Applications of Virtual Data in Subsea Inspections
Abstract
:1. Introduction
2. Background
- (1)
- Corrosion or indicators of corrosion
- (2)
- Consumption of cathodic protection
- (3)
- Presence and appearance of cracks
- (4)
- Exposed rebar, missing bolts and signs of damage to coatings, sealings, joints etc.
- (5)
- Deformation of the structure
- (6)
- Presence of scour and erosion
- (7)
- Upstream and downstream blockages
- (8)
- Presence and extent of marine growth colonisation
3. Case Studies
3.1. Virtual Scene Simulation to Investigate Assessment Methodologies: A Case Study on Fisheries
3.2. Utilizing Virtual Data to Develop Image-Processing Based Damage Detection Techniques: A Case Study on Marine Growth on Structures
3.3. Performance Evaluation of Image-Processing based Damage Assessment algorithms: A Case Study on Detecting Cracks and Corrosion in an Underwater Structure
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Byrne, M.; Schoefs, F.; Pakrashi, V.; Ghosh, B. An underwater lighting and turbidity image repository for analysing the performance of image-based non-destructive techniques. Struct. Infrastruct. Eng. 2017, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Estes, A.C.; Frangopol, D.M. Updating bridge reliability based on bridge management systems visual inspection results. J. Bridge Eng. 2003, 8, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, J.; Clemens, F.H.L.R.; Korving, H.; Cherqui, F.; Le Gauffre, P.; Ertl, T.; Plihal, H.; Müller, K.; Snaterse, C.T.M. The consistency of visual sewer inspection data. Struct. Infrastruct. Eng. 2013, 9, 214–228. [Google Scholar] [CrossRef] [Green Version]
- Allotta, B.; Bartolini, F.; Conti, R.; Costanzi, R.; Gelli, J.; Monni, N.; Natalini, M.; Pugi, L.; Ridolfi, A. MARTA: An AUV for underwater cultural heritage. In Proceedings of the Underwater Acoustics International Conference 2014–UA2014, Island of Rhodes, Greece, 22 June 2014. [Google Scholar]
- Mangeruga, M.; Cozza, M.; Bruno, F. Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions. JMSE 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.; Lagudi, A.; Barbieri, L.; Muzzupappa, M.; Cozza, M.; Cozza, A.; Peluso, R. A VR System for the Exploitation of Underwater Archaeological Sites. In Proceedings of the 2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Reggio Calabria, Italy, 27–28 October 2016; pp. 1–5. [Google Scholar]
- MacLeod Sword, C. Viable Alternative Mine Operating System: A Novel Underwater Robotic Excavation System for Flooded Open-Cut Mines. Energy Procedia 2017, 125, 50–55. [Google Scholar] [CrossRef]
- Vora, J.; Nair, S.; Gramopadhye, A.K.; Duchowski, A.T.; Melloy, B.J.; Kanki, B. Using virtual reality technology for aircraft visual inspection training: Presence and comparison studies. Appl. Ergon. 2002, 33, 559–570. [Google Scholar] [CrossRef]
- Linn, C.; Bender, S.; Prosser, J.; Schmitt, K.; Werth, D. Virtual remote inspection—A new concept for virtual reality enhanced real-time maintenance. In Proceedings of the 2017 23rd International Conference on Virtual System & Multimedia (VSMM), Dublin, Ireland, 31 October–4 November 2017. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1. [Google Scholar]
- Kim, B.; Lee, Y.I.; Cho, S. Deep learning-based rapid inspection of concrete structures. Int. Soc. Opt. Photonics 2018, 10598, 1059813. [Google Scholar]
- Berg, L.P.; Vance, J.M. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Earnshaw, R.A. Virtual Reality Systems; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- VIVE Pro Eye|VIVE. Available online: https://www.vive.com/eu/product/vive-pro-eye/ (accessed on 26 April 2020).
- Komorowski, J.P.; Forsyth, D.S. The role of enhanced visual inspections in the new strategy for corrosion management. Aircr. Eng. Aerosp. Technol. 2000, 72, 5–13. [Google Scholar] [CrossRef]
- Gallwey, T.; Drury, C.G. Task complexity in visual inspection. Hum. Factors 1986, 28, 595–606. [Google Scholar] [CrossRef]
- Bruno, F.; Lagudi, A.; Barbieri, L.; Muzzupappa, M.; Ritacco, G.; Cozza, A.; Cozza, M.; Peluso, R.; Lupia, M.; Cario, G. Virtual and Augmented Reality tools to improve the exploitation of underwater archaeological sites by diver and non-diver tourists. In Euro-Mediterranean Conference; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bruno, F.; Lagudi, A.; Ritacco, G.; Agrafiotis, P.; Skarlatos, D.; Cejka, J.; Kouril, P.; Liarokapis, F.; Philpin-Briscoe, O.; Poullis, C.; et al. Development and integration of digital technologies addressed to raise awareness and access to European underwater cultural heritage. An overview of the H2020 i-MARECULTURE project. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–10. [Google Scholar]
- Bruno, F.; Bruno, S.; De Sensi, G.; Luchi, M.-L.; Mancuso, S.; Muzzupappa, M. From 3D Reconstruction to Virtual Reality: A Complete Methodology for Digital Archaeological Exhibition. J. Cult. Herit. 2010, 11, 42–49. [Google Scholar] [CrossRef]
- Haydar, M.; David, R.; Madjid, M.; Samir, O.; Malik, M. Virtual and augmented reality for cultural computing and heritage: A case study of virtual exploration of underwater archaeological sites (preprint). Virtual Real. 2011, 15, 311–327. [Google Scholar] [CrossRef]
- Liarokapis, F.; Kouřil, P.; Agrafiotis, P.; Demesticha, S.; Chmelík, J.; Skarlatos, D. 3D Modelling and Mapping for Virtual Exploration of Underwater Archaeology Assets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Gračanin, D.; Valavanis, K.P.; Matijašević, M. Virtual Environment Testbed for Autonomous Underwater Vehicles. Control Eng. Pract. 1998, 6, 653–660. [Google Scholar] [CrossRef]
- Matsebe, O.; Kumile, C.M.; Tlale, N.S. A Review of Virtual Simulators for Autonomous Underwater Vehicles (AUVs). IFAC Proc. Vol. 2008, 41, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Bosch, J.; Ridao, P.; Ribas, D.; Gracias, N. Creating 360° Underwater Virtual Tours Using an Omnidirectional Camera Integrated in an AUV. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Jain, D.; Sra, M.; Guo, J.; Marques, R.; Wu, R.; Chiu, J.; Schmandt, C. Immersive Terrestrial Scuba Diving Using Virtual Reality. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems—CHI EA ’16, San Jose, CA, USA, 7–12 May 2016; ACM Press: San Jose, CA, USA, 2016; pp. 1563–1569. [Google Scholar]
- De Marchi, L.; Ceruti, A.; Testoni, N.; Marzani, A.; Liverani, A. Use of Augmented Reality in Aircraft Maintenance Operations. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 10–13 March 2014; p. 906412. [Google Scholar]
- Zhang, D.; Zhang, J.; