Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Samples and Their Petrography, Porosity and Permeability
3.2. The Lower Porosity and Permeability Limits of Effective Reservoir Analysis
4. Results
4.1. Sandstone Petrography
4.1.1. Late Oligocene LSF
4.1.2. Lower Miocene SYF
4.1.3. Middle Miocene MSF
4.2. Pore Systems
4.2.1. Primary Intergranular Pore
4.2.2. Secondary Dissolution Pore
4.2.3. Foraminiferal Cavities
4.3. Porosity and Permeability
5. Discussion
5.1. The Lower Porosity and Permeability Limits of the Effective Reservoir
5.1.1. Sandstone in Different Sedimentary Facies
5.1.2. Sandstone with Different Grain Sizes
5.1.3. Sandstone in Different Strata
5.2. Formation Mechanism of the Effective Reservoir
5.2.1. Effect of Sediment Source and Transport Distance
5.2.2. Effect of Sedimentary Facies
5.2.3. Dissolution of Various Minerals during Diagenesis
- (1)
- Dissolved minerals
- (2)
- Dissolved acidic geological fluids
5.3. Implication for Deepwater Natural Gas Exploration
6. Conclusions
- A few primary intergranular and many secondary dissolution pores are preserved in the LSF, SYF and MSF sandstones of the QDNB. Foraminifera were widely preserved in the SYF sandstone. In the western QDNB, three abnormally high porosity and permeability zones developed in the LSF at depths of 2700–2900 m, 3650–4150 m and 4450–4800 m, whereas there are two abnormally high porosity zones in the eastern QDNB at depths of 3750–4300 m and 4800–5250 m. The SYF and MSF sandstones in the eastern QDNB have a high porosity of 8–32% and a permeability of 0.05–93.8 × 10−3 μm2, whereas the SYF and MSF sandstones in the western QDNB have a low porosity of 1–28% and a permeability of 0.01–20 × 10−3 μm2. The SYF and MSF sandstones in the western QDNB developed abnormally high porosity at 4700–4800 m deep.
- The lower porosity and permeability limits of effective reservoirs developed in the deltas are 8.9% and 1.2 × 10−3 μm2, whereas the lower porosity and permeability limits of those developed in submarine canyons and fans are 11.3% and 4.0 × 10−3 μm2. The lower porosity and permeability limits of the effective reservoirs with coarse, fine, silty and argillaceous silty grain sizes are 9.9% and 7.7 × 10−3 μm2, 10.2% and 1.9 × 10−3 μm2, 12.3% and 9.9 × 10−3 μm2 and 12.2% and 3.9 × 10−3 μm2, respectively. The lower porosity and permeability limits of effective reservoirs developed in the late Oligocene LSF are 8.8% and 1.0 × 10−3 μm2, whereas the lower porosity and permeability limits of effective reservoirs developed in the Miocene MSF and SYF are 11.8% and 5.7 × 10−3 μm2.
- The sandstones from the Red River have higher porosity and permeability, followed by those from the Hainan Uplift. The palaeo-uplift within the basin presents the lowest porosity and permeability. The sandstone reservoirs developed in deepwater fans and submarine canyons have a higher porosity and permeability, followed by deltas and fan deltas, and the sandstone reservoir developed in coastal areas has the lowest porosity and permeability. Dissolution of the feldspars by CO2 and organic acid, resulting in dissolution pores, is considered the primary mechanism for increased porosity of the effective LSF reservoir. Glauconite particle dissolution is common in the SYF and MSF sandstone reservoirs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behmanesh, H.; Hamdi, H.; Clarkson, C.R.; Thompson, J.M.; Anderson, D.M. Analytical modeling of linear flow in single-phase tight oil and tight gas reservoirs. J. Pet. Sci. Eng. 2018, 171, 1084–1098. [Google Scholar] [CrossRef]
