New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface
Abstract
:1. Introduction
2. Theoretical Background
3. Experiment
4. Results
4.1. Polarization Ratio
4.2. Contrasts
4.3. Radar Doppler Shifts
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bondur, V.G. Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas. In Waste Water-Evaluation and Management, 1st ed.; Einschlag, F.S.G., Ed.; IntechOpen: London, UK, 2011; pp. 155–180. ISBN 978-953-307-233-3. [Google Scholar] [CrossRef]
- Bondur, V.G.; Vorobjev, V.E.; Grebenjuk, Y.V.; Sabinin, K.D.; Serebryany, A.N. Study of fields of currents and pollution of the coastal waters on the Gelendzhik Shelf of the Black Sea with space data. Izv. Atmos. Ocean. Phys. 2013, 49, 886–896. [Google Scholar] [CrossRef]
- Pugach, S.P.; Pipko, I.I.; Shakhova, N.E.; Shirshin, E.A.; Perminova, I.V.; Gustafsson, O.; Bondur, V.G.; Ruban, A.S.; Semiletov, I.P. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: Spatial distribution and interannual variability (2003–2011). Ocean. Sci. J. 2018, 14, 87–103. [Google Scholar] [CrossRef]
- Bondur, V.G.; Grebenyuk, Y.V.; Ezhova, E.V.; Kazakov, V.I.; Sergeev, D.A.; Soustova, I.A.; Troitskaya, Y.I. Surface manifestations of internal waves investigated by a subsurface buoyant jet: 1. The Mechanism of Internal-Wave Generation. Izv. Atmos. Ocean. Phys. 2009, 45, 779–790. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Gade, M.; Alpers, W.; Huehnerfuss, H.; Wismann, V.; Lange, P. On the reduction of the radar backscatter by oceanic surface films: Scatterometer measurements and their theoretical interpretation. Remote Sens. Environ. 1998, 66, 52–70. [Google Scholar] [CrossRef]
- Alpers, W.; Hühnerfuss, H. The damping of ocean waves by surface films: A new look at an old problem. J. Geophys. Res. 1989, 94, 6251–6266. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Masuko, H.; Kobayashi, T. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. J. Geophys. Res. 1998, 103, 18851–18866. [Google Scholar] [CrossRef]
- Da Silva, J.C.B.; Ermakov, S.A.; Robinson, I.S.; Jeans, D.R.G.; Kijashko, S.V. Role of surface films in ERS SAR signatures of internal waves on the shelf. 1. Short-period internal waves. J. Geophys. Res. 1998, 103, 8009–8031. [Google Scholar] [CrossRef]
- Scott, J.C.; Thomas, N.H. Sea surface slicks—Surface chemistry and hydrodynamics in radar remote sensing. In Wind-Over-Wave Couplings. Perspectives and Prospects, 1st ed.; Sajjadi, S.G., Thomas, N.H., Hunt, J.C.R., Eds.; Clarendon Press: New York, NY, USA, 1999; pp. 221–229. ISBN 0-19-850192-7. [Google Scholar]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the Deepwater horizon oil spill using L-band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3812–3830. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Chapron, B.; Myasoedov, A.G.; Collard, F.; Johannessen, J.A. On dual co-polarized SAR measurements of the Ocean surface. IEEE Geosci. Remote Sens. Lett. 2013, 10, 763–765. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T.; Kudryavtsev, V. Comparing near coincident C- and X-band SAR acquisitions of marine oil spills. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1958–1975. [Google Scholar] [CrossRef]
- Hansen, M.W.; Kudryavtsev, V.; Chapron, B.; Brekke, C.; Johannessen, J.A. Wave Breaking in Slicks: Impacts on C-Band Quad-Polarized SAR Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4929–4940. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Sergievskaya, I.A.; da Silva, J.C.B.; Kapustin, I.A.; Shomina, O.V.; Kupaev, A.V.; Molkov, A.A. Remote Sensing of Organic Films on the Water Surface Using Dual Co-Polarized Ship-Based X-/C-/S-Band Radar and TerraSAR-X. Remote Sens. 2018, 10, 1097. [Google Scholar] [CrossRef]
- Valenzuela, G.R. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound. -Layer Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Bass, F.G.; Fuks, M. Wave Scattering from Statistically Rough Surfaces; Pergamon: Oxford, UK, 1979; p. 558. ISBN 978-0-08-019896-5. [Google Scholar]
