline Changes
4.2. Beach Elevation Changes
4.3. Beach Volume Changes versus Wave Energy Flux
5. Discussion
5.1. Use of UAVs for Monitoring of Beach Changes
5.2. Post-Nourishment Changes
5.3. Further Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, H.; Brampton, A.; Capobianco, M.; Dette, H.H.; Hamm, L.; Laustrup, C.; Lechuga, A.; Spanhoff, R. Beach nourishment projects, practices, and objectives—A European overview. Coast. Eng. 2002, 47, 81–111. [Google Scholar] [CrossRef]
- Anthony, E.J. The status of beaches and shoreline development options on the French Riviera: A perspective and a prognosis. J. Coast. Conserv. 1997, 3, 169–178. [Google Scholar] [CrossRef]
- Pikelj, K.; Ružić, I.; Ilić, S.; James, M.; Kordić, B. Implementing an efficient beach erosion monitoring system for coastal management in Croatia. Ocean. Coast. Manag. 2018, 156, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, D.; Sarti, G. On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy. Geomorphology 2011, 130, 244–254. [Google Scholar] [CrossRef]
- Leont’yev, I.O. Artificial Beach as a Structure for Protecting a Seacoast from Storm Surge Impact (Based on the Example of the Eastern Gulf of Finland). Oceanology 2019, 59, 267–275. [Google Scholar] [CrossRef]
- Leonard, L.A.; Dixon, K.L.; Pilkey, O.H. A Comparison of Beach Replenishment on the U.S. Atlantic, Pacific, and Gulf Coasts. J. Coast. Res. 1990, SI, 127–140. [Google Scholar]
- Dean, R.G. Beach nourishment: Theory and practice. In Advanced Series on Ocean Engineering; World Scientific: River Edge, NJ, USA, 2002; Volume 18, p. 420. [Google Scholar]
- Ojeda, E.; Guillén, J.; Ribas, F. The morphodynamic responses of artificial embayed beaches to storm events. Adv. Geosci. 2010, 26, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.; Gomes, J.; das Neves, L.; Taveira-Pinto, F.; Lopes, M.L.; Veloso-Gomes, F. Experimental study on the performance of a perched beach constructed with geotextile encapsulated-sand systems. In Proceedings of the Coastal Sediments 2015, San Diego, CA, USA, 11–15 May 2015; Wang, P., Rosati, J.D., Cheng, J., Eds.; World Scientific: San Diego, CA, USA, 2015; pp. 1–11. [Google Scholar]
- das Neves, L.; Moreira, A.; Taveira-Pinto, F.; Lopes, M.L.; Veloso-Gomes, F. Performance of submerged nearshore sand-filled geosystems for coastal protection. Coast. Eng. 2015, 95, 147–159. [Google Scholar] [CrossRef]
- Dean, R.G.; Yoo, C.-H. Beach Nourishment in Presence of Seawall. J. Waterw. Port Coast. Ocean. Eng. 1994, 120, 302–316. [Google Scholar] [CrossRef]
- Elko, N.A.; Holman, R.A.; Gelfenbaum, G. Quantifying the rapid evolution of a nourishment project with video imagery. J. Coast. Res. 2005, 21, 633–645. [Google Scholar] [CrossRef]
- de Schipper, M.A.; de Vries, S.; Ruessink, G.; de Zeeuw, R.C.; Rutten, J.; van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Cai, F.; Qi, H.; Zhu, J.; Liu, J. Morphodynamic evolution and adaptability of nourished beaches. J. Coast. Res. 2019, 35, 737–750. [Google Scholar] [CrossRef]
- Dornbusch, U.; Williams, R.B.G.; Moses, C.; Robinson, D.A. Life expectancy of shingle beaches: Measuring in situ abrasion. J. Coast. Res. 2002, 36, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Hemmingsen, M.A. The abrasion of “greywacke” on a mixed sand and gravel coast. J. Coast. Res. 2001, 278–287. Available online: https://www.jstor.org/stable/25736294 (accessed on 15 July 2021).