- Hu, S.Y.; Zhu, R.K.; Wu, S.T.; Bai, B.; Yang, Z.; Cui, J.W. Exploration and development of continental tight oil in China. Pet. Explor. Dev. 2018, 45, 790–802. [Google Scholar] [CrossRef]
- Milad, M.; Junin, R.; Sidek, A.; Imqam, A.; Alusta, G.A.; Augustine, A.; Abdulazeez, M.A. Experimental investigation of bypassed-oil recovery in tight reservoir rock using a two-step CO2 soaking strategy: Effects of fracture geometry. Upstream Oil Gas Technol. 2023, 11, 100093. [Google Scholar] [CrossRef]
- Sun, L.D.; Zou, C.N.; Jia, A.L.; Wei, Y.S.; Zhu, R.K.; Wu, S.T.; Guo, Z. Development characteristics and orientation of tight oil and gas in China. Pet. Explor. Dev. 2019, 46, 1073–1087. [Google Scholar] [CrossRef]
- Syed, F.I.; Dhaghi, A.K.; Muther, T. Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Pet. Sci. 2022, 19, 2131–2149. [Google Scholar] [CrossRef]
- Meng, M.M.; Zhang, Y.X.; Yuan, B.; Li, Z.J.; Zhang, Y. Imbibition behavior of oil-saturated rock: Implications for enhanced oil recovery in unconventional reservoirs. Energy Fuels 2023, 37, 13759–13768. [Google Scholar] [CrossRef]
- Altawati, F.; Emadi, H.; Pathak, S. Improving oil recovery of Eagle Ford shale samples using cryogenic and cyclic gas injection methods—An experimental study. Fuel 2021, 302, 121170. [Google Scholar] [CrossRef]
- Du, J.H.; Liu, H.; Ma, D.S.; Fu, J.H.; Wang, Y.H.; Zhou, T.Y. Discussion on effective development techniques for continental tight oil in China. Pet. Explor. Dev. 2014, 41, 217–224. [Google Scholar] [CrossRef]
- Lange, S.S.; Shrestha, L.; Nnoli, N.; Aniagu, S.; Rawat, S.; McCant, D. Do shale oil and gas production activities impact ambient air quality? Acomprehensive study of 12 years of chemical concentrations and well production data from the Barnett Shale region of Texas. Environ. Int. 2023, 175, 107930. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. An investigation of long range reliance on shale oil and shale gas production in the U.S. market. Energy 2020, 195, 116933. [Google Scholar] [CrossRef]
- Wang, H.; Liao, X.; Lu, N.; Cai, Z.; Liao, C.; Dou, X. A study on development effect of horizontal well with SRV in unconventional tight oil reservoir. J. Energy Inst. 2014, 87, 114–120. [Google Scholar] [CrossRef]
- Wei, J.G.; Zhou, X.F.; Zhou, J.M.; Li, J.T.; Wang, A.L. Recovery efficiency of tight oil reservoirs with different injection fluids: An experimental investigation of oil-water distribution feature. J. Pet. Sci. Eng. 2020, 195, 107678. [Google Scholar] [CrossRef]
- Bai, Y.B.; Zhao, J.Z.; Wu, W.T. Methods to determine the upper limits of petrophysical properties in tight oil reservoirs: Examples from the Ordos and Songliao Basins. J. Pet. Sci. Eng. 2021, 196, 107983. [Google Scholar] [CrossRef]
- Cui, H.Y.; Zhong, N.N.; Li, J.; Wang, D.L.; Li, Z.S.; Hao, A.S.; Liang, F. Study on the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in the Ordos Basin, China. J. Nat. Gas Geosci. 2017, 2, 21–28. [Google Scholar] [CrossRef]
- Pang, H.; Ding, X.G.; Pang, X.Q.; Geng, H. Lower limits of petrophysical parameters allowing tight oil accumulation in the Lucaogou Formation, Jimusaer Depression, Junggar Basin, Western China. Mar. Pet. Geol. 2019, 101, 428–439. [Google Scholar] [CrossRef]
- Shakya, S.; Li, B.X.; Etienne, X.L. Shale revolution, oil and gas prices, and drilling activities in the United States. Energy Econ. 2022, 108, 105877. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Pang, X.Q.; Zhou, L.M.; You, X.C.; Liu, X.H.; Guo, F.X.; Li, W. Critical conditions of tight oil charging and determination of the lower limits of petrophysical properties for effective tight reservoirs: A case study from the Fengcheng Formation in the Fengcheng area, Junggar Basin. J. Pet. Sci. Eng. 2020, 190, 107135. [Google Scholar] [CrossRef]