- Voronovich, A. Small-Slope Approximation for Electromagnetic Wave Scattering at a Rough Interface of Two Dielectric Half Spaces. Waves Random Complex Media 1994, 4, 337–367. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W.; Wismann, V. An improved composite surface model for the radar backscattering cross section of the ocean surface. 1. Theory of the model and optimization/validation by scatterometer data. J. Geophys. Res. 1997, 102, 25237–25250. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Theoretical model for scattering of radar signals in at K u—and C-bands from a rough sea surface with breaking waves. Waves Random Complex. Media 2001, 11, 247–269. [Google Scholar] [CrossRef]
- Churyumov, A.N.; Kravtsov, Y.A.; Lavrova, O.Y.; Litovchenko, K.T.; Mityagina, M.I.; Sabinin, K.D. Signatures of resonant and non-resonant scattering mechanisms on radar images of internal waves. Int. J. Remote Sens. 2002, 23, 4341–4355. [Google Scholar] [CrossRef]
- Bulatov, M.G.; Kravtsov, Y.A.; Lavrova, O.Y.; Litovchenko, K.T.; Mitiagina, M.I.; Raev, M.D.; Sabinin, K.D.; Trokhimovskii, Y.G.; Churyumov, A.N.; Shugan, I.V. Physical mechanisms of aerospace radar imaging of the ocean. Phys. Uspekhi 2003, 46, 63–79. [Google Scholar] [CrossRef]
- Jessup, A.T.; Keller, W.C.; Melville, W.K. Measurements of Sea Spikes in Microwave Backscatter at Moderate Incidence. J. Geophys. Res. 1990, 95, 9679–9688. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Kapustin, I.A.; Sergievskaya, I.A. On peculiarities of scattering of microwave radar signals by breaking gravity-capillary waves. Radiophys. Quantum Electron. 2012, 55, 453–461. [Google Scholar] [CrossRef]
- Sergievskaya, I.A.; Ermakov, S.A.; Ermoshkin, A.V.; Kapustin, I.A.; Molkov, A.A.; Danilicheva, O.A.; Shomina, O.V. Modulation of Dual-Polarized X-Band Radar Backscatter Due to Long Wind Waves. Remote Sens. 2019, 11, 423. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. Parasitic capillary waves: A direct calculation. J. Fluid. Mech. 1995, 301, 79–107. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Melville, W.K. Nonlinear gravity-capillary waves with forcing and dissipation. J. Fluid Mech. 1998, 354, 1–42. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Cleaver, R. Crest instability of gravity waves. Part 1. The almost highest wave. J. Fluid Mech. 1994, 258, 115–129. [Google Scholar] [CrossRef]
- Duncan, J.H. Spilling breakers. Annu. Rev. Fluid Mech. 2001, 33, 519–547. [Google Scholar] [CrossRef]
- Qiao, H.; Duncan, J. Gentle spilling breakers: Crest flow-field evolution. J. Fluid. Mech. 2001, 439, 57–85. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Sergievskaya, I.A.; Dobrokhotov, V.A.; Lazareva, T.N. Wave Tank Study of Steep Gravity-Capillary Waves and Their Role in Ka-Band Radar Backscatter. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Donelan, M.A.; Pierson, W.J., Jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 1987, 92, 4971–5029. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Hauser, D.; Caudal, G.; Chapron, B. A semi-empirical model of the normalized radar cross section of the sea surface. 1. Background model. J. Geophys. Res. 2003, 108, 8054. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Akimov, D.; Johannessen, J.A.; Chapron, B. On radar imaging of current features. 1. Model and comparison with observations. J. Geophys. Res. 2005, 110, C07016. [Google Scholar] [CrossRef]
- Phillips, O.M. Radar returns from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr. 1988, 18, 1065–1074. [Google Scholar] [CrossRef]
