Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Peripheral Outcrop Characteristics
4.2. Core Characteristics
- (1)
- Rock types and developmental characteristics
- (2)
- Crack types and developmental characteristics
- (3)
- Types and developmental characteristics of dissolved pores (holes)
- (4)
- Longitudinal zoning features
4.3. Isotopic Geochemical Characteristics
5. Discussion
5.1. Evidence of the Record of Huaiyuan Movement
- (1)
- Geological evidence of the Huaiyuan Movement
- (2)
- Geochemical evidence of the Huaiyuan Movement
- (3)
- Evidence of the forming time
5.2. Influence and Control of Huaiyuan Movement on Reservoir
6. Conclusions
- (1)
- Geological and geochemical data indicate that the Fengshan Formation and Yeli-Liangjiashan Formation were affected and controlled by the Huaiyuan Movement and have apparent vertical karst zonation. From top to bottom, the vadose zone and the underflow zone can be delimited successively, the karst breccia is present in the two karst zones, and differences are present.
- (2)
- There are apparent differences in the types of reservoir space combinations between the vadose and underflow zones. In the vadose zone, the dissolved pores, karst caves, and cracks formed by weathering solutions are present and are connected longitudinally. It is easy to develop a composite crack-cavity reservoir space. In contrast, in the underflow zone, layered dissolved pores and cracks are present, and it is easy to develop two types of reservoir spaces: cavity type and crack type.
- (3)
- Primitive sedimentary microfacies, dolomitization, and supergene karstification controlled the Fengshan Formation and Yeli-Liangjiashan Formation reservoirs. Different sedimentary microfacies have apparent differences in the mode of karst development, development intensity, reservoir type, and reservoir physical properties. The reservoirs are mainly distributed along the paleokarst zone that formed in the Huaiyuan period, and the dolomite of the granular beach facies has the best reservoir physical properties, which are the features of surface distribution along the upper unconformity in the region.
- (4)
- Limited by the progress of the current work, the data obtained, and the research methods, the longitudinal and transverse connectivity of the internal reservoir space of the unconformity structure has not been studied, and it is necessary to increase the logging data and seismic experiments to carry out this research. It is suggested that there are longitudinal and transverse migration channels in the unconformity affected by the Huaiyuan movement, and combined with faults formed by multi-stage tectonic movement, they form a network of fluid (oil and gas) transport systems. In the strata of the Jiyang Depression, a large number of source rocks are distributed in the Paleogene strata. Under mature hydrocarbon expulsion, the source rocks migrate continuously along the Paleogene sand body and reach the buried hill of the Lower Paleozoic. After that, the hydrocarbon-bearing fluid migrates and transports horizontally or vertically along the network transport system, forming hydrocarbon accumulations in the buried hill of the lower Paleozoic in the Jiyang Depression. Thus, a new network reservoir formation system is formed, which opens a new avenue for the exploration of the Jiyang Depression and provides a new research direction for the study of the area affected by the Huaiyuan movement in Bohai Bay Basin, China.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritz, R.D.; Wilson, J.L.; Yurewicz, D.A. Paleokarst Related Hydrocarbon Reservoirs; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 1993. [Google Scholar]