- Qiao, J.C.; Zeng, J.H.; Cai, J.C.; Jiang, S.; An, T.; Xiao, E.Z.; Zhang, Y.C.; Feng, X.; Yang, G.Q. Pore-scale heterogeneity of tight gas sandstone: Origins and impacts. J. Nat. Gas Sci. Eng. 2021, 96, 104248. [Google Scholar] [CrossRef]
- ŠLiaupa, S.; Lozovskis, S.; Lazauskienė, J.; Šliaupienė, R. Petrophysical and mechanical properties of the lower Silurian perspective oil/gas shales of Lithuania. J. Nat. Gas Sci. Eng. 2020, 79, 103336. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.C.; Xiao, J.; Liu, K.Y.; Song, M.S. Factors controlling reservoir properties and hydrocarbon accumulation of the Eocene lacustrine beach-bar sandstones in the Dongying Depression, Bohai Bay Basin, China. Mar. Pet. Geol. 2019, 99, 1–16. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.X.; Sun, W.; Li, Y.H.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Pet. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Zhang, L.C.; Song, X.J.; Du, Y.J.; Lu, S.F.; Xiao, D.S.; Jiang, S.; Chen, X.L.; Zhang, R.; Yu, R.Y. The upper and lower limits and grading evaluation of the Shahezi tight gas reservoirs in the Xujiaweizi Rift, northern Songliao Basin: Implications from microscopic pore structures. J. Pet. Sci. Eng. 2022, 212, 110224. [Google Scholar] [CrossRef]
- Randolph, M.F.; Gaudin, C.; Gourvenec, S.M.; White, D.J.; Boylan, N.; Cassidy, M.J. Recent advances in offshore geotechnics for deep water oil and gas developments. Ocean Eng. 2011, 38, 818–834. [Google Scholar] [CrossRef]
- Skogdalen, J.E.; Vinnem, J.E. Quantitative risk analysis of oil and gas drilling, using Deepwater Horizon as case study. Reliab. Eng. Syst. Saf. 2012, 100, 58–66. [Google Scholar] [CrossRef]
- Huo, J.H.; Zhang, R.Z.; Yu, B.S.; Che, Y.J.; Wu, Z.S.; Zhang, X.; Peng, Z.G. Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development. Energy 2022, 239, 122342. [Google Scholar] [CrossRef]
- Epuh, E.E.; Joshua, E.O. Modeling of porosity and permeability for hydrocarbon Exploration: A case study of Gongola arm of the Upper Benue Trough. J. Afr. Earth Sci. 2020, 162, 103646. [Google Scholar] [CrossRef]
- Farahani, M.; Aghaei, H.; Masoumi, H. Effect of pore type on porosity, permeability and pore volume compressibility of geological formations due to in-situ stress change. J. Pet. Sci. Eng. 2022, 218, 110986. [Google Scholar] [CrossRef]
- Wang, J.J.; Wu, S.H.; Li, Q.; Zhang, J.J.; Guo, Q.H. Characterization of the pore-throat size of tight oil reservoirs and its control on reservoir physical properties: A case study of the Triassic tight sandstone of the sediment gravity flow in the Ordos Basin, China. J. Pet. Sci. Eng. 2020, 186, 106701. [Google Scholar] [CrossRef]
- Xia, Y.X.; Tian, Z.H.; Xu, S.; Wei, W.; Cai, J.C. Effects of microstructural and petrophysical properties on spontaneous imbibition in tight sandstone reservoirs. J. Nat. Gas Sci. Eng. 2021, 96, 104225. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Wang, Q. Rock fabric of tight sandstone and its influence on irreducible water saturation in Eastern Ordos Basin. Energy Fuels 2023, 37, 3685–3696. [Google Scholar] [CrossRef]
- Er, C.; Zhao, J.Z.; Li, Y.Y.; Si, S.H.; Bai, Y.B.; Wu, W.T.; Han, Q.Y. Relationship between tight reservoir diagenesis and hydrocarbon accumulation: An example from the early Cretaceous Fuyu reservoir in the Daqing oil field, Songliao Basin, China. J. Pet. Sci. Eng. 2022, 208, 109422. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Shi, W.Z.; Zhang, W.; Qi, R.; Qin, S.; Xu, L.T. Tectonic controls on Permian tight gas accumulation: Constrains from fluid inclusion and paleo-structure reconstruction in the Hangjinqi area, northern Ordos Basin, China. J. Nat. Gas Sci. Eng. 2020, 83, 103616. [Google Scholar] [CrossRef]