- Bertoni, D.; Sarti, G.; Grottoli, E.; Ciavola, P.; Pozzebon, A.; Domokos, G.; Novák-szabó, T. Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan. Mar. Geol. 2016, 381, 175–180. [Google Scholar] [CrossRef]
- Grottoli, E.; Bertoni, D.; Pozzebon, A.; Ciavola, P. Influence of particle shape on pebble transport in a mixed sand and gravel beach during low energy conditions: Implications for nourishment projects. Ocean. Coast. Manag. 2019, 169, 171–181. [Google Scholar] [CrossRef]
- Harley, M.D.; Andriolo, U.; Armaroli, C.; Ciavola, P. Shoreline rotation and response to nourishment of a gravel embayed beach using a low-cost video monitoring technique: San Michele-Sassi Neri, Central Italy. J. Coast. Conserv. 2014, 18, 551–565. [Google Scholar] [CrossRef]
- Work, P.A.; Dean, R.G. Assessment and Prediction of Beach-Nourishment Evolution. J. Waterw. Port Coast. Ocean. Eng. 1995, 121, 182–189. [Google Scholar] [CrossRef]
- Anthony, E.J.; Cohen, O.; Sabatier, F. Chronic offshore loss of nourishment on Nice beach, French Riviera: A case of over-nourishment of a steep beach? Coast. Eng. 2011, 58, 374–383. [Google Scholar] [CrossRef]
- Ciavola, P.; Castiglione, E. Sediment dynamics of mixed sand and gravel beaches at short timescales. J. Coast. Res. 2009, II, 1751–1755. [Google Scholar]
- Bertoni, D.; Dean, S.; Trembanis, A.C.; Sarti, G. Multi-month sedimentological characterization of the backshore of an artificial coarse-clastic beach in Italy. Rend. Lincei 2019, 31, 65–77. [Google Scholar] [CrossRef]
- Cammelli, C.; Jackson, N.L.; Nordstrom, K.F.; Pranzini, E. Assessment of a gravel nourishment project frontin a seawall at Marina di Pisa, Italy. J. Coast. Res. 2006, II, 770–775. [Google Scholar]
- Turner, I.L.; Harley, M.D.; Almar, R.; Bergsma, E.W.J. Satellite optical imagery in Coastal Engineering. Coast. Eng. 2021, 167, 103919. [Google Scholar] [CrossRef]
- Castelle, B.; Masselink, G.; Scott, T.; Stokes, C.; Konstantinou, A.; Marieu, V.; Bujan, S. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 2021, 383, 107707. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Walker, A.; Turner, I.L. Beach slopes from satellite-derived shorelines. Geophys. Res. Lett. 2020, 47, e2020GL088365. [Google Scholar] [CrossRef]
- Miles, A.; Ilić, S.; Whyatt, D.; James, M.R. Characterizing beach intertidal bar systems using multi-annual LiDAR data. Earth Surf. Process. Landf. 2019, 44, 1572–1583. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, F03017. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Swirad, Z.M.; Rosser, N.J.; Brain, M.J. Identifying mechanisms of shore platform erosion using Structure-from-Motion (SfM) photogrammetry. Earth Surf. Process. Landf. 2019, 44, 1542–1558. [Google Scholar] [CrossRef] [Green Version]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Ilić, S.; Ružić, I. Measuring 3D coastal change with a digital camera. In Proceedings of the 7th International Conference on Coastal Dynamics, Arcachon, France, 24–28 June 2013; pp. 893–904. [Google Scholar]
- Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2013, 27, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth Surf. Process. Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- Bujak, D.; Bogovac, T.; Carević, D.; Ilic, S.; Lončar, G. Application of artificial neural networks to predict beach nourishment volume requirements. J. Mar. Sci. Eng. 2021, 9, 786. [Google Scholar] [CrossRef]
- Komar, P.D. The design of stable and aesthetic beach fills: Learning from nature. In Proceedings of the Coastal Sediments’ 07-6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, New Orleans, LA, USA, 13–17 May 2007; pp. 1–14. [Google Scholar]
- Grottoli, E.; Bertoni, D.; Ciavola, P. Short- and medium-term response to storms on three Mediterranean coarse-grained beaches. Geomorphology 2017, 295, 738–748. [Google Scholar] [CrossRef]