- Ludeno, G.; Raffa, F.; Soldovieri, F.; Serafino, F. Proof of Feasibility of the Sea State Monitoring from Data Collected in Medium Pulse Mode by a X-Band Wave Radar System. Remote Sens. 2018, 10, 459. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Yurovsky, Y.Y.; Kudryavtsev, V.N.; Grodsky, S.A.; Chapron, B. Ka-band Dual Co-Polarized Empirical Model for the Sea Surface Radar Cross-Section. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1629–1647. [Google Scholar] [CrossRef]
- Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Guo, J. Damping of surface waves due to crude oil/oil emulsion films on water. Mar. Pollut. Bull. 2019, 146, 206–214. [Google Scholar] [CrossRef]
- Rajan, G.K. A three-fluid model for the dissipation of interfacial capillary-gravity waves. Phys. Fluids 2020, 32, 122121. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Zujkova, E.M.; Panchenko, A.R.; Salashin, S.G.; Talipova, T.G.; Titov, V.I. Surface film effect on short wind waves. Dyn. Atmos. Ocean. 1986, 10, 31–50. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Panchenko, A.R.; Salashin, S.G. Film Slicks on the Sea Surface and Some Mechanisms of Their Formation. Dyn. Atmos. Ocean. 1992, 16, 279–304. [Google Scholar] [CrossRef]
- Ermakov, S.; Dalilicheva, O.; Kapustin, I.; Shomina, O.; Sergievskaya, I.; Kupaev, A.; Molkov, A. Film Slicks on the Sea Surface: Their Dynamics and Remote Sensing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3545–3548. [Google Scholar] [CrossRef]
- Sergievskaya, I.A.; Ermakov, S.A.; Ermoshkin, A.V.; Kapustin, I.A.; Shomina, O.V.; Kupaev, A.V. The Role of Micro Breaking of Small-Scale Wind Waves in Radar Backscattering from Sea Surface. Remote Sens. 2020, 12, 4159. [Google Scholar] [CrossRef]
- Dalilicheva, O.; Sergievskaya, I.; Ermakov, S.; Shomina, O.; Kupaev, A.; Kapustin, I. A study of relation between non-Bragg microwave radar backscattering and decimeter-scale wind waves. In Proceedings of the SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, online Spain, 13–18 September 2021. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Kijashko, S.V. Laboratory study of the damping of parametric ripples due to surfactant films. In Marine Surface Films; Gade, M., Hühnerfuss, H., Korenowski, G.M., Eds.; Springer: New York, NY, USA, 2006; pp. 113–128. ISBN 3-540-33270-7. [Google Scholar] [CrossRef]
- Huang, N.E.; Tung, C. The dispersion relation for a nonlinear random gravity field. J. Fluid Mech. 1976, 75, 337–345. [Google Scholar] [CrossRef]
- Phillips, O.M. Dynamics of Upper Ocean, 2nd ed.; Cambridge University Press: Cambridge, UK, 1977; p. 336. [Google Scholar]
- Hughes, B.A. The effect of internal waves on surface wind waves. 2. Theoretical analysis. J. Geophys. Res. 1978, 83, 455–469. [Google Scholar] [CrossRef]
- Plant, W.J. A relationship between wind stress and wave slope. J. Geophys. Res. 1982, 87, 1961–1967. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakov, S.A.; Sergievskaya, I.A.; Plotnikov, L.M.; Kapustin, I.A.; Danilicheva, O.A.; Kupaev, A.V.; Molkov, A.A. New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface. J. Mar. Sci. Eng. 2022, 10, 1262. https://doi.org/10.3390/jmse10091262
Ermakov SA, Sergievskaya IA, Plotnikov LM, Kapustin IA, Danilicheva OA, Kupaev AV, Molkov AA. New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface. Journal of Marine Science and Engineering. 2022; 10(9):1262. https://doi.org/10.3390/jmse10091262
Chicago/Turabian StyleErmakov, Stanislav Aleksandrovich, Irina Andreevna Sergievskaya, Leonid Mikhailovich Plotnikov, Ivan Aleksandrovich Kapustin, Olga Arkadyevna Danilicheva, Alexander Viktorovich Kupaev, and Alexander Andreevich Molkov. 2022. "New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface" Journal of Marine Science and Engineering 10, no. 9: 1262. https://doi.org/10.3390/jmse10091262
APA StyleErmakov, S. A., Sergievskaya, I. A., Plotnikov, L. M., Kapustin, I. A., Danilicheva, O. A., Kupaev, A. V., & Molkov, A. A. (2022). New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface. Journal of Marine Science and Engineering, 10(9), 1262. https://doi.org/10.3390/jmse10091262