- Ren, D.Z.; Zhou, D.S.; Liu, D.K.; Dong, F.J.; Ma, S.W.; Huang, H. Formation mechanism of the Upper Triassic Yanchang Formation tight sandstone reservoir in Ordos Basin—Take Chang 6 reservoir in Jiyuan oil field as an example. J. Pet. Sci. Eng. 2019, 178, 497–505. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.S.; Yan, W.B.; Liu, S.W.; Cai, D.S.; Zhang, G.C.; Zhong, K.; Pei, J.X.; Sun, B. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. J. Asian Earth Sci. 2013, 77, 163–182. [Google Scholar] [CrossRef]
- Franke, D.; Savva, D.; Pubellier, M.; Steuer, S.; Mouly, B.; Auxietre, J.-L.; Meresse, F.; Chamot-Rooke, N. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 2014, 58, 704–720. [Google Scholar] [CrossRef]
- Morley, C.K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. J. Asian Earth Sci. 2016, 120, 62–86. [Google Scholar] [CrossRef]
- Gong, C.L.; Wang, Y.M.; Hodgson, D.M.; Zhu, W.L.; Li, W.G.; Xu, Q.; Li, D. Origin and anatomy of two different types of mass–transport complexes: A 3D seismic case study from the northern South China Sea margin. Mar. Pet. Geol. 2014, 54, 198–215. [Google Scholar] [CrossRef]
- Wang, Z.F.; Sun, Z.P.; Zhang, D.J.; Zhu, J.T.; Li, X.S.; Huang, B.J.; Guo, M.G.; Jiang, R.F. Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea—With focus on natural gas. Acta Oceanol. Sin. 2015, 34, 57–70. [Google Scholar] [CrossRef]
- Clift, P.D.; Carter, A.; Wysocka, A.; Van Hoang, L.; Zheng, H.; Neubeck, N. A Late Eocene-Oligocene through-flowing River between the Upper Yangtze and South China Sea. Geochem. Geophys. Geosystems 2020, 21, e2020GC009046. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.J.; Zhou, Q.S.; Yang, H.Z.; Lyu, C.F.; Guo, S.; Sun, R.; Ma, M. Seismic geomorphology of three types of deepwater fans and their relationship with slope morphology: Qiongdongnan Basin, northern South China Sea. Mar. Pet. Geol. 2021, 124, 104814. [Google Scholar] [CrossRef]
- Lyu, C.F.; Li, C.; Chen, G.J.; Zhang, G.C.; Ma, M.; Zhang, Y.; Sun, Z.T.; Zhou, Q.S. Zircon U–Pb age constraints on the provenance of Upper Oligocene to Upper Miocene sandstones in the western Qiongdongnan Basin, South China sea. Mar. Pet. Geol. 2021, 126, 104891. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xu, Q.; Li, D.; Han, J.H.; Lü, M.; Wang, Y.F.; Li, W.G.; Wang, H.R. Late Miocene red river submarine fan, northwestern South China Sea. Chin. Sci. Bull. 2011, 56, 1488–1494. [Google Scholar] [CrossRef]
- Zhao, M.; Shao, L.; Liang, J.S.; Li, Q.Y. No Red River capture since the late Oligocene: Geochemical evidence from the Northwestern South China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 185–194. [Google Scholar] [CrossRef]
- Savva, D.; Pubellier, M.; Franke, D.; Chamot-Rooke, N.; Meresse, F.; Steuer, S.; Auxietre, J.L. Different expressions of rifting on the South China Sea margins. Mar. Pet. Geol. 2014, 58, 579–598. [Google Scholar] [CrossRef]
- Liang, C.; Liu, C.Y.; Xie, X.N.; Yu, X.H.; He, Y.L.; Chen, H.; Zhou, Z.; Tian, D.M.; Lu, B.Y.; Mi, H.G.; et al. The role of large-scale mass wasting processes in changing the sediment dispersal pattern in the deep-water Central Canyon of the northwestern South China Sea. Mar. Pet. Geol. 2020, 122, 104693. [Google Scholar] [CrossRef]
- Su, M.; Wu, C.H.; Chen, H.; Li, D.F.; Jiang, T.; Xie, X.N.; Jiao, H.J.; Wang, Z.F.; Sun, X.M. Late Miocene provenance evolution at the head of Central Canyon in the Qiongdongnan Basin, Northern South China Sea. Mar. Pet. Geol. 2019, 110, 787–796. [Google Scholar] [CrossRef]
- Yang, S.; Qiu, Y.; Zhu, B. Atlas of Geology and Geophysics of the South China Sea; China Navigation Publications: Tianjin, China, 2015. [Google Scholar]
- Gao, Y.; Qu, X.Y.; Yang, X.B.; You, L.; Zhong, J.; Dong, X.F.; Cao, Y.Q.; Wang, Y.P. Characteristics of fluid inclusions and accumulation period of Miocene reservoir in Ledong-Lingshui Sag of Qiongdongnan Basin. Mar. Orig. Pet. Geol. 2018, 23, 83–90, (In Chinese with English Abstract). [Google Scholar]
- Zhong, J.; Yang, X.B.; Zhu, P.Y.; Xu, S.L.; Deng, X.L.; Tuo, L.; Li, X.; Song, P. Porosity evolution differences of the Lingshui Formation reservoir between Baodao and Changchang Sag, Qiongdongnan Basin. Earth Sci. 2019, 44, 2665–2676, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.Q. Diagenesis and the Favourable Reservoir Prediction of the Target Layer in the Qiongdongnan Basin; Northeast Petroleum University: Daqing, China, 2010; (In Chinese with English Abstract). [Google Scholar]
- You, L.; Li, W.; Li, C.; Zhao, Z.J. Main factors affecting physical properties of deep burial reservoir in Baodao area of Southeast Hainan Basin. Spec. Oil Gas Reserv. 2014, 21, 37–40, (In Chinese with English Abstract). [Google Scholar]
- Su, A.; Chen, H.H.; He, C.; Lei, C.; Lei, M.Z.; Liu, Y.H. Digenesis controlling development of abnormal high porosity zones: A case from Yacheng area in the western Qiongdongnan basin, South China Sea. J. China Universtiy Min. Technol. 2017, 46, 345–355, (In Chinese with English Abstract). [Google Scholar]
- Su, A.; Du, J.M.; Chen, H.H.; Yu, Y.; Lei, M.Z. Diagenetic fluid type and activity history of controlling the development of abnormal pore zone: Taking the north margin of Baodao Sag, Qiongdongnan Basin as an example. Nat. Gas Geosci. 2016, 27, 1837–1847, (In Chinese with English Abstract). [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphills Publishing Company: Sutton, UK, 1974. [Google Scholar]
- Sun, N.L.; Zhong, J.H.; Ge, Y.Z.; van Loon, A.T. Reservoir quality of the Middle-Late Triassic Yanchang Formation (Ordos Basin) as controlled by sedimentology and diagenesis. In The Ordos Basin; Elsevier: Amsterdam, The Netherlands, 2022; pp. 421–460. [Google Scholar]
- Yuan, G.H.; Cao, Y.C.; Gluyas, J.; Xiaoyan, L.; Xi, K.L.; Wang, Y.Z.; Jia, Z.Z.; Sun, P.; Oxtoby, N. Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China. AAPG Bull. 2015, 99, 2121–2154. [Google Scholar] [CrossRef]
- Li, C.Z.; Chen, G.J.; Li, C.; Tian, B.; Sun, R.; Su, L.; Lu, Y.X.; Wang, L.J. Experimental Study on Water-rock Reactions with CO2 Fluid in a Deep Sandstone Formation under High Temperature and Pressure. Acta Geol. Sin.-Engl. Ed. 2021, 95, 268–279. [Google Scholar] [CrossRef]
- Huang, B.J.; Tian, H.; Li, X.S.; Wang, Z.F.; Xiao, X.M. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2016, 72, 254–267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Guo, S.; Zhou, Q.; Xu, C.; Chen, G. Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea. J. Mar. Sci. Eng. 2024, 12, 735. https://doi.org/10.3390/jmse12050735
Li C, Guo S, Zhou Q, Xu C, Chen G. Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea. Journal of Marine Science and Engineering. 2024; 12(5):735. https://doi.org/10.3390/jmse12050735
Chicago/Turabian StyleLi, Chao, Shuai Guo, Qianshan Zhou, Chaochao Xu, and Guojun Chen. 2024. "Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea" Journal of Marine Science and Engineering 12, no. 5: 735. https://doi.org/10.3390/jmse12050735
APA StyleLi, C., Guo, S., Zhou, Q., Xu, C., & Chen, G. (2024). Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea. Journal of Marine Science and Engineering, 12(5), 735. https://doi.org/10.3390/jmse12050735