Study on the Surface Interactions of Co(II) with Phospholipids from the Marine Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Micro-Solid Phase Extraction
2.3. Mass Spectrometry Analysis
2.4. Electrochemical Measurements
2.5. Atomic Force Microscopy Imaging
3. Results and Discussion
3.1. Natural Phospholipids in the Lipid Extract of Dunalliela Tertiolecta
3.2. Voltammetric Measurements
Interaction of Co(II) with 1,10-Phenantroline and Standard Phospholipids
3.3. AFM Characterization of Co(II) Phospholipide Complexes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo Nostro, P.; Ninham, B.W. Hofmeister phenomena: An update on ion specificity in biology. Chem. Rev. 2012, 112, 2286–2322. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Tovar-Sánchez, A.; Panzeca, C.; Duarte, C.M.; Ortega-Retuerta, E.; Sañudo Wilhelmy, S.A. Geographical gradients of dissolved Vitamin B12 in the Mediterranean Sea. Front. Microbiol. 2013, 4, 126. [Google Scholar] [CrossRef]
- Huertas, M.J.; López-Maury, L.; Giner-Lamia, J.; Sánchez-Riego, A.M.; Florencio, F.J. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 2014, 4, 865–886. [Google Scholar] [CrossRef] [PubMed]
- Guschina, I.A.; Harwood, J.L. Algal lipids and effect of the environment on their biochemistry. Lipids Aquat. Ecosyst. 2009, 74, 31–68. [Google Scholar]
- Vance, D.E.; Vance, J.E. Biochemistry of Lipids, Lipoproteins, and Membranes; Elsevier: Amsterdam, The Netherlands, 2002; p. 607. [Google Scholar]
- Benson, A.A.; Maruo, B. 1958. Piant phospholipids. I. Identification of the phosphatidyl glycerols. Biochim. Biophys. Acta 1958, 27, 189–195. [Google Scholar] [CrossRef]
- Triesch, N.; Van Pinxteren, M.; Frka, S.; Stolle, C.; Spranger, T.; Hans Hoffmann, E.; Gong, X.; Wex, H.; Schulz-Bull, D.; Gasparovic, B.; et al. Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: Biogenic sources, selective transfer and high enrichments. Atmos. Chem. Phys. 2021, 21, 4267–4283. [Google Scholar] [CrossRef]
- Vrana Špoljarić, I.; Novak, T.; Gašparović, B.; Kazazić, S.P.; Čanković, M.; Ljubešić, Z.; Hrustić, E.; Mlakar, M.; Du, J.; Zhang, R.; et al. Impact of environmental conditions on phospholipid fatty acid composition: Implications from two contrasting estuaries. Aquat. Ecol. 2021, 55, 1–20. [Google Scholar] [CrossRef]
- Jin, P.; Gonzàlez, G.; Agustí, S. Long-term exposure to increasing temperature can offset predicted losses in marine food quality (fatty acids) caused by ocean warming. Evol. Appl. 2020, 13, 2497–2506. [Google Scholar] [CrossRef]
- Hopkins, T.C.; Sullivan Graham, E.J.; Schuler, A.J. Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. J. Appl. Phycol. 2019, 31, 3349–3358. [Google Scholar] [CrossRef]
- Novak, T.; Godrijan, J.; Marić Pfannkuchen, D.; Djakovac, T.; Medić, N.; Ivančić, I.; Mlakar, M.; Gašparović, B. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci. Total Environ. 2019, 668, 171–183. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Rashid, N.; Lee, K. Enhancing lipid production of Dunaliella tertiolecta by manipulating the interactive effect of salinity and nitrogen, Chem. Biochem. Eng. 2017, 31, 199–207. [Google Scholar]
- Dowhan, W.; Bogdanov, M. Functional roles of lipids in membranes. In Biochemistry of Lipids, Lipoproteins and Membranes; Elsevier: Amsterdam, The Netherlands, 2002; Volume 36, pp. 1–35. [Google Scholar]
- Gašparović, B.; Kazazić, S.P.; Cvitešić, A.; Penezić, A.; Frka, S. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography-flame ionization detection. J. Chromatogr. 2015, A1409, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gašparović, B.; Penezić, A.; Lampitt, R.S.; Sudasinghe, N.; Schaub, T. Depth-related cycling of suspended nitrogen-containing lipids in the northeast Atlantic. Org. Geochem. 2017, 113, 55–66. [Google Scholar] [CrossRef]
- Shen, Q.; Cheung, H.Y. TiO2/SiO2 core-shell composite-based sample preparation method for selective extraction of phospholipids from shrimp waste followed by hydrophilic interaction chromatography coupled with quadrupole time-of-flight/mass spectrometry analysis. J. Agric. Food Chem. 2014, 62, 8944–8951. [Google Scholar] [CrossRef]
- Schiller, J.; Arnhold, J.; Benard, S.; Muller, M.; Reichl, S.; Arnold, K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal. Biochem. 1999, 267, 46–56. [Google Scholar] [CrossRef]
- Schiller, J.; Suss, R.; Arnhold, J.; Fuchs, B.; Lessog, J.; Muller, M.; Petković, M.; Splalteholz, H.; Zschorninh, O.; Arnold, K. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research, Prog. Lipid Res. 2004, 43, 449–488. [Google Scholar] [CrossRef] [PubMed]
- Balnois, E.; Papastavrou, G.; Wilkinson, K.J. Force Microscopy and Force Measurements of Environmental Colloids; Wilkinson, John Wiley and Sons: Chichester, UK, 2007; pp. 405–468. [Google Scholar]
- Rosário Domingues, M.; Calado, R. Lipids of Marine Algae—Biomolecules with High Nutritional Value and Important Bioactive Properties. Biomolecules 2022, 12, 10–13. [Google Scholar]
- Dong, W.; Qing, S.; Joewel, T.B.; Yimin, L.; Ping, W.; Yeqing, H.; Zhifeng, Z.; Yixuan, W.; Hon-Yeung, C. Phospholipid analyses by MALDI-TOF/TOF mass spectrometry using 1,5-diaminonaphthalene as matrix. Int. J. Mass Spectrom. 2013, 343–344, 15–22. [Google Scholar] [CrossRef]
- Lovrić, M.; Komorsky-Lovrić, Š. Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate. Int. J. Electrochem. 2012, 2012, 596268. [Google Scholar] [CrossRef]
- Mlakar, M.; Cuculić, V.; Frka, S.; Gašparović, B. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces. Bioelectrochemistry 2018, 120, 10–17. [Google Scholar] [CrossRef]
- Bačinić, A.; Frka, S.; Mlakar, M. A study of Cobalt (II) complexes involved in marine biogeochemical processes: Co(II)-1,10-Phenanthroline and Co(II)-1,10-Phenanthroline-L-α-Phosphatidylcholine. Bioelectrochemistry 2022, 144, 108009. [Google Scholar] [CrossRef]
- Čuljak, I.; Mlakar, M.; Branica, M. Synergetic adsorption of the copper-Phenanthroline-tributylphosphate complex at a mercury drop electrode. Anal. Chim. Acta 1994, 297, 427–435. [Google Scholar] [CrossRef]
- Mlakar, M.; Lovrić, M.; Branica, M. Theory of metal ions accumulation by the synergistic adsorption at mercury electrodes. Collect. Czechoslov. Chem. Commun. 1990, 55, 903–923. [Google Scholar] [CrossRef]
- Mlakar, M. Square-Wave Voltammetry of Uranyl-Humate Complex. Anal. Chim. Acta 1993, 276, 367–372. [Google Scholar] [CrossRef]
- Vukosav, P.; Tomišić, V.; Mlakar, M. Iron(III)-complexes engaged in the biochemical processes in seawater. II. Voltammetry of Fe(III)-malate complexes in model aqueous solution. Electroanalysis 2010, 22, 2179–2186. [Google Scholar] [CrossRef]
- Pompeo, G. AFM characterization of solid-supported lipid multilayers prepared by spin-coating. Biochim. Biophys. Acta Biomembr. 2005, 1712, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Goksu, E.I.; Vanegas, J.M.; Blanchette, C.D.; Lin, W.C.; Longo, M.L. AFM for structure and dynamics of biomembranes. Biochim. Biophys. Acta Biomembr. 2009, 1788, 254–266. [Google Scholar] [CrossRef]
- Al-Rekabi, Z.; Contera, S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc. Natl. Acad. Sci. USA 2018, 115, 2658–2663. [Google Scholar] [CrossRef]
- Lv, Z.; Banerjee, S.; Zagorski, K.; Lyubchenko, Y.L. Supported Lipid Bilayers for Atomic Force Microscopy Studies; Humana Press: New York, NY, USA, 2018; p. 1814. [Google Scholar]
- Unsay, J.D.; Cosentino, K.; García-Sáez, A.J. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers. J. Vis. Exp. 2015, 101, e52867. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bačinić, A.; Vukosav, P.; Kero, I.; Mlakar, M. Study on the Surface Interactions of Co(II) with Phospholipids from the Marine Environment. J. Mar. Sci. Eng. 2022, 10, 1261. https://doi.org/10.3390/jmse10091261
Bačinić A, Vukosav P, Kero I, Mlakar M. Study on the Surface Interactions of Co(II) with Phospholipids from the Marine Environment. Journal of Marine Science and Engineering. 2022; 10(9):1261. https://doi.org/10.3390/jmse10091261
Chicago/Turabian StyleBačinić, Anđela, Petra Vukosav, Ivana Kero, and Marina Mlakar. 2022. "Study on the Surface Interactions of Co(II) with Phospholipids from the Marine Environment" Journal of Marine Science and Engineering 10, no. 9: 1261. https://doi.org/10.3390/jmse10091261
APA StyleBačinić, A., Vukosav, P., Kero, I., & Mlakar, M. (2022). Study on the Surface Interactions of Co(II) with Phospholipids from the Marine Environment. Journal of Marine Science and Engineering, 10(9), 1261. https://doi.org/10.3390/jmse10091261