- Halbouty, M.T. Giant Oil and Gas Fields of the 1990s: An Introduction; American Association of Petroleum Geologists: Tulsa, OK, USA, 2003. [Google Scholar]
- Gu, Z.D.; Wang, Z.C.; Hu, S.Y.; Wang, H.; Yin, J.F.; Huang, P.H. Tectonic settings of global marine carbonate giant fields and exploration significance. Nat. Gas Geosci. 2012, 23, 106–118. [Google Scholar]
- Budd, D.A.; Saller, A.H.; Harris, P.M. Unconformities and porosity in carbonate strata. AAPG Mem. 1995, 79, 1183–1184. [Google Scholar]
- Clari, P.A.; Pierre, F.D.; Martire, L. Discontinuities in carbonate successions: Identification, interpretation and classification of some Italian examples. Sediment. Geol. 1995, 100, 97–121. [Google Scholar] [CrossRef]
- Akbar, M.; Vissapragada, B.; Alghamdi, A.H.; Allen, D.; Herron, M.; Carnegie, A.; Dutta, D.; Olesen, J.-R.; Logan, D.; Stief, D.; et al. A snapshot of carbonate reservoir evaluation. Oilfield Rev. 2000, 12, 20–21. [Google Scholar]
- Wang, B.; Al-Aasm, I.S. Karst-controlled diagenesis and reservoir development: Example from the Ordovician mainreservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bull. 2002, 86, 1639–1658. [Google Scholar]
- Sattler, U.T.E.; Immenhauser, A.; Hillgärtner, H.; Esteban, M. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to Lower Aptian, Oman). Sedimentology 2005, 52, 339–361. [Google Scholar] [CrossRef]
- Craig, J.; Thurow, J.; Thusu, B.; Whitham, A.; Abutarruma, Y. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa; Geological Society London, Special Publications: London, UK, 2009; Volume 326, pp. 1–25. [Google Scholar]
- Su, J.; Zhang, S.C.; Yang, H.J.; Zhu, G.Y.; Chen, J.P.; Zhang, B. The control of carbonate effective reservoir by fault system and its reservoir-forming rule. Acta Pet. Sin. 2010, 31, 196–203. [Google Scholar]
- Chow, N.; Wendte, J. Palaeosols and palaeokarst beneath subaerial unconformities in an Upper Devonian isolated reef complex (Judy Creek), Swan Hills Formation, west-central Alberta, Canada. Sedimentology 2011, 58, 960–993. [Google Scholar] [CrossRef]
- Bhat, G.M.; Craig, J.; Hafiz, M.; Hakhoo, N.; Thurow, J.W.; Thusu, B.; Cozzi, A. Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia: An Introduction; Geological Society, London, Special Publications: London, UK, 2012; Volume 366, pp. 1–17. [Google Scholar]
- Bagni, F.L.; Bezerra, F.H.; Balsamo, F.; Maia, R.P.; Dall’Aglio, M. Karst dissolution along fracture corridors in an anticline hinge, Jandaíra Formation, Brazil: Implications for reservoir quality. Mar. Pet. Geol. 2020, 115, 104249. [Google Scholar] [CrossRef]
- Ji, Y.L.; Hu, G.M.; Zhang, S.W.; Zhao, J.Q. Mineralogical and geochemical methods in study of sedimentary sequence boundary. Tongji Daxue Xuebao/J. Tongji Univ. (Nat. Sci.) (China) 2004, 32, 455–460. [Google Scholar]
- Bai, B.; Zou, C.; Zhu, R.; Zhai, W.L.; Liu, L.H.; Dai, Z.C.; Mao, Z.G. Integrated identification of sequence boundaries through outcrop, natural gammaray spectral, rock geochemistry, logging and seismic: A case of upper Triassic Xujiahe formation, Sichuan Basin. Nat. Gas Geosci. 2010, 21, 78–86. [Google Scholar]
- Zhiqian, G.; Tailiang, F. Unconformities and their influence on lower Paleozoic petroleum reservoir development in the Tarim Basin. J. Pet. Sci. Eng. 2015, 133, 335–351. [Google Scholar] [CrossRef]
- Beckert, J.; Vandeginste, V.; John, C.M. Relationship between karstification and burial dolomitization in Permian platform carbonates (Lower Khuff—Oman). Sediment. Geol. 2016, 342, 165–179. [Google Scholar] [CrossRef]
- Vincent, S.J.; Guo, L.; Flecker, R.; BouDagher-Fadel, M.K.; Ellam, R.M.; Kandemir, R. Age constraints on intra-formational unconformities in Upper Jurassic-Lower Cretaceous carbonates in northeast Turkey; geodynamic and hydrocarbon implications. Mar. Pet. Geol. 2018, 91, 639–657. [Google Scholar] [CrossRef]
- Nadeau, O. Sources of fluids in Archean hydrothermal stockwork-disseminated gold deposits of Abitibi, Canada: Insights from Duquesne, Dolodau, Lac Shortt and Canadian Malartic. Ore Geol. Rev. 2019, 111, 102975. [Google Scholar] [CrossRef]
- Lyu, D.; Deng, Y.; Wang, H.; Zhang, F.; Ren, R.; Gao, Z.; Canfield, D.E. Using cyclostratigraphic evidence to define the unconformity caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. J. Asian Earth Sci. 2021, 206, 104608. [Google Scholar] [CrossRef]
- James, N.P.; Choquette, P.W. (Eds.) Paleokarst; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lucia, F.J. Lower Paleozoic Cavern Development, Collapse, and Dolomitization, Franklin Mountains, El Paso, Texas; American Association of Petroleum Geologists: Tulsa, OK, USA, 1995. [Google Scholar]
- Luczaj, J.A.; Harrison, W.B., III; Smith Williams, N. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin. AAPG Bull. 2006, 90, 1787–1801. [Google Scholar] [CrossRef]
- Tian, H.; Xiao, X.; Wilkins, R.W.; Tang, Y. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils. AAPG Bull. 2008, 92, 181–200. [Google Scholar] [CrossRef]
- Cao, J.W. Study on the Distribution and Genetic Mechanism of Paleokarst in the Eastern Part of Lunnan Buried Mountain; China University of Geosciences: Wuhan, China, 2019. [Google Scholar]
- Jiu, B.; Huang, W.; Mu, N.; Hao, R. Petrology, mineralogy and geochemistry of Ordovician rocks in the southwest of Tarim Basin, implications for genetic mechanism and evolution model of the hydrothermal reformed-paleokarst carbonate reservoir. Mar. Pet. Geol. 2022, 140, 105687. [Google Scholar] [CrossRef]
- Li, P.L.; Zhang, S.W.; Wang, Y.S. Genesis, Accumulation and Exploration of Diverse Buried Hills: A Case Study of Jiyang Depression; Petroleum Industry Press: Beijing, China, 2003. [Google Scholar]
- Song, G.Q.; Zhuo, Q.G.; Sun, L. Migration and accumulation model of Tertiary unconformity hydrocarbon reservoirs in Jiyang Depression. Oil Gas Geol. 2008, 29, 716–720+732. [Google Scholar]
- Sui, F.G.; Song, G.Q.; Zhao, L.Q.; Wang, X.J. Oil and gas transport mode and performance of unconformity in continental faulted basin of Jiyang Depression. J. China Univ. Pet. (Nat. Sci. Ed.) 2010, 34, 44–48. [Google Scholar]
- Ma, L.C. Discussion on genesis of lower Paleozoic insider-type reservoir in Jiyang Depression. Spec. Reserv. 2003, 10, 13–14+91. [Google Scholar]
- Lin, H.X. Karstification of lower Paleozoic buried hill reservoir in Zhuangxicheng Island area, Jiyang Depression. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2004, 42, 490–497. [Google Scholar]
- Song, D.N. Reunderstanding of Huaiyuan movement. Geol. Shandong 2001, 17, 19–23. [Google Scholar]
- Li, X.B.; Wang, H.B.; Huang, J.P.; Zhang, C.L.; Zhang, Y.; Wang, Y.T.; Zhang, L.; Wang, J.; Liu, H.Q. Characteristics of Huaiyuan movement unconformity in Ordos Basin and its significance for oil and gas exploration. Oil Gas Geol. 2021, 42, 1043–1055. [Google Scholar]
- Zhang, M.; Wu, Z.P.; Huang, Z.; Zhang, B.; Zhang, F.P.; Miao, Y.Z. Development law and genetic type division of buried hill in Jiyang Depression, Bohai Bay Basin. Earth Sci. 2023, 48, 488–502. [Google Scholar]
- Wang, Z.; Zhang, K.; Cheng, Y.; Wu, Q. Identification and evaluation of fault-fracture reservoirs in buried hills of the Lower Paleozoic, Chengdao area, China. Energy Geosci. 2023, 4, 100183. [Google Scholar] [CrossRef]
- Jing, A.Y. Fault characteristics and reservoir-controlling effect of Lower Paleozoic buried hill in Chengdao area of Jiyang Depression. Sci. Technol. Eng. 2020, 20, 6011–6017. [Google Scholar]
- Ma, S.; Wang, Y.S.; Wang, X.J.; Jing, A.Y. Development characteristics and genetic mechanism of Lower Paleozoic buried hill insider dolomite reservoir in Jiyang Depression. Geol. Rev. 2023, 69, 279–280. [Google Scholar]
- Zhang, Y.F.; Wang, Q.C. Isotopic characteristics and significance of calcite C and O in Ordovician carbonate rocks and fracture-cavity filling in Jiyang Depression. Chin. J. Geol. 2007, 42, 570–578. [Google Scholar]
- Osleger, D.; Read, J.F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA. J. Sediment. Res. 1991, 61, 1225–1252. [Google Scholar]
- Liu, B.; Wang, Y.H.; Qian, X.L. Genesis of two Ordovician unconformities and prediction of related regional reservoirs in North China. Acta Sedimentol. 1997, 15, 25–30. [Google Scholar]
- Mei, M.X.; Ma, Y.S. Late Cambrian sequence stratigraphy of North China Platform and its correlation with sea level change of North American platform. Sediment. Tethys Geol. 2003, 23, 14–26. [Google Scholar]
- Cross, N.E.; van Veen, L.J.; Al-Enezi, A.; Singh, S.; van Beusekom, G. Seismic geomorphology of karst in Cretaceous to Early Cenozoic carbonates of North Kuwait. Mar. Pet. Geol. 2021, 128, 104947. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Q.; Zhong, J.H.; Zou, S.Z. Characteristics of Ordovician karst zonation and fissure cavity structure in Tahe Oilfield. Acta Pet. Sin. 2016, 37, 289–298. [Google Scholar]
- Zhang, Q.Y.; Liang, B.; Cao, J.W.; Dan, Y.; Li, J.R.; Chen, L.X. Pre-carboniferous paleo-karst microgeomorphology and karst development model in east Lungu area, Tarim Basin. Mar. Pet. Geol. 2017, 22, 30–36. [Google Scholar]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Strauss, H. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Denison, R.E.; Koepnick, R.B.; Burke, W.H.; Hetherington, E.A. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem. Geol. 1998, 152, 325–340. [Google Scholar] [CrossRef]
- Clayton, R.N.; Degens, E.T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments. AAPG Bull. 1959, 43, 890–897. [Google Scholar]
- Meng, Q.Q.; Zhu, D.Y.; Hu, W.X.; Jin, Z.J. Dissolution-filling mechanism of atmospheric precipitation controlled by both thermodynamics and kinetics. Sci. China Earth Sci. 2013, 56, 2150–2159. [Google Scholar] [CrossRef]
- Jones, B. Diagenetic processes associated with unconformities in carbonate successions on isolated oceanic islands: Case study of the Pliocene to Pleistocene sequence, Little Cayman, British West Indies. Sediment. Geol. 2019, 386, 9–30. [Google Scholar] [CrossRef]
- Bagni, F.L.; Erthal, M.M.; Tonietto, S.N.; Maia, R.P.; Bezerra, F.H.; Balsamo, F.; Fonseca, J.P.T. Karstified layers and caves formed by superposed epigenic dissolution along subaerial unconformities in carbonate rocks–Impact on reservoir-scale permeability. Mar. Pet. Geol. 2022, 138, 105523. [Google Scholar] [CrossRef]
- Xiong, Y.; Tan, X.; Zhong, S.; Xiao, D.; Wang, B.; Yang, M.; Cao, J. Dynamic paleokarst geochemistry within 130 Myr in the Middle Ordovician Shanganning carbonate platform, North China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 591, 110879. [Google Scholar] [CrossRef]
- Esrafili-Dizaji, B.; Rahimpour-Bonab, H. Effects of depositional and diagenetic characteristics on carbonate reservoir quality: A case study from the South Pars gas field in the Persian Gulf. Petrol. Geosci. 2009, 15, 325–344. [Google Scholar] [CrossRef]
- Mehrabi, H.; Rahimpour-Bonab, H.; Hajikazemi, E.; Jamalian, A. Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran. Facies 2015, 61, 23. [Google Scholar] [CrossRef]
- Ma, C.F.; Huang, W.J.; Du, Z.L.; Han, W.Z.; Zhan, Y.; Shi, Z.N.; Zhou, J.; Song, M.Y. Lithofacies classification scheme of continental lacustrine shale and its significance: A case study of the second member of Kongdian Formation in Cangdong Sag. J. Cent. South Univ. Nat. Sci. Ed. 2022, 53, 3287–3300. [Google Scholar]
- Vandeginste, V.; Swennen, R.; Reed, M.H.; Ellam, R.M.; Osadetz, K.; Roure, F. Host rock dolomitization and secondary porosity development in the upper Devonian Cairn Formation of the Fairholme carbonate complex (south-west Alberta, Canadian Rockies): Diagenesis and geochemical modelling. Sedimentology 2009, 56, 2044–2060. [Google Scholar] [CrossRef]
- Adams, J.E.; Rhodes, M.L. Dolomitization by seepage refluxion. AAPG Bull. 1961, 44, 1912–1920. [Google Scholar]
- Skall, H. The paleoenvironment of the Pine Point lead-zinc district. Econ. Geol. 1975, 70, 22–47. [Google Scholar] [CrossRef]
- Lucia, F.J.; Major, R.P. Porosity evolution through hypersaline reflux dolomitization. In Dolomites: A Volume in Honour of Dolomieu; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 325–341. [Google Scholar]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into water occurrence and pore size distribution by nuclear magnetic resonance in marine shale reservoirs, southern China. Energy Fuels 2023, 37, 319–327. [Google Scholar] [CrossRef]
- Sullivan, E.C.; Marfurt, K.J.; Lacazette, A.; Ammerman, M. Application of new seismic attributes to collapse chimneys in the Fort Worth Basin. Geophysics 2006, 71, B111–B119. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, A.; Qiao, Z.; Zheng, J.; Wang, X. Carbonate karst reservoirs of the Tarim Basin, northwest China: Types, features, origins, and implications for hydrocarbon exploration. Interpretation 2014, 2, SF65–SF90. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K.J. Seismic attributes for stratigraphic feature characterization. In SEG Technical Program Expanded Abstracts 2008; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 1590–1594. [Google Scholar]
- Ma, Y.; Zhang, S.; Guo, T.; Zhu, G.; Cai, X.; Li, M. Petroleum geology of the Puguang sour gas field in the Sichuan Basin, SW China. Mar. Pet. Geol. 2008, 25, 357–370. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Wang, Q. Rock fabric of tight sandstone and its influence on irreducible water saturation in Eastern Ordos Basin. Energy Fuels 2023, 37, 3685–3696. [Google Scholar] [CrossRef]
- Al-Aasm, I. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. J. Geochem. Explor. 2003, 78, 9–15. [Google Scholar] [CrossRef]
- Smith, L.B., Jr. Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York. AAPG Bull. 2006, 90, 1691–1718. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Cai, Z.; Cong, F.; Huang, S.; Tang, P. Characteristics and formation mechanisms of the unconformity-related paleokarst reservoirs in the Upper Sinian, Northwestern Tarim Basin, China. Mar. Pet. Geol. 2020, 120, 104559. [Google Scholar] [CrossRef]
- Flügel, E.; Munnecke, A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin, Germany, 2010; Volume 976, p. 2004. [Google Scholar]
- Murray, R.C. Origin of porosity in carbonate rocks. J. Sediment. Res. 1960, 30, 59–84. [Google Scholar] [CrossRef]
- Lucia, F.J.; Kerans, C.; Jennings, J.W., Jr. Carbonate reservoir characterization. J. Pet. Technol. 2003, 55, 70–72. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- La Bruna, V.; Bezerra, F.H.; Souza, V.H.; Maia, R.P.; Auler, A.S.; Araujo, R.E.; Sousa, M.O. High-permeability zones in folded and faulted silicified carbonate rocks–implications for karstified carbonate reservoirs. Mar. Pet. Geol. 2021, 128, 105046. [Google Scholar] [CrossRef]
- Scholle, P.A.; Bebout, D.G.; Moore, C.H. Carbonate Depositional Enviroments; American Association of Petroleum Geologists: Tulsa, OK, USA, 1983. [Google Scholar]
- Meng, M.; Zhang, Y.; Yuan, B.; Li, Z.; Zhang, Y. Imbibition behavior of oil-saturated rock: Implications for enhanced oil recovery in unconventional reservoirs. Energy Fuels 2023, 37, 13759–13768. [Google Scholar] [CrossRef]
- He, J.; Fang, S.; Hou, F.; Yan, R.; Zhao, Z.; Yao, J.; Tang, X.; Wu, G. Vertical zonation of weathered crust ancient karst and reservoir evaluation and prediction—A case study of M55–M51 sub-members of Majiagou Formation in gas fields, central Ordos Basin, NW China. Pet. Explor. Dev. 2013, 40, 572–581. [Google Scholar]
Well | Formation | Porosity (%) | Permeability/×10−3 μm2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Minimum Value | Maximum Value | Sample Quantity | Mean Value | Minimum Value | Maximum Value | Sample Quantity | Mean Value | ||
CB244 | Yeli-Liangjiashan Formation | 1.1 | 12.2 | 18 | 4.32 | 0.075 | 266.659 | 16 | 21.535 |
CB39 | Yeli-Liangjiashan Formation | 2.3 | 4.6 | 4 | 3.15 | 0.025 | 8.01 | 4 | 2.043 |
CBG6 | Yeli-Liangjiashan Formation | 9.4 | 2.5 | 4 | 4.48 | 1.545 | 1.545 | 1 | 1.545 |
Serial Number | Sample Number | Lithology | Stratum | Sampling Depth (m) | δ13Cv-PDB (‰) | δ18Ov-PDB (‰) | Remark |
---|---|---|---|---|---|---|---|
1 | HB19-1 | dolomite | Yeli-Liangjiashan Formation | - | −9.92 | −8.84 | According to Zhang, Y.F., and Wang, Q.C., 2007 [38] |
2 | HB19 | dolomite | Yeli-Liangjiashan Formation | - | −7.68 | −7.97 | |
3 | HB12 | dolomite | Yeli-Liangjiashan Formation | - | −5.24 | −9.97 | |
4 | HB09-1 | dolomite | Yeli-Liangjiashan Formation | - | −7.89 | −8.92 | |
5 | HB09 | dolomite | Yeli-Liangjiashan Formation | - | −7.45 | −9.51 | |
6 | CB302-10 | dolomite | Yeli-Liangjiashan Formation | 4003.3 | −1.29 | −13.18 | This study |
7 | CB302-4 | dolomite | Yeli-Liangjiashan Formation | 4006.5 | −1.28 | −12.39 | |
8 | CB302-8 | dolomite | Yeli-Liangjiashan Formation | 4005.4 | −0.14 | −9.78 | |
9 | CB302-1 | dolomite | Yeli-Liangjiashan Formation | 4008.3 | −0.46 | −9.56 | |
10 | CB302-21 | dolomitic breccia | Yeli-Liangjiashan Formation | 4002 | −0.96 | −10.42 | |
11 | CB302-15 | dolomite | Yeli-Liangjiashan Formation | 4003.34 | −2.43 | −13.24 | |
12 | ZH101-2 | dolomite | Yeli-Liangjiashan Formation | 4076.21 | −2.3 | −15.46 | |
13 | ZH101-3 | dolomitic breccia | Yeli-Liangjiashan Formation | 4076.91 | −2.59 | −14.87 | |
14 | CBG100-1 | dolomite | Fengshan Formation | 2561.68 | −0.02 | −7.31 | |
15 | CBG100-2 | dolomite | Fengshan Formation | 2561.68 | −0.01 | −6.59 | |
16 | CBG100-3 | dolomite | Fengshan Formation | 2561.68 | −0.38 | −6.73 | |
17 | CBG100-4 | dolomite | Fengshan Formation | 2561.68 | −0.05 | −6.24 | |
18 | CBG100-5 | dolomite | Fengshan Formation | 2566.27 | −0.32 | −6.88 | |
19 | CBG100-6 | dolomite | Fengshan Formation | 2566.17 | −0.22 | −8.1 | |
20 | CBG100-7 | dolomite | Fengshan Formation | 2566.17 | −0.53 | −6.59 | |
21 | CBG100-8 | dolomite | Fengshan Formation | 2566.17 | −0.56 | −7.41 | |
22 | ZG39-1 | limestone | Fengshan Formation | 4338.2 | 0.27 | −10.07 | |
23 | ZG39-2 | limestone | Fengshan Formation | 4341.1 | 0.21 | −10.6 | |
24 | ZG39-3 | limestone | Fengshan Formation | 4343.3 | 0.44 | −10.19 | |
25 | ZG39-4 | dolomitic limestone | Fengshan Formation | 4345.9 | 0.7 | −14.23 | |
26 | ZG39-5 | limestone | Fengshan Formation | 4349.3 | 1.17 | −12.57 | |
27 | ZG39-6 | limestone | Fengshan Formation | 4351.8 | 1.34 | −10.9 |
Serial Number | Sample Number | Lithology | Stratum | Sampling Depth (m) | 87Sr/86Sr |
---|---|---|---|---|---|
1 | CB302-1A | dolomite | Yeli-Liangjiashan Formation | 4001.2 | 0.7103 |
2 | CB302-2A | dolomite | Yeli-Liangjiashan Formation | 4001.46 | 0.7133 |
3 | CB302-3A | dolomite | Yeli-Liangjiashan Formation | 4004.45 | 0.7145 |
4 | CB302-4A | dolomite | Yeli-Liangjiashan Formation | 4008.5 | 0.7138 |
5 | CB302-5A | dolomite | Yeli-Liangjiashan Formation | 4001.5 | 0.7105 |
6 | SHG 2-1A | dolomite | Yeli-Liangjiashan Formation | 2404 | 0.7097 |
7 | SHG2-2A | dolomite | Yeli-Liangjiashan Formation | 2407.9 | 0.7093 |
8 | SHG2-3A | dolomite | Yeli-Liangjiashan Formation | 2408 | 0.7116 |
9 | ZG39-1 | dolomite | Fengshan Formation | 4338.2 | 0.7108 |
10 | ZG39-2 | dolomite | Fengshan Formation | 4341.1 | 0.7107 |
11 | ZG39-3 | dolomite | Fengshan Formation | 4343.3 | 0.7106 |
12 | ZG39-4 | dolomitic limestone | Fengshan Formation | 4345.9 | 0.7144 |
13 | ZG39-5 | dolomite | Fengshan Formation | 4349.3 | 0.7103 |
14 | ZG39-6 | dolomite | Fengshan Formation | 4351.8 | 0.7116 |
15 | ZH10 | dolomite | Fengshan Formation | 4658.14 | 0.7113 |
16 | ZG39-7 | dolomite | Fengshan Formation | 4359.2 | 0.7108 |
17 | ZG39-8 | dolomite | Fengshan Formation | 4361.8 | 0.7117 |
18 | ZG39-9 | dolomite | Fengshan Formation | 4358.1 | 0.7126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wang, G.; Wang, Y.; Hao, X.; Qin, F.; Fang, X.; Meng, W.; Liu, G. Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression. J. Mar. Sci. Eng. 2024, 12, 804. https://doi.org/10.3390/jmse12050804
Liu R, Wang G, Wang Y, Hao X, Qin F, Fang X, Meng W, Liu G. Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression. Journal of Marine Science and Engineering. 2024; 12(5):804. https://doi.org/10.3390/jmse12050804
Chicago/Turabian StyleLiu, Ruijuan, Guozhi Wang, Yongshi Wang, Xuefeng Hao, Feng Qin, Xianxu Fang, Wei Meng, and Gang Liu. 2024. "Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression" Journal of Marine Science and Engineering 12, no. 5: 804. https://doi.org/10.3390/jmse12050804
APA StyleLiu, R., Wang, G., Wang, Y., Hao, X., Qin, F., Fang, X., Meng, W., & Liu, G. (2024). Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression. Journal of Marine Science and Engineering, 12(5), 804. https://doi.org/10.3390/jmse12050804