Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G
Abstract
:1. Introduction
2. Study Site: Pebble Beach of Etretat (Normandy, France)
3. Methodological Approach
3.1. Morphological Data
3.2. Hydrodynamic Data and Storm Identification
3.3. XBeach-G Numerical Setup
4. Results
4.1. XBeach-G Storm Simulations
4.2. Morphological Observations
5. Discussion
5.1. Influence of Permeability on Morphodynamics
5.2. Limitations of the Modelling Approach
5.3. Implications of Grain Size for Modelling Pebble Beaches
5.4. Insights on the Complex Evolution of Pebble Beaches
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Storm | Dates | k (m/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.01 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.6 | |||
BSS | B | 12 Dec 2019 | −12.54 | −0.53 | −0.48 | −0.48 | −0.50 | −0.48 | −0.50 | −0.49 | −0.50 | −0.48 | −0.48 | −0.47 | −0.44 |
13 Dec 2019 | −76.51 | −0.68 | −0.53 | −0.41 | −0.31 | −0.20 | −0.13 | −0.04 | 0.05 | 0.12 | 0.21 | 0.22 | 0.33 | ||
14 Dec 2019 | −12.68 | −3.03 | −2.75 | −2.55 | −2.42 | −2.29 | −2.20 | −2.13 | −2.04 | −1.93 | −1.87 | −1.78 | −1.55 | ||
C | 04 Dec 2019 | - | −0.05 | −0.19 | −0.33 | −0.41 | −0.49 | −0.52 | −0.52 | −0.52 | −0.51 | - | - | −0.37 | |
05 Dec 2019 | - | 0.32 | 0.14 | −0.07 | −0.23 | −0.37 | −0.51 | −0.59 | −0.66 | −0.64 | - | - | −0.51 | ||
06 Dec 2019 | - | −1.69 | −2.12 | −2.52 | −2.85 | −3.17 | −3.45 | −3.74 | −3.95 | −4.10 | - | - | −4.11 | ||
07 Dec 2019 | - | −0.30 | −0.41 | −0.49 | −0.55 | −0.58 | −0.59 | −0.60 | −0.56 | −0.55 | - | - | −0.41 | ||
08 Dec 2019 | - | 0.29 | 0.08 | −0.14 | −0.40 | −0.67 | −0.94 | −1.21 | −1.47 | −1.72 | - | - | −2.56 | ||
RMSE | B | 12 Dec 2019 | 2.74 | 0.90 | 0.87 | 0.87 | 0.88 | 0.89 | 0.90 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.90 |
13 Dec 2019 | 5.65 | 0.78 | 0.75 | 0.73 | 0.70 | 0.68 | 0.65 | 0.62 | 0.59 | 0.56 | 0.53 | 0.53 | 0.49 | ||
14 Dec 2019 | 1.40 | 0.81 | 0.80 | 0.78 | 0.77 | 0.76 | 0.75 | 0.74 | 0.72 | 0.71 | 0.70 | 0.68 | 0.64 | ||
C | 04 Dec 2019 | - | 0.22 | 0.23 | 0.24 | 0.24 | 0.25 | 0.25 | 0.25 | 0.24 | 0.24 | - | - | 0.23 | |
05 Dec 2019 | - | 0.11 | 0.13 | 0.14 | 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.17 | - | - | 0.16 | ||
06 Dec 2019 | - | 0.40 | 0.43 | 0.46 | 0.48 | 0.49 | 0.51 | 0.52 | 0.53 | 0.53 | - | - | 0.52 | ||
07 Dec 2019 | - | 0.35 | 0.37 | 0.38 | 0.39 | 0.40 | 0.39 | 0.39 | 0.38 | 0.38 | - | - | 0.34 | ||
08 Dec 2019 | - | 0.44 | 0.48 | 0.53 | 0.59 | 0.65 | 0.70 | 0.75 | 0.79 | 0.83 | - | - | 0.97 | ||
R2 | B | 12 Dec 2019 | 0.68 | 0.24 | 0.18 | 0.14 | 0.10 | 0.07 | 0.05 | 0.03 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
13 Dec 2019 | 0.24 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.07 | ||
14 Dec 2019 | 0.01 | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | ||
C | 04 Dec 2019 | - | 0.02 | 0.13 | 0.19 | 0.19 | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 | - | - | 0.11 | |
05 Dec 2019 | - | 0.57 | 0.59 | 0.59 | 0.59 | 0.59 | 0.57 | 0.55 | 0.53 | 0.52 | - | - | 0.42 | ||
06 Dec 2019 | - | 0.11 | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 | 0.17 | 0.19 | 0.19 | - | - | 0.17 | ||
