Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Global Overview
4.2. Epifaunal Species
4.3. Endofaunal Species
5. Discussion
5.1. Results of Living versus Dead Specimens
- H. elegans at stations B (550 m) and WH (1993 m);
- U. mediterranea at stations B (550 m) and A (1000 m);
- U. peregrina at stations B (550 m), A (1000 m), and FP11 (1600 m);
- Globobulimina spp. at stations K (650 m) and A (1000 m).
5.2. Comparison between Analytical Approaches
5.3. Choice of Species for Paleoceanographic Reconstructions
5.3.1. Towards a Global Calibration Dataset?
5.3.2. U. mediterranea vs. U. peregrina
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Station | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Fe/Ca | 1 s | Instrument |
---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 0.5–1 | n.d. | n.d. | * |
B | 550 | H. elegans | L | 1–1.5 | 0.036 | 0.003 | X |
B | 550 | H. elegans | L | 1.5–2 | 0.032 | 0.002 | X |
B | 550 | H. elegans | D | 2–2.5 | n.d. | n.d. | X |
B | 550 | H. elegans | D | 2–2.5 | n.d. | n.d. | X |
B | 550 | H. elegans | D | 2–2.5 | 0.101 | 0.001 | * |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | n.d. | n.d. | * |
WH | 1993 | H. elegans | L | 0–0.5 | 0.069 | 0.005 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.103 | 0.007 | X |
WH | 1993 | H. elegans | D | 0–0.5 | n.d. | n.d. | X |
WH | 1993 | H. elegans | D | 0–0.5 | n.d. | n.d. | * |
WH | 1993 | H. elegans | L | 0.5–1 | n.d. | n.d. | * |
G | 400 | H. balthica | L | 0–0.5 | n.d. | n.d. | X |
G | 400 | H. balthica | L | 0–0.5 | n.d. | n.d. | X |
G | 400 | H. balthica | L | 0–0.5 | 0.098 | 0.001 | * |
G | 400 | H. balthica | L | 0–0.5 | 0.082 | 0.001 | * |
B | 550 | H. balthica | L | 1–1.5 | 0.102 | 0.007 | X |
B | 550 | H. balthica | L | 1–1.5 | 0.101 | 0.007 | X |
B | 550 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
B | 550 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | * |
B | 550 | U. mediterranea | D | 1–1.5 | 0.063 | 0.005 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 0.042 | 0.003 | X |
B | 550 | U. mediterranea | D | 1.5–2 | n.d. | n.d. | * |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | n.d. | n.d. | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.030 | 0.002 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.107 | 0.008 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.083 | 0.006 | X |
A | 1000 | U. mediterranea | L | 0.5–1 | n.d. | n.d. | * |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.031 | 0.002 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.085 | 0.006 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.087 | 0.006 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | n.d. | n.d. | * |
G | 400 | U. peregrina | L | 0–0.5 | 0.101 | 0.007 | X |
G | 400 | U. peregrina | L | 0–0.5 | 0.046 | 0.003 | X |
B | 550 | U. peregrina | L | 0–0.5 | 0.109 | 0.008 | X |
B | 550 | U. peregrina | L | 0.5–1 | 0.105 | 0.008 | X |
B | 550 | U. peregrina | D | 0.5–1 | 0.113 | 0.008 | X |
B | 550 | U. peregrina | L | 1–1.5 | 0.104 | 0.007 | X |
B | 550 | U. peregrina | D | 1–1.5 | 0.084 | 0.006 | X |
A | 1000 | U. peregrina | L | 0–0.5 | 0.053 | 0.004 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 0.066 | 0.001 | * |
A | 1000 | U. peregrina | D | 5.5–6.5 | 0.100 | 0.001 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.041 | 0.003 | X |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.044 | 0.001 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 0.015 | 0.001 | * |
FP11 | 1600 | U. peregrina | D | 3–3.5 | n.d. | n.d. | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.107 | 0.008 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.093 | 0.007 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.034 | 0.002 | X |
C | 250 | M. barleanus | L | 0.5–1 | 0.100 | 0.001 | * |
C | 250 | M. barleanus | L | 5–6 | 0.095 | 0.002 | * |
C | 250 | M. barleanus | L | 5–6 | 0.099 | 0.001 | * |
FP13 | 375 | M. barleanus | L | 1–1.5 | n.d. | n.d. | * |
B | 550 | M. barleanus | D | 1.5–2 | 0.101 | 0.001 | * |
K | 650 | M. barleanus | D | 6–8 | 0.092 | 0.001 | * |
A | 1000 | M. barleanus | D | 3–3.5 | 0.101 | 0.001 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 0.104 | 0.008 | X |
C | 250 | Globobulimina spp. | L | 3.5–4 | 0.066 | 0.005 | X |
FP13 | 375 | Globobulimina spp. | L | 5–6 | 0.105 | 0.008 | X |
B | 550 | Globobulimina spp. | D | 1.5–2 | 0.036 | 0.003 | X |
K | 650 | Globobulimina spp. | D | 2–3 | 0.029 | 0.002 | X |
K | 650 | Globobulimina spp. | L | 3–4 | 0.066 | 0.005 | X |
E | 750 | Globobulimina spp. | L | 2–2.5 | 0.103 | 0.009 | X |
A | 1000 | Globobulimina spp. | L | 1–1.5 | 0.047 | 0.003 | X |
A | 1000 | Globobulimina spp. | D | 4–5 | 0.105 | 0.008 | X |
References
- IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. Approved Synthesis Report of the IPCC Sixth Assessment Report (AR6). 2023. Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf (accessed on 10 April 2017).
- EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 2004, 429, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.M. New oceanic proxies for paleoclimate. Earth Planet. Sci. Lett. 2002, 203, 1–13. [Google Scholar] [CrossRef]
- Katz, M.E.; Cramer, B.S.; Franzese, A.; Honisch, B.; Miller, K.G.; Rosenthal, Y.; Wright, J.D. Traditional and emerging geochemical proxies in foraminifera. J. Foraminifer. Res. 2010, 40, 165–192. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Marchitto, T.M. Tracers of past ocean circulation. In The Oceans and Marine Geochemistry, 2nd ed.; Mottl, M.J., Elderfield, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Oomori, T. Distribution coefficient of Mg2+ ions between calcite and solutions at 10–50 °C. Mar. Chem. 1987, 20, 327. [Google Scholar] [CrossRef]
- Cusack, M.; Freer, A. Biomineralization: Elemental and Organic Influence in Carbonate Systems. Chem. Rev. 2008, 108, 4433–4454. [Google Scholar] [CrossRef] [PubMed]
- DeVilliers, S.; Greaves, M.; Elderfield, H. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochem. Geophys. Geosyst. 2002, 3, 2001GC000169. [Google Scholar] [CrossRef]
- Fernandez, D.P.; Gagnon, A.C.; Adkins, J.F. An Isotope Dilution ICP-MS Method for the Determination of Mg/Ca and Sr/Ca Ratios in Calcium Carbonate. Geostand. Geoanalytical Res. 2011, 35, 23–37. [Google Scholar] [CrossRef]
- Harding, D.J.; Arden, J.W.; Rickaby, R.E.M. A method for precise analysis of trace element/calcium ratios in carbonate samples using quadrupole inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2006, 7, Q06003. [Google Scholar] [CrossRef]
- Hathorne, E.C.; Alard, O.; James, R.H.; Rogers, N.W. Determination of intratest variability of trace elements in foraminifera by laser ablation inductively coupled plasma-mass spectrometry. Geochem. Geophys. Geosyst. 2003, 4, 8408. [Google Scholar] [CrossRef]
- Johnstone, H.J.H.; Yu, J.; Elderfield, H.; Schulz, M. Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using X-ray computed tomography-based dissolution index, XDX. Paleoceanography 2011, 26, 17. [Google Scholar] [CrossRef]
- Marchitto, T.M. Precise multi-elemental ratios in small foraminiferal samples determined by sector field ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, Q05P13. [Google Scholar] [CrossRef]
- Roman, M.; Ferretti, P.; Cairns, W.R.L.; Spolaor, A.; Turetta, C.; Barbante, C. High speed-low volume automated ICP-QMS method for determination of Mg/Ca in biogenic calcite. J. Anal. At. Spectrom. 2019, 34, 764–773. [Google Scholar] [CrossRef]
- Shen, C.C.; Chiu, H.Y.; Chiang, H.W.; Chu, M.F.; Wei, K.Y.; Steinke, S.; Chen, M.T.; Lin, Y.S.; Lo, L. High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chem. Geol. 2007, 236, 339–349. [Google Scholar] [CrossRef]
- Yu, J.; Day, J.; Greaves, M.; Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 2005, 6, Q08P01. [Google Scholar] [CrossRef]
- Danelian, T.; Eynaud, F. Advances in micropaleontology: 60th anniversary special volume. Rev. De Micropaleontol. 2018, 61, 111–112. [Google Scholar] [CrossRef]
- Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Biominer. Rev. Mineral. Geochem. 2003, 54, 115–149. [Google Scholar] [CrossRef]
- Jorissen, F.J.; De Stiger, H.C.; Widmark, J.G.V. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 1995, 26, 3–15. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Licari, L.; Alexandre, A.; Anschutz, P.; Carbonel, P. Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats. Deep-Sea Res. I 2002, 49, 751–785. [Google Scholar] [CrossRef]