- Poate, T.; Masselink, G.; Davidson, M.; McCall, R.; Russell, P.; Turner, I. High frequency in-situ field measurements of morphological response on a fine gravel beach during energetic wave conditions. Mar. Geol. 2013, 342, 1–13. [Google Scholar] [CrossRef]
- Ružić, I.; Benac, Č.; Ilić, S.; Krvavica, N.; Rubinić, J. Geomorphological changes in a miniature beach in the karst. Hrvat. Vode 2018, 26, 27–34. [Google Scholar]
- Pikelj, K.; Ružić, I.; James, M.R.; Ilić, S. Structure-from-Motion (SfM) monitoring of nourished gravel beaches in Croatia. In Proceedings of the COASTS, MARINE STRUCTURES and BREAKWATERS 2017—The Leading International Conference Highlighting Global Marine Engineering Advance, Liverpool, UK, 5–7 September 2017; pp. 112:1–112:4. [Google Scholar]
- Benac, Č.; Dugonjić Jovančević, S.; Ružić, I.; Vivoda, M.; Peranić, J. Marine erosion and slope movements: SE coast of the Krk island. In Proceedings of the Landslide Science for a Safer Geoenvironment: Targeted Landslides, Beijing, China, 2–6 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; Volume 3, pp. 563–567. [Google Scholar]
- Ružić, I.; Benac, Č.; Dugonjić Jovančević, S.; Radišić, M. The application of UAV for the analysis of geological hazard in Krk Island, Croatia, Mediterranean Sea. Remote Sens. 2021, 13, 1790. [Google Scholar] [CrossRef]
- Ružić, I.; Benac, Č.; Marović, I.; Ilić, S. A stability assessment of coastal cliffs using digital imagery. Acta Geotech. Slov. 2015, 12, 25–35. [Google Scholar]
- Ružić, I.; Marović, I.; Benac, Č.; Ilić, S. Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Baška, Krk Island, Croatia. Geo-Mar. Lett. 2014, 34, 555–565. [Google Scholar] [CrossRef]
- Ružić, I.; Dugonjić Jovančević, S.; Benac, Č.; Krvavica, N. Assessment of the Coastal Vulnerability Index in an Area of Complex Geological Conditions on the Krk Island, Northeast Adriatic Sea. Geosciences 2019, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Beachex-Sustainable Construction of Artificial Gravel Beaches-Construction of New Beaches and an Increase of Existing Capacity. Available online: http://grad.hr/beachex/en/ (accessed on 8 February 2022).
- DGU Geoportal. Available online: https://geoportal.dgu.hr/ (accessed on 18 November 2021).
- Pasarić, M.; Orlić, M. Long-term meteorological preconditioning of the North Adriatic coastal floods. Cont. Shelf Res. 2001, 21, 263–278. [Google Scholar] [CrossRef]
- Međugorac, I.; Pasarić, M.; Orlić, M. Severe flooding along the eastern Adriatic coast: The case of 1 December 2008. Ocean. Dyn. 2015, 65, 817–830. [Google Scholar] [CrossRef]
- University of Zagreb Faculty of Science. Department of Geophysics. Personal communication, 2021.
- Leder, N.; Smirčić, A.; Vilibić, I. Extreme values of surface wave heights in the northern Adriatic. Geofizika 1998, 15, 1–13. [Google Scholar]
- Leder, N.; Andročec, V.; Čupić, S.; Domijan, N.; Lončar, G. Evolution of surface wave spectra in extreme sea states along the eastern Adriatic open sea and channel areas. In Proceedings of the Rapport du Commission Internationale pour L’exploration Scientifique de la Mer Mediteranee; CIESM Congress, Venice, Italy, 10–14 May 2010; p. 135. [Google Scholar]
- Lončar, G.; Carević, D.; Paladin, M. Analysis of wave deformations before Zagrebačka obala–Port of Rijeka. Hrvat. Vode 2014, 22, 327–336. [Google Scholar]
- Lončar, G.; Leder, N.; Leder, T.D.; Carević, D. Wave energy disbalance as generator of extreme wave occurrence in semi-enclosed coastal waters (Example of Rijeka Bay-Croatia). J. Mar. Sci. Eng. 2019, 7, 420. [Google Scholar] [CrossRef] [Green Version]
- Tabain, T. Standard wind wave spectrum for the Adriatic Sea revisited (1977–1997). Brodogradnja 1997, 45, 303–313. [Google Scholar]
- Penzar, B.; Penzar, I.; Orlić, M. Vrijeme i Klima Hrvatskog Jadrana; Hrvatski Hidrografski Institut, Split: Split, Croatia, 2001; ISBN 953-6235-63-3. [Google Scholar]
- Leica Geosystems. Available online: https://leica-geosystems.com/en-us/products/mobile-mapping-systems/capture-platforms/leica-pegasus_two-ultimate (accessed on 21 December 2021).
- Croatian Meteorological and Hydrological Service. Available online: https://meteo.hr/index_en.php (accessed on 8 February 2022).
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104. [Google Scholar] [CrossRef]
- Gonçalves, G.; Gonçalves, D.; Gómez-gutiérrez, Á.; Andriolo, U.; Pérez-alvárez, J.A. 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor uas: Impact of sfm-mvs processing parameters, image redundancy and acquisition geometry. Remote Sens. 2021, 13, 1222. [Google Scholar] [CrossRef]
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- CloudCompare-M3C2 (Plugin). Available online: https://www.cloudcompare.org/doc/wiki/index.php?title=M3C2_(plugin) (accessed on 8 February 2022).
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Cândido, B.M.; James, M.; Quinton, J.; de Lima, W.; Silva, M.L.N. Sediment source and volume of soil erosion in a gully system using UAV photogrammetry. Rev. Bras. Ciência Solo 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Ferrer-González, E.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sens. 2020, 12, 2447. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Crosby, B.T. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens. 2013, 5, 2813–2837. [Google Scholar] [CrossRef] [Green Version]
- Lončar, G.; Kalinić, F.; Carević, D.; Bujak, D. Numerical Modelling of the Morphodynamics of the Ploče Gravel Beach in Rijeka. Elektron. Časopis Građevinskog Fak. Osijek 2021, 12, 33–48. [Google Scholar] [CrossRef]
- Ruggiero, P.; Komar, P.D.; Allan, J.C. Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coast. Eng. 2010, 57, 539–552. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Mazas, F.; Hamm, L. A multi-distribution approach to POT methods for determining extreme wave heights. Coast. Eng. 2011, 58, 385–394. [Google Scholar] [CrossRef]
- Bernardara, P.; Mazas, F.; Kergadallan, X.; Hamm, L. A two-step framework for over-threshold modelling of environmental extremes. Nat. Hazards Earth Syst. Sci. 2014, 14, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Archetti, R.; Paci, A.; Carniel, S.; Bonaldo, D. Optimal index related to the shoreline dynamics during a storm: The case of Jesolo beach. Nat. Hazards Earth Syst. Sci. 2016, 16, 1107–1122. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Shi, L.; Pan, S.; Ye, Q.; Cheng, W.; Chang, Y.; Chen, S. Monitoring and evaluation of sand nourishments on an embayed beach exposed to frequent storms in eastern China. Ocean. Coast. Manag. 2020, 195, 105284. [Google Scholar] [CrossRef]
- Dolan, R.; Davis, R.E. An intensity scale for Atlantic coast Northeast storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Lončar, G.; Carević, D.; Ilić, S.; Krvavica, N.; Kalinić, F. Morfodinamika šljunčanog žala Ploče u uvjetima jakog juga. Hrvat. Vode 2020, 28, 205–216. [Google Scholar]