07 Dec 2019 | - | 0.47 | 0.55 | 0.60 | 0.64 | 0.62 | 0.58 | 0.53 | 0.48 | 0.45 | - | - | 0.19 | ||
08 Dec 2019 | - | 0.56 | 0.45 | 0.35 | 0.25 | 0.18 | 0.11 | 0.07 | 0.04 | 0.02 | - | - | 0.00 |
References
- Carter, R.W.G.; Orford, J.D. The Morphodynamics of Coarse Clastic Beaches and Barriers: A Short- and Long-term Perspective. Source J. Coast. Res. 1993, 15, 158–179. [Google Scholar]
- Buscombe, D.; Masselink, G. Grain-size information from the statistical properties of digital images of sediment. Sedimentology 2009, 56, 421–438. [Google Scholar] [CrossRef]
- Almeida, L.P.; Masselink, G.; Russell, P.E.; Davidson, M.A. Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 2015, 228, 15–27. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; Solano, C.L.; Laignel, B. Spatio-temporal variability of the morpho-sedimentary dynamics observed on two gravel beaches in response to hydrodynamic forcing. Mar. Geol. 2022, 447, 106796. [Google Scholar] [CrossRef]
- Ions, K.; Karunarathna, H.; Reeve, D.E.; Pender, D. Gravel barrier beach morphodynamic response to extreme conditions. J. Mar. Sci. Eng. 2021, 9, 135. [Google Scholar] [CrossRef]
- Jamal, M.H.; Simmonds, D.J.; Magar, V. Modelling gravel beach dynamics with XBeach. Coast. Eng. 2014, 89, 20–29. [Google Scholar] [CrossRef]
- McCall, R.T. Process-Based Modelling of Storm Impacts on Gravel Coasts; University of Plymouth: Plymouth, UK, 2015. [Google Scholar]
- Powell, K.A. Predicting Short Term Profile Response for Shingle Beaches; Hydraulics Research Wallingford: Wallingford, UK, 1990. [Google Scholar]
- Bradbury, A.P.; Cope, S.N.; Prouty, D.B. Predicting the Response of Shingle Barrier Beaches under Extreme Wave and Water Level Conditions in Southern England. In Coastal Dynamics 2005—Proceedings of the Fifth Coastal Dynamics International Conference, Barcelona, Spain, 4–8 April 2005; American Society of Civil Engineers: Reston, VA, USA, 2006; pp. 1–14. [Google Scholar] [CrossRef]
- Bradbury, A.P.; Powell, K.A. The short term profile response of shingle spits to storm wave action. In Coastal Engineering 1992: Proceedings of the Twenty-Third International Conference, Venice, Italy, 4–9 October 1992; American Society of Civil Engineers: Reston, VA, USA, 1993; pp. 2694–2707. [Google Scholar]
- Almeida, L.P.; Masselink, G.; Russell, P.; Davidson, M.; Poate, T.; McCall, R.; Blenkinsopp, C.; Turner, I. Observations of the swash zone on a gravel beach during a storm using a laser-scanner (Lidar). J. Coast. Res. 2013, 65, 636–641. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Souto, P. UCalib: Cameras Autocalibration on Coastal Video Monitoring Systems. Remote Sens. 2021, 13, 2795. [Google Scholar] [CrossRef]
- Nieto, M.A.; Garau, B.; Balle, S.; Simarro, G.; Zarruk, G.A.; Ortiz, A.; Tintoré, J.; Álvarez-Ellacuría, A.; Gómez-Pujol, L.; Orfila, A. An open source, low cost video-based coastal monitoring system. Earth Surf. Process. Landforms 2010, 35, 1712–1719. [Google Scholar] [CrossRef]
- Andriolo, U. Nearshore Hydrodynamics and Morphology Derived from Video Imagery; Universidade de Lisboa: Lisbon, Portugal, 2018. [Google Scholar]
- Vousdoukas, M.I.; Ferreira, P.M.; Almeida, L.P.; Dodet, G.; Psaros, F.; Andriolo, U.; Taborda, R.; Silva, A.N.; Ruano, A.; Ferreira, Ó.M. Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dyn. 2011, 61, 1521–1540. [Google Scholar] [CrossRef]
- Arriaga, J.; Medellin, G.; Ojeda, E.; Salles, P. Shoreline Detection Accuracy from Video Monitoring Systems. J. Mar. Sci. Eng. 2022, 10, 95. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; Gutiérrez Barceló, Á.D.; Costa, S.; Laignel, B.; Bazin, B.; Soufflet, Y.; Le Louargant, L.; Maquaire, O. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems. Coast. Eng. 2021, 167, 103894. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Masselink, G.; Poate, T.; McCall, R.; van Geer, P. Modelling storm response on gravel beaches using XBeach-G. Proc. Inst. Civ. Eng. Marit. Eng. 2014, 167, 173–191. [Google Scholar] [CrossRef]
- McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P. Modelling the morphodynamics of gravel beaches during storms with XBeach-G. Coast. Eng. 2015, 103, 52–66. [Google Scholar] [CrossRef]
- Almeida, L.P.; Masselink, G.; McCall, R.; Russell, P. Storm overwash of a gravel barrier: Field measurements and XBeach-G modelling. Coast. Eng. 2017, 120, 22–35. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Masselink, G.; McCall, R.T.; Ortega-Sánchez, M. Modelling overwash vulnerability along mixed sand-gravel coasts with XBeach-G: Case study of Playa Granada, southern Spain. Coast. Eng. Proc. 2016, 1, 13. [Google Scholar]
- Brown, S.I.; Dickson, M.E.; Kench, P.S.; Bergillos, R.J. Modelling gravel barrier response to storms and sudden relative sea-level change using XBeach-G. Mar. Geol. 2019, 410, 164–175. [Google Scholar] [CrossRef]
- Ketteridge, K.E.; Cote, J.; Sanderson, T. Predicting storm impacts on gravel beaches in Puget Sound using the XBeach-G model. In Proceedings of the Salish Sea Ecosystem Conference, Seattle, WA, USA, 4–6 April 2018. [Google Scholar]
- Costa, S.; Maquaire, O.; Letortu, P.; Thirard, G.; Compain, V.; Roulland, T.; Medjkane, M.; Davidson, R.; Graff, K.; Lissak, C.; et al. Sedimentary Coastal Cliffs of Normandy: Modalities and Quantification of Retreat. J. Coast. Res. 2019, 88, 46–60. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Fournier, M.; Costa, S.; Peuziat, B.; Lecoq, N. A deep learning-based method for quantifying and mapping the grain size on pebble beaches. Remote Sens. 2020, 12, 3659. [Google Scholar] [CrossRef]
- Jennings, R.; Shulmeister, J. A field based classification scheme for gravel beaches. Mar. Geol. 2002, 186, 211–228. [Google Scholar] [CrossRef]
- Levoy, F.; Anthony, E.J.; Monfort, O.; Larsonneur, C. The morphodynamics of megatidal beaches in Normandy, France. Mar. Geol. 2000, 171, 39–59. [Google Scholar] [CrossRef]
- Solano, C.L.; Turki, E.I.; Hamdi, Y.; Soloy, A.; Costa, S.; Laignel, B.; Barceló, Á.D.G.; Abcha, N.; Jacono, D.; Lafite, R. Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts. Water 2022, 14, 321. [Google Scholar] [CrossRef]
- SHOM. MNT Bathymétrique de Façade Atlantique (Projet Homonim). 2015. Available online: https://geo.data.gouv.fr/fr/ (accessed on 20 September 2021).
- ROL Réseau D’observation du Littoral de Normandie et des Hauts-de-France. Available online: www.rolnp.fr (accessed on 20 September 2021).
- Costa, S.; Letortu, P.; Laignel, B. The hydro-sedimentary system of the upper-normandy coast: Synthesis. In Sediment Fluxes in Coastal Areas; Springer: Berlin/Heidelberg, Germany, 2015; pp. 121–147. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Turki, I.; Massei, N.; Laignel, B. Linking sea level dynamic and exceptional events to large-scale atmospheric circulation variability: A case of the Seine Bay, France. Oceanologia 2019, 61, 321–330. [Google Scholar] [CrossRef]
- Turki, I.; Massei, N.; Laignel, B.; Shafiei, H. Effects of global climate oscillations on Intermonthly to interannual variability of sea levels along the English channel coasts (NW France). Oceanologia 2020, 62, 226–242. [Google Scholar] [CrossRef]
- Turki, I.; Baulon, L.; Massei, N.; Laignel, B.; Costa, S.; Fournier, M.; Maquaire, O. A nonstationary analysis for investigating the multiscale variability of extreme surges: Case of the English Channel coasts. Nat. Hazards Earth Syst. Sci. 2020, 20, 3225–3243. [Google Scholar] [CrossRef]
- Amarouche, K.; Akpınar, A. Increasing Trend on Storm Wave Intensity in the Western Mediterranean. Climate 2021, 9, 17. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Trejo-Rangel, M.A.; Salles, P.; Appendini, C.M.; Lopez-Gonzalez, J.; Torres-Freyermuth, A. Storm characterization and coastal hazards in the Yucatan Peninsula. J. Coast. Res. 2013, 65, 790–795. [Google Scholar] [CrossRef]
- Molina, R.; Manno, G.; Re, C.L.; Anfuso, G.; Ciraolo, G. Storm energy flux characterization along the mediterranean coast of Andalusia (Spain). Water 2019, 11, 509. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef]
- Buscombe, D.; Masselink, G. Concepts in gravel beach dynamics. Earth-Science Rev. 2006, 79, 33–52. [Google Scholar] [CrossRef]
- Poate, T.G.; McCall, R.T.; Masselink, G. A new parameterisation for runup on gravel beaches. Coast. Eng. 2016, 117, 176–190. [Google Scholar] [CrossRef]
- Sutherland, J.; Peet, A.H.; Soulsby, R.L. Evaluating the performance of morphological models. Coast. Eng. 2004, 51, 917–939. [Google Scholar] [CrossRef]
- Van Rijn, L.C.; Wasltra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J.P. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- Mason, T.; Coates, T.T. Sediment transport processes on mixed beaches: A review for shoreline management. J. Coast. Res. 2001, 17, 645–657. [Google Scholar]
- She, K.; Road, L.; House, G.; Water, A. Effect of permeability on the performance of mixed sand-gravel beaches. In Coastal Sediments 2007: Proceedings of the Sixth International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, New Orleans, LA, USA, 13–17 May 2007; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 520–530. [Google Scholar] [CrossRef]
- Austin, M.J.; Buscombe, D. Morphological change and sediment dynamics of the beach step on a macrotidal gravel beach. Mar. Geol. 2008, 249, 167–183. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P.; Blenkinsopp, C.; Turner, I. Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Mar. Geol. 2010, 274, 50–68. [Google Scholar] [CrossRef]
- Pollard, J.A. Gravel Barrier Dynamics, Coastal Erosion and Flooding Risk. Ph.D. Thesis, Apollo—University of Cambridge Repository, Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Coco, G.; Ciavola, P. Coastal Storms; Wiley-Blackwell: Hoboken, NJ, USA, 2017; ISBN 9781118937105. [Google Scholar]