- Elderfield, H.; Bertram, C.J.; Erez, J. Biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth Planet. Sci. Lett. 1996, 142, 409–423. [Google Scholar] [CrossRef]
- Elderfield, H.; Ganssen, G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 2000, 405, 442–445. [Google Scholar] [CrossRef]
- Lea, D.W.; Mashiotta, T.A.; Spero, H.J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta 1999, 63, 2369–2379. [Google Scholar] [CrossRef]
- Lea, D.W.; Pak, D.K.; Spero, H.J. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations. Science 2000, 289, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Lear, C.H.; Elderfield, H.; Wilson, P.A. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science 2000, 287, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, N.; Lear, C.H.; Jakobsson, M.; Stranne, C.; O’Regan, M.; Cronin, T.M.; Gukov, A.Y.; Coxall, H.K. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures. Geochim. Cosmochim. Acta 2018, 236, 240–259. [Google Scholar] [CrossRef]
- Elderfield, H.; Yu, J.; Anand, P.; Kiefer, T.; Nyland, B. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 2006, 250, 633–649. [Google Scholar] [CrossRef]
- Elderfield, H.; Greaves, M.; Barker, S.; Hall, I.R.; Tripati, A.; Ferretti, P.; Crowhurst, S.; Booth, L.; Daunt, C. A record of bottom water temperature and seawater d18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 2010, 29, 160–169. [Google Scholar] [CrossRef]
- Mawbey, E.M.; Hendry, K.H.; Greaves, M.J.; Hillenbrand, C.; Kuhn, G.; Spencer-Jones, C.L.; McClymont, E.L.; Vadman, K.J.; Shevenell, A.E.; Jernas, P.E.; et al. Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf. Geochim. Cosmochim. Acta 2020, 283, 54–66. [Google Scholar] [CrossRef]
- Stirpe, C.R.; Allen, K.A.; Sikes, E.L.; Zhou, X.; Rosenthal, Y.; Cruz-Uribe, A.M.; Brooks, H.L. The Mg/Ca proxy for temperature: A Uvigerina core-top study in the Southwest Pacific. Geochim. Cosmochim. Acta 2021, 309, 299–312. [Google Scholar] [CrossRef]
- Tisserand, A.A.; Dokken, T.M.; Waelbroeck, C.; Gherardi, J.-M.; Scao, V.; Fontanier, C.; Jorissen, F. Refining benthic foraminiferal Mg/Ca-temperature calibrations using core-tops from the western tropical Atlantic: Implication for paleotemperature estimation. Geochem. Geophys. Geosyst. 2013, 14, 929–946. [Google Scholar] [CrossRef]
- Yu, Z.; Lei, Y.; Li, T.; Zhang, S.; Xiong, Z. Mg and Sr uptake in benthic foraminifera Ammonia aomoriensis based on culture and field studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 520, 229–239. [Google Scholar] [CrossRef]
- Dissard, D.; Nehrke, G.; Reichart, G.J.; Bijma, J. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments. Geochim. Cosmochim. Acta 2010, 74, 928–940. [Google Scholar] [CrossRef]
- Dissard, D.; Nehrke, G.; Reichart, G.J.; Bijma, J. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with Ammonia tepida. Biogeosciences 2010, 7, 81–93. [Google Scholar] [CrossRef]
- Evans, D.; Erez, J.; Oron, S.; Müller, W. Mg/Ca temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides. Geochim. Cosmochim. Acta 2015, 148, 325–342. [Google Scholar] [CrossRef]
- Filipsson, H.L.; Bernhard, J.M.; Lincoln, S.A.; McCorkle, D.C. A culture-based calibration of benthic foraminiferal paleotemperature proxies: Delta O-18 and Mg/Ca results. Biogeosciences 2010, 7, 1335–1347. [Google Scholar] [CrossRef]
- Hintz, C.J.; Shaw, T.J.; Chandler, G.T.; Bernhard, J.M.; McCorkle, D.C.; Blanks, J.K. Trace/minor element: Calcium ratios in cultured benthic foraminifera. Part I: Inter-species and inter-individual variability. Geochim. Cosmochim. Acta 2006, 70, 1952–1963. [Google Scholar] [CrossRef]