- Bertoni, D.; Sarti, G.; Benelli, G.; Pozzebon, A. In situ abrasion of marked pebbles on two coarse-clastic beaches (Marina di Pisa, Italy). Ital. J. Geosci. 2012, 131, 205–214. [Google Scholar]
- Austin, M.J.; Masselink, G. Swash-groundwater interaction on a steep gravel beach. Cont. Shelf Res. 2006, 26, 2503–2519. [Google Scholar] [CrossRef]
- Austin, M.J.; Masselink, G. Observations of morphological change and sediment transport on a steep gravel beach. Mar. Geol. 2006, 229, 59–77. [Google Scholar] [CrossRef]
- Ruiz de Alegria-Arzaburu, A.; Masselink, G. Storm response and beach rotation on a gravel beach, Slapton Sands, U.K. Mar. Geol. 2010, 278, 77–99. [Google Scholar] [CrossRef]
Year | Cost of Renourishment, before GDP [EUR] | Annual Amount [m3] | Origin of Material | Grain Size [mm] |
---|---|---|---|---|
2020 (summer) | Unknown | 100 | The Drava River | 32 |
2020 | 5800.00 | 150 | 32 | |
2019 | 2700.00 | 50 | 32 | |
2018 | 3100.00 | 92 | 32 | |
2017 | 4800.00 | 145 | 32 | |
2016 | 2300.00 | 118 | 32 | |
2015 | 6700.00 | 150 | 32 |
Date | Survey Label | Surveyed by | Coverage Area (km2) | Number of Aligned Images | Flying Altitude (m) | Ground Res. (mm/pix) | Tie Points | Projections | Reprojection Error (pix) |
---|---|---|---|---|---|---|---|---|---|
17 January 2020 | UAV_01 | GZR 1 | 0.065 | 355 | 102.0 | 19.0 | 115,521 | 963,731 | 0.897 |
7 February 2020 | UAV_02 | GZR 1 | 0.072 | 467 | 103.0 | 18.8 | 233,105 | 1,445,253 | 0.767 |
12 February 2020 | UAV_03 | GZR 1 | 0.063 | 321 | 101.5 | 19.7 | 268,994 | 1,663,459 | 0.693 |
2 March 2020 | UAV_04 | GradRi 2 | 0.009 | 602 | 19.2 | 4.7 | 309,557 | 2,183,095 | 0.404 |
3 March 2020 | UAV_05 | GradRi 2 | 0.013 | 366 | 28.0 | 7.1 | 206,361 | 1,153,749 | 0.526 |
10 March 2020 | UAV_06 | GradRi 2 | 0.016 | 388 | 29.0 | 7.4 | 207,342 | 1,155,296 | 0.508 |
20 March 2020 | UAV_07 | GradRi 2 | 0.021 | 613 | 31.3 | 7.9 | 294,521 | 1,465,854 | 0.629 |
29 March 2020 | UAV_08 | GradRi 2 | 0.016 | 362 | 27.4 | 7.0 | 171,709 | 1,320,331 | 0.631 |
28 April 2020 | UAV_09 | GradRi 2 | 0.025 | 382 | 34.7 | 8.9 | 239,525 | 1,301,030 | 0.708 |
5 May 2020 | UAV_10 | GradRi 2 | 0.023 | 383 | 26.2 | 6.6 | 275,779 | 1,381,719 | 0.744 |
1 October 2020 | UAV_11 | GradRi 2 | 0.018 | 535 | 28.1 | 7.5 | 300,541 | 1,906,445 | 0.772 |
6 October 2020 | UAV_12 | GradRi 2 | 0.020 | 492 | 28.6 | 7.2 | 264,272 | 1,717,020 | 0.826 |
13 October 2020 | UAV_13 | GradRi 2 | 0.018 | 538 | 28.5 | 7.1 | 328,053 | 1,875,383 | 0.790 |
2 November 2020 | UAV_14 | GZR 1 | 0.080 | 208 | 103.0 | 19.5 | 305,479 | 1,015,135 | 0.733 |
24 November 2020 | UAV_15 | GradRi 2 | 0.008 | 278 | 20.5 | 5.1 | 154,838 | 961,184 | 0.515 |
10 December 2020 | UAV_16 | GradRi 2 | 0.017 | 600 | 24.3 | 6.1 | 280,890 | 1,840,167 | 0.315 |
14 December 2020 | UAV_17 | GZR 1 | 0.060 | 269 | 100.0 | 19.1 | 335,580 | 1,231,250 | 0.724 |
14 January 2021 | UAV_18 | GradRi 2 | 0.016 | 560 | 26.7 | 6.6 | 308,839 | 1,653,808 | 0.318 |
26 February 2021 | UAV_19 | GZR 1 | 0.060 | 290 | 101.0 | 19.6 | 381,158 | 1,469,166 | 0.791 |
Survey Label | No. of GCPs | RMSE [mm] | ||||
---|---|---|---|---|---|---|
X | Y | Z | XY | Total | ||
UAV_01 | 6 | 2.3 | 0.7 | 4.8 | 2.4 | 5.3 |
UAV_02 | 7 | 4.3 | 1.3 | 10.2 | 4.5 | 11.2 |
UAV_03 | 6 | 1.0 | 4.7 | 6.2 | 4.8 | 7.8 |
UAV_04 | 8 | 3.1 | 5.2 | 7.7 | 6.0 | 9.8 |
UAV_05 | 10 | 8.3 | 6.2 | 5.5 | 10.3 | 11.7 |
UAV_06 | 6 | 3.3 | 3.4 | 2.1 | 4.8 | 5.2 |
UAV_07 | 5 | 3.1 | 3.2 | 2.1 | 4.4 | 4.9 |
UAV_08 | 4 | 0.7 | 0.6 | 0.6 | 0.9 | 1.1 |
UAV_09 | 4 | 1.1 | 0.8 | 0.9 | 1.3 | 1.6 |
UAV_10 | 9 | 3.2 | 3.4 | 12.5 | 4.6 | 13.4 |
UAV_11 | 21 | 4.0 | 5.1 | 9.7 | 6.5 | 11.6 |
UAV_12 | 23 | 4.9 | 4.4 | 3.5 | 6.6 | 7.5 |
UAV_13 | 23 | 3.5 | 4.7 | 5.1 | 5.9 | 7.8 |
UAV_14 | 20 | 7.4 | 7.2 | 5.2 | 10.3 | 11.6 |
UAV_15 | 8 | 3.7 | 3.1 | 5.0 | 4.8 | 6.9 |
UAV_16 | 7 | 2.6 | 3.4 | 3.9 | 4.3 | 5.8 |
UAV_17 | 21 | 2.3 | 0.7 | 4.8 | 2.4 | 5.3 |
UAV_18 | 13 | 7.4 | 5.5 | 2.3 | 9.3 | 9.5 |
UAV_19 | 20 | 4.3 | 1.3 | 10.2 | 4.5 | 11.2 |
Storm Event | Start of Storm | End of Storm | Hs,max [m] | Tp [s] | Dirp [°] | Energy Peak [m2 s] | Storm Power Index [m2 h] |
---|---|---|---|---|---|---|---|
1 | 1 March 2020 00:34 | 1 March 2020 04:09 | 1.4 | 4.4 | 170.2 | 8.2 | 5.3 |
2 | 1 March 2020 14:29 | 1 March 2020 20:32 | 1.5 | 4.6 | 170.2 | 9.8 | 9.4 |
3 | 3 March 2020 00:15 | 3 March 2020 02:28 | 1.6 | 4.6 | 182.8 | 11.3 | 5.5 |
4 | 6 March 2020 05:46 | 6 March 2020 08:41 | 2.1 | 5.0 | 177.2 | 21.6 | 12.6 |
5 | 5 June 2020 00:21 | 5 June 2020 01:53 | 1.4 | 5.0 | 194.1 | 9.9 | 3.1 |
6 | 25 September 2020 01:18 | 25 September 2020 03:41 | 1.5 | 4.6 | 189.8 | 10.3 | 5.4 |
7 | 3 October 2020 15:01 | 3 October 2020 16:18 | 1.5 | 4.6 | 191.3 | 10.7 | 3.0 |
8 | 5 December 2020 00:53 | 5 December 2020 22:58 | 1.8 | 5.6 | 168.8 | 18.1 | 62.7 |
9 | 6 December 2020 08:31 | 6 December 2020 09:43 | 1.6 | 4.6 | 165.9 | 11.1 | 2.9 |
10 | 28 December 2020 10:43 | 28 December 2020 20:08 | 2.2 | 5.9 | 180.0 | 27.7 | 39.7 |
11 | 23 January 2021 00:03 | 23 January 2021 01:35 | 1.5 | 4.6 | 163.1 | 10.2 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadić, A.; Ružić, I.; Krvavica, N.; Ilić, S. Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery. J. Mar. Sci. Eng. 2022, 10, 358. https://doi.org/10.3390/jmse10030358
Tadić A, Ružić I, Krvavica N, Ilić S. Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery. Journal of Marine Science and Engineering. 2022; 10(3):358. https://doi.org/10.3390/jmse10030358
Chicago/Turabian StyleTadić, Andrea, Igor Ružić, Nino Krvavica, and Suzana Ilić. 2022. "Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery" Journal of Marine Science and Engineering 10, no. 3: 358. https://doi.org/10.3390/jmse10030358
APA StyleTadić, A., Ružić, I., Krvavica, N., & Ilić, S. (2022). Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery. Journal of Marine Science and Engineering, 10(3), 358. https://doi.org/10.3390/jmse10030358