- Holmes, P.; Baldock, T.E.; Chan, R.T.C.; Neshaei, M.A.L. Beach evolution under random waves. In Coastal Engineering 1996: Proceedings of the Twenty-Fifth International Conference, Orlando, FL, USA, 2–6 September 1996; American Society of Civil Engineers: Reston, VA, USA, 1997; pp. 3006–3019. [Google Scholar]
- Horn, D.P.; Walton, S.M. Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sediment. Geol. 2007, 202, 509–528. [Google Scholar] [CrossRef]
- Mason, T.; Voulgaris, G.; Simmonds, D.J.; Collins, M.B. Hydrodynamics and sediment transport on composite (mixed sand/shingle) and sand beaches: A comparison. In Proceedings of the Coastal Dynamics’ 97, Plymouth, UK, 23–27 June 1997; pp. 48–57. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Casamayor, M.; Alonso, I.; Valiente, N.G.; Sánchez-García, M.J. Seasonal response of a composite beach in relation to wave climate. Geomorphology 2022, 408, 108245. [Google Scholar] [CrossRef]
Storm Name | A | B | C |
---|---|---|---|
Storm Start Date | 07 Dec 2018 | 13 Dec 2019 | 05 Dec 2019 |
Storm Duration | 35 h | 42 h | 58 h |
Simulation Start Date | 06 Dec 2018 | 12 Dec 2019 | 04 Dec 2019 |
Simulation Duration | 2 × 24 h | 3 × 24 h | 5 × 24 h |
Wave Direction | 104° N | 104° N | 109° N |
Max Energy Flux | 7.1 × 104 W/m/s | 7.5 × 104 W/m/s | 8.3 × 104 W/m/s |
Storm Energy | 8.9 × 109 W/m | 7.0 × 109 W/m | 5.4 × 109 W/m |
BSS Range | Interpretation |
---|---|
BSS ≤ 0 | Bad |
0 < BSS ≤ 0.3 | Poor |
0.3 < BSS ≤ 0.6 | Fair |
0.6 < BSS ≤ 0.8 | Good |
0.8 > BSS | Excellent |
Parameter | Dates | (m/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.01 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.6 | ||
BSS | 06 Dec 2018 | −36.19 | 0.43 | 0.50 | 0.56 | 0.60 | 0.63 | 0.63 | 0.63 | 0.63 | 0.60 | 0.57 | 0.54 | 0.49 |
07 Dec 2018 | −27.65 | 0.68 | 0.69 | 0.68 | 0.63 | 0.58 | 0.52 | 0.46 | 0.38 | 0.31 | 0.25 | 0.16 | 0.02 | |
RMSE (m) | 06 Dec 2018 | 2.86 | 0.34 | 0.32 | 0.30 | 0.28 | 0.27 | 0.26 | 0.26 | 0.27 | 0.28 | 0.28 | 0.29 | 0.31 |
07 Dec 2018 | 2.43 | 0.28 | 0.26 | 0.26 | 0.30 | 0.32 | 0.34 | 0.37 | 0.39 | 0.42 | 0.44 | 0.47 | 0.51 | |
R2 | 06 Dec 2018 | 0.21 | 0.56 | 0.63 | 0.69 | 0.71 | 0.73 | 0.72 | 0.71 | 0.70 | 0.66 | 0.62 | 0.59 | 0.53 |
07 Dec 2018 | 0.72 | 0.75 | 0.73 | 0.74 | 0.73 | 0.72 | 0.70 | 0.69 | 0.64 | 0.56 | 0.47 | 0.32 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soloy, A.; Lopez Solano, C.; Turki, E.I.; Mendoza, E.T.; Lecoq, N. Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G. J. Mar. Sci. Eng. 2024, 12, 327. https://doi.org/10.3390/jmse12020327
Soloy A, Lopez Solano C, Turki EI, Mendoza ET, Lecoq N. Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G. Journal of Marine Science and Engineering. 2024; 12(2):327. https://doi.org/10.3390/jmse12020327
Chicago/Turabian StyleSoloy, Antoine, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza, and Nicolas Lecoq. 2024. "Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G" Journal of Marine Science and Engineering 12, no. 2: 327. https://doi.org/10.3390/jmse12020327
APA StyleSoloy, A., Lopez Solano, C., Turki, E. I., Mendoza, E. T., & Lecoq, N. (2024). Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G. Journal of Marine Science and Engineering, 12(2), 327. https://doi.org/10.3390/jmse12020327