- Hintz, C.J.; Shaw, T.J.; Bernhard, J.M.; Chandler, G.T.; McCorkle, D.C.; Blanks, J.K. Trace/minor element: Calcium ratios in cultured benthic foraminifera. Part II: Ontogenetic variation. Geochim. Cosmochim. Acta 2006, 70, 1964–1976. [Google Scholar] [CrossRef]
- Levi, A.; Müller, W.; Erez, J. Intrashell Variability of Trace elements in Benthic Foraminifera Grown under High CO2 Levels. Front. Earth Sci. 2019, 7, 453029. [Google Scholar] [CrossRef]
- Not, C.; Thibodeau, B.; Yokoyama, Y. Incorporation of Mg, Sr, Ba, U, and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2. Geochem. Geophys. Geosyst. 2018, 19, 83–98. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H. Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth Planet. Sci. Lett. 2008, 276, 129–139. [Google Scholar] [CrossRef]
- Barker, S.; Greaves, M.; Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 2003, 4, 8407. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H.; Greaves, M.; Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 2007, 8, Q06016. [Google Scholar] [CrossRef]
- Lorens, R.B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 1981, 45, 553–561. [Google Scholar] [CrossRef]
- Morse, J.W.; Bender, M.L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol. 1990, 82, 265–277. [Google Scholar] [CrossRef]
- Tang, J.; Köhler, S.J.; Dietzel, M. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta 2008, 72, 3718–3732. [Google Scholar] [CrossRef]
- Mojtahid, M.; Depuydt, P.; Mouret, A.; Le Houedec, S.; Fiorini, S.; Chollet, S.; Massol, F.; Dohou, F.; Filipsson, H.; Boer, W.; et al. Assessing the impact of different carbonate system parameters on benthic foraminifera from controlled growth experiments. Chem. Geol. 2023, 623, 121396. [Google Scholar] [CrossRef]
- Raitzsch, M.; Dueñas-Bohórquez, A.; Reichart, G.-J.; de Nooijer, L.J.; Bickert, T. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: Impact of calcium concentration and associated calcite saturation state. Biogeosciences 2010, 7, 869–881. [Google Scholar] [CrossRef]
- Ma, R.; Sepulcre, S.; Bassinot, L.; Haurine, F.; Tisnérat-Laborde, N.; Colin, C. North Indian Ocean circulation since the last deglaciation as inferred from new elemental ratio records for benthic foraminifera Hoeglundina elegans. Paleoceanogr. Paleoclimatol. 2020, 35, e2019PA003801. [Google Scholar] [CrossRef]
- Yu, J.; Elderfield, H.; Jin, Z.; Tomascak, P.; Rohling, E.J. Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the late Pleistocene. Quat. Sci. Rev. 2014, 98, 1–6. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Boyle, E.A.; Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 1997, 61, 3633–3643. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Adkins, J.F.; Curry, W.B.; Dokken, T.; Hall, I.R.; Herguera, J.C.; Hirschi, J.J.-M.; Ivanova, E.V.; Kissel, C.; Marchal, O.; et al. Atlantic Meridional Overturning Circulation during the Last Glacial Maximum. Science 2007, 316, 66–69. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annu. Rev. Mar. Sci. 2017, 9, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Mojtahid, M.; Griveaud, C.; Fontanier, C.; Anschutz, P.; Jorissen, F.J. Live benthic foraminiferal faunas along a bathymetrical transect (140–4800 m) in the Bay of Biscay (NE Atlantic). Rev. Micropaleontol. 2010, 53, 139e162. [Google Scholar] [CrossRef]
- Lewis, E.; Wallace, D. CO2SYS.EXE, Program Developed for CO2 System Calculations; Brookhaven National Laboratory and Institut für Meereskunde: Hamburg, Germany, 2000. Available online: http://cdiac.esd.ornl.gov/oceans/co2rprt.html (accessed on 10 April 2017).
- Schlitzer, R. Electronic Atlas of WOCE Hydrographic and Tracer Data Now Available. Eos T. Am. Geophys. Un. 2000, 81, 45. [Google Scholar] [CrossRef]
- Tréguer, P.; Le Corre, P.; Grall, J.R. The seasonal variations of nutri ents in the upper waters of the Bay of Biscay region and their relation to phytoplanktonic growth. Deep-Sea Res. 1979, 26, 1121–1152. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude northeast Atlantic Ocean: The thermocline water mass. Deep-Sea Res. I 2000, 48, 237–267. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude Northeast Atlantic Ocean: The deep water masses. Deep-Sea Res. I 2000, 47, 757–788. [Google Scholar] [CrossRef]
- Van Aken, H.M. The hydrography of the mid-latitude Northeast Atlantic Ocean: The intermediate water masses. Deep-Sea Res. I 2000, 47, 789–824. [Google Scholar] [CrossRef]
- McCorkle, D.C.; Martin, P.A.; Lea, D.W.; Klinkhammer, G.P. Evidence of a Dissolution Effect on Benthic Foraminiferal Shell Chemistry-Delta-C-13, Cd/Ca, Ba/Ca, and Sr/Ca Results from the Ontong Java Plateau. Paleoceanography 1995, 10, 699–714. [Google Scholar] [CrossRef]
- Mojtahid, M.; Jorissen, F.J.; Garcia, J.; Schiebel, R.; Michel, E.; Eynaud, F.; Gillet, H.; Cremer, M.; Diz Ferreiro, P.; Siccha, M.; et al. High resolution Holocene record in the southeastern Bay of Biscay: Global versus regional climate signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 377, 28–44. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Chaillou, G.; David, C.; Anschutz, P.; Lafon, V. Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay. Deep-Sea Res. I 2003, 50, 457–494. [Google Scholar] [CrossRef]
- Walton, W.R. Techniques for recognition of living Foraminifera. Contrib. Cushman Found. Foraminifer. Res. 1952, 3, 56–60. [Google Scholar]
- Coadic, R.; Bassinot, F.; Douville, E.; Michel, E.; Dissard, D.; Greaves, M. A core-top study of dissolution effect on B/Ca in Globigerinoides sacculifer from the tropical Atlantic: Potential bias for paleo-reconstruction of seawater carbonate chemistry. Geochem. Geophys. Geosyst. 2013, 14, 1053–1068. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Lear, C.H.; Oppo, D.W.; Linsley, B.K. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography 2006, 21. [Google Scholar] [CrossRef]
- Allison, N.; Austin, W.E.N. Serial Mg/Ca and Sr/Ca chronologies across single benthic foraminifera tests. Chem. Geol. 2008, 253, 83–88. [Google Scholar] [CrossRef]
- Kristjánsdóttir, G.B.; Lea, D.W.; Jennings, A.E.; Pak, D.K.; Belanger, C. New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. Geochem. Geophys. Geosyst. 2007, 8, Q03P21. [Google Scholar] [CrossRef]
- Hasenfratz, A.P.; Schiebel, R.; Thornalley, D.J.R.; Schönfeld, J.; Jaccard, S.L.; MartínezGarcía, A.; Holbourn, A.; Jennings, A.E.; Kuhnt, W.; Lear, C.H.; et al. Mg/Ca-temperature calibration for the benthic foraminifera Melonis barleeanum and Melonis pompilioides. Geochim. Cosmochim. Acta 2017, 217, 365–383. [Google Scholar] [CrossRef]
- Skinner, L.C.; Shackleton, N.J.; Elderfiled, H. Millennial-scale variability of deep-water temperature and d18 Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosyst. 2003, 4, 1098. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Perron-Cashman, S.; Lear, C.H.; Bard, E.; Barker, S.; Billups, K.; Bryan, M.; Delaney, M.L.; Dwyer, G.S.; Elderfield, H.; et al. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochem. Geophys. Geosyst. 2004, 5, Q04D09. [Google Scholar] [CrossRef]
- Keul, N.; Langer, G.; Thoms, S.; De Nooijer, L.J.; Reichart, G.; Bijma, J. Exploring foraminiferal Sr/Ca as a new carbonate system proxy. Geochim. Cosmochim. Acta 2017, 202, 374–386. [Google Scholar] [CrossRef]
- Boyle, E.A.; Keigwin, L.D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 1985, 76, 135–150. [Google Scholar] [CrossRef]
- Pak, D.K.; Lea, D.W.; Kennett, J.P. A sediment trap time series of foraminiferal Mg/Ca and d18O. Eos Trans. AGU 2000, 81, F662. [Google Scholar]
- Anand, P.; Elderfield, H.; Conte, M.H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 2003, 18, 1050. [Google Scholar] [CrossRef]
- Pak, D.K.; Lea, D.W.; Kennett, J.P. Seasonal and interannual variation in Santa Barbara Basin water temperatures observed in sediment trap foraminiferal Mg/Ca. Geochem. Geophys. Geosyst. 2004, 5, Q12008. [Google Scholar] [CrossRef]
- Bryan, S.P.; Marchitto, T.M. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 2008, 23, PA2220. [Google Scholar] [CrossRef]
- Martin, W.R.; Sayles, F.L. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim. Cosmochim. Acta 1996, 60, 243–263. [Google Scholar] [CrossRef]
- Martin, W.R.; Sayles, F.L. Organic matter oxidation in deep-sea sediments: Distribution in the sediment column and implications for calcite dissolution. Deep-Sea Res. II 2006, 53, 771–792. [Google Scholar] [CrossRef]
Station | Location | Depth (m) | T(°C) | Salinity (psu) | [O2] (mmol.L−1) | Δ[CO32−]calcite mmol.mol−1 | Δ[CO32−]aragonite mmol.mol−1 | |
---|---|---|---|---|---|---|---|---|
C | 43°40′08 N | 1°38′87 W | 250 | 11.8 | 35.6 * | 225 | 99.2 | 74.5 |
FP13 | 43°42′21 N | 1°59′56 W | 375 | 11.4 | 35.6 | 218 | 95.8 | 71.2 |
G | 43°40′20 N | 1°36′40 W | 400 | 11.3 | 35.6 * | 222 | 95.0 | 70.3 |
B | 43°50′31 N | 2°03′47 W | 550 | 10.8 | 35.6 | 210 | 86.8 | 62.1 |
K | 44°32′52 N | 3°37′23 W | 650 | 10.5* | 35.6 * | 202 | 72.6 | 55.2 |
E | 43°46′06 N | 1°48′03 W | 750 | 10.4 | 35.7 * | 199 | 79.9 | 54.4 |
FP12 | 43°59′98 N | 2°15′12 W | 800 | 10.2 | 35.7 | 175 | 79.1 | 50.8 |
A | 44°10′24 N | 2°20′06 W | 1000 | 9.7 | 35.8 | 195 | 75.5 | 49.4 |
FP11 | 44°27′76 N | 2°39′46 W | 1600 | 5.8 | 35.3 | 250 | 74.0 | 47.9 |
WH | 43°37′73 N | 1°43′62 W | 1993 | 4.1 | 35.1 | 261 | 72.6 | 47.9 |
Station | Depth (m) | H. elegans | H. balthica | U. mediterranea | U. peregrina | M. barleeanum | Globobulimina spp. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | D | L | D | L | D | L | D | L | D | L | D | ||
C | 250 | 1(*1) + 1(*2) | 1(*2) | ||||||||||
FP13 | 375 | 1(*1) | 1(*1) | ||||||||||
G | 400 | 1(*2) | |||||||||||
B | 550 | 3(*1) | 1(*4) | 1(*4) + 1(*2) | 1(*2) | 1(*3) | 2(*1) | 2(*1) | 1(*1) | 1(*1) | |||
K | 650 | 1(*1) | 1(*1) | 1(*1) | |||||||||
E | 750 | 1(*1) | |||||||||||
FP12 | 800 | 1(*3) | |||||||||||
A | 1000 | 1(*3) + 1(*1) | 1(*4) | 1(*1) | 1(*2) | 1(*1) | 1(*1) | 1(*1) | |||||
FP11 | 1600 | 1(*3) | 1(*2) | 1(*2) | |||||||||
WH | 1993 | 1(*2) + 1(*1) | 1(*2) | 1(*3) |
Station | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Mg/Ca | 1 s | Sr/Ca | 1 s | Instrument |
---|---|---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 0.5–1 | 2.416 | 0.027 | 1.741 | 0.014 | * |
B | 550 | H. elegans | L | 1–1.5 | 0.778 | 0.010 | 5.213 | 0.052 | X |
B | 550 | H. elegans | L | 1.5–2 | 0.701 | 0.009 | 5.005 | 0.050 | X |
B | 550 | H. elegans | D | 2–2.5 | 0.969 | 0.013 | 2.764 | 0.028 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.297 | 0.017 | 2.835 | 0.028 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.292 | 0.014 | 5.165 | 0.041 | * |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.533 | 0.033 | 0.393 | 0.004 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.411 | 0.031 | 0.352 | 0.004 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 1.117 | 0.012 | 0.646 | 0.005 | * |
WH | 1993 | H. elegans | L | 0–0.5 | 0.573 | 0.007 | 1.394 | 0.014 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.771 | 0.010 | 1.578 | 0.016 | X |
WH | 1993 | H. elegans | D | 0–0.5 | 0.278 | 0.004 | 1.338 | 0.013 | X |
WH | 1993 | H. elegans | D | 0–0.5 | 1.385 | 0.015 | 0.485 | 0.004 | * |
WH | 1993 | H. elegans | L | 0.5–1 | 0.715 | 0.008 | 0.574 | 0.005 | * |
G | 400 | H. balthica | L | 0–0.5 | 3.486 | 0.045 | 3.377 | 0.034 | X |
G | 400 | H. balthica | L | 0–0.5 | 3.756 | 0.049 | 3.460 | 0.035 | X |
G | 400 | H. balthica | L | 0–0.5 | 6.366 | 0.070 | 1.579 | 0.013 | * |
G | 400 | H. balthica | L | 0–0.5 | 6.143 | 0.068 | 1.607 | 0.013 | * |
B | 550 | H. balthica | L | 1–1.5 | 4.029 | 0.052 | 3.578 | 0.036 | X |
B | 550 | H. balthica | L | 1–1.5 | 3.581 | 0.047 | 3.489 | 0.035 | X |
B | 550 | U. mediterranea | L | 0–0.5 | 1.174 | 0.015 | 2.472 | 0.025 | X |
B | 550 | U. mediterranea | L | 0–0.5 | 1.087 | 0.012 | 1.517 | 0.012 | * |
B | 550 | U. mediterranea | D | 1–1.5 | 1.126 | 0.015 | 2.325 | 0.023 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 1.127 | 0.015 | 2.594 | 0.026 | X |
B | 550 | U. mediterranea | D | 1.5–2 | 1.148 | 0.013 | 2.375 | 0.019 | * |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 0.776 | 0.010 | 2.410 | 0.024 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.319 | 0.017 | 2.533 | 0.025 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.014 | 0.013 | 2.506 | 0.025 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 1.059 | 0.014 | 2.572 | 0.026 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.898 | 0.012 | 2.556 | 0.026 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.959 | 0.012 | 2.546 | 0.025 | X |
A | 1000 | U. mediterranea | L | 0.5–1 | 1.170 | 0.013 | 2.835 | 0.023 | * |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.179 | 0.015 | 2.563 | 0.026 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.055 | 0.014 | 2.446 | 0.024 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 0.800 | 0.010 | 2.523 | 0.025 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.173 | 0.013 | 1.506 | 0.012 | * |
G | 400 | U. peregrina | L | 0–0.5 | 1.808 | 0.024 | 2.724 | 0.027 | X |
G | 400 | U. peregrina | L | 0–0.5 | 2.589 | 0.034 | 2.624 | 0.026 | X |
B | 550 | U. peregrina | L | 0–0.5 | 1.638 | 0.021 | 2.563 | 0.026 | X |
B | 550 | U. peregrina | L | 0.5–1 | 1.598 | 0.021 | 2.588 | 0.026 | X |
B | 550 | U. peregrina | D | 0.5–1 | 1.216 | 0.016 | 2.646 | 0.026 | X |
B | 550 | U. peregrina | L | 1–1.5 | 1.430 | 0.019 | 2.630 | 0.026 | X |
B | 550 | U. peregrina | D | 1–1.5 | 1.039 | 0.014 | 2.593 | 0.026 | X |
A | 1000 | U. peregrina | L | 0–0.5 | 1.317 | 0.017 | 2.557 | 0.026 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.966 | 0.022 | 1.185 | 0.009 | * |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.970 | 0.022 | 1.222 | 0.010 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.900 | 0.012 | 2.381 | 0.024 | X |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.968 | 0.013 | 2.456 | 0.025 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 2.149 | 0.024 | 1.120 | 0.009 | * |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 1.701 | 0.019 | 1.118 | 0.009 | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 1.271 | 0.017 | 2.169 | 0.022 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.976 | 0.013 | 2.207 | 0.022 | X |
WH | 1993 | U. peregrina | D | 0–0.5 | 0.791 | 0.010 | 2.290 | 0.023 | X |
C | 250 | M. barleaanum | L | 0.5–1 | 3.121 | 0.034 | 1.324 | 0.011 | * |
C | 250 | M. barleaanum | L | 5–6 | 2.903 | 0.032 | 1.327 | 0.011 | * |
C | 250 | M. barleaanum | L | 5–6 | 2.487 | 0.027 | 1.292 | 0.010 | * |
FP13 | 375 | M. barleaanum | L | 1–1.5 | 1.596 | 0.018 | 1.204 | 0.010 | * |
B | 550 | M. barleaanum | D | 1.5–2 | 1.905 | 0.021 | 1.317 | 0.011 | * |
K | 650 | M. barleaanum | D | 6–8 | 2.783 | 0.031 | 1.427 | 0.011 | * |
A | 1000 | M. barleaanum | D | 3–3.5 | 2.857 | 0.031 | 1.367 | 0.011 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.169 | 0.054 | 2.500 | 0.025 | X |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.092 | 0.053 | 2.557 | 0.026 | X |
FP13 | 375 | Globobulimina spp. | L | 5–6 | 4.307 | 0.056 | 2.596 | 0.026 | X |
B | 550 | Globobulimina spp. | D | 1.5–2 | 6.842 | 0.089 | 2.477 | 0.025 | X |
K | 650 | Globobulimina spp. | D | 2–3 | 3.728 | 0.048 | 2.535 | 0.025 | X |
K | 650 | Globobulimina spp. | L | 3–4 | 4.951 | 0.064 | 2.602 | 0.026 | X |
E | 750 | Globobulimina spp. | L | 2–2.5 | 3.081 | 0.040 | 2.545 | 0.025 | X |
A | 1000 | Globobulimina spp. | L | 1–1.5 | 6.299 | 0.082 | 2.498 | 0.025 | X |
A | 1000 | Globobulimina spp. | D | 4–5 | 0.994 | 0.013 | 2.007 | 0.020 | X |
Sta-tion | Water Depth (m) | Species | D/L | Depth inside the Sediment (cm) | Average Mg/Ca (mmol.mol−1) | 1 s | Mg/Ca External Reproducibility | Average Sr/Ca (mmol.mol−1) | 1 s | Sr/Ca External Reproducibility | n= | Instru-ment |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 550 | H. elegans | L | 1–1.5 | 0.740 | 0.054 | 7.3% | 5.109 | 0.147 | 2.9% | 2 | X |
B | 550 | H. elegans | D | 2–2.5 | 1.133 | 0.232 | 21% | 2.799 | 0.050 | 1.8% | 2 | X |
FP11 | 1600 | H. elegans | L | 0–0.5 | 2.472 | 0.087 | 3.5% | 0.373 | 0.029 | 7.9% | 2 | X |
WH | 1993 | H. elegans | L | 0–0.5 | 0.672 | 0.140 | 21% | 1.486 | 0.130 | 8.7% | 2 | X |
G | 400 | H. balthica | L | 0–0.5 | 3.621 | 0.191 | 5.3% | 3.419 | 0.059 | 1.7% | 2 | X |
G | 400 | H. balthica | L | 0–0.5 | 6.255 | 0.157 | 2.5% | 1.593 | 0.020 | 1.2% | 2 | * |
B | 550 | H. balthica | L | 1–1.5 | 3.805 | 0.317 | 8.3% | 3.533 | 0.063 | 1.8% | 2 | X |
B | 550 | U. mediterranea | D | 1–1.5 | 1.127 | 0.001 | 0.1% | 5.459 | 0.191 | 7.8% | 2 | X |
FP12 | 800 | U. mediterranea | L | 0–0.5 | 1.037 | 0.272 | 26% | 2.483 | 0.065 | 2.6% | 3 | X |
A | 1000 | U. mediterranea | L | 0–0.5 | 0.972 | 0.081 | 8.3% | 2.558 | 0.013 | 0.5% | 3 | X |
A | 1000 | U. mediterranea | D | 1–1.5 | 1.011 | 0.193 | 19% | 2.511 | 0.060 | 2.4% | 3 | X |
G | 400 | U. peregrina | L | 0–0.5 | 2.198 | 0.552 | 25% | 2.674 | 0.071 | 2.7% | 2 | X |
B | 550 | U. peregrina | L | 0–0.5 | 1.618 | 0.029 | 1.8% | 2.576 | 0.018 | 0.7% | 2 | X |
A | 1000 | U. peregrina | D | 5.5–6.5 | 1.968 | 0.003 | 0.2% | 1.203 | 0.026 | 2.2% | 2 | * |
FP11 | 1600 | U. peregrina | L | 1–1.5 | 0.934 | 0.048 | 5.2% | 2.418 | 0.053 | 2.2% | 2 | X |
FP11 | 1600 | U. peregrina | D | 3–3.5 | 1.925 | 0.317 | 17% | 1.119 | 0.002 | 0.1% | 2 | * |
WH | 1993 | U. peregrina | D | 0–0.5 | 1.012 | 0.242 | 24% | 2.222 | 0.062 | 2.8% | 3 | X |
C | 250 | M. barleanus | L | 5–6 | 2.695 | 0.294 | 11% | 1.310 | 0.025 | 1.9% | 2 | * |
C | 250 | Globobulimina spp. | L | 3.5–4 | 4.130 | 0.054 | 1.3% | 2.528 | 0.040 | 1.6% | 2 | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepulcre, S.; Tribondeau, M.; Bassinot, F.; Mojtahid, M.; Nardelli, M.-P.; Dessandier, P.-A.; Bonnin, J. Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. J. Mar. Sci. Eng. 2024, 12, 736. https://doi.org/10.3390/jmse12050736
Sepulcre S, Tribondeau M, Bassinot F, Mojtahid M, Nardelli M-P, Dessandier P-A, Bonnin J. Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. Journal of Marine Science and Engineering. 2024; 12(5):736. https://doi.org/10.3390/jmse12050736
Chicago/Turabian StyleSepulcre, Sophie, Marion Tribondeau, Franck Bassinot, Meryem Mojtahid, Maria-Pia Nardelli, Pierre-Antoine Dessandier, and Jérôme Bonnin. 2024. "Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic" Journal of Marine Science and Engineering 12, no. 5: 736. https://doi.org/10.3390/jmse12050736
APA StyleSepulcre, S., Tribondeau, M., Bassinot, F., Mojtahid, M., Nardelli, M. -P., Dessandier, P. -A., & Bonnin, J. (2024). Assessing the Calibration of Benthic Foraminifera Elemental Ratios from the Northeastern Atlantic. Journal of Marine Science and Engineering, 12(5), 736. https://doi.org/10.3390/jmse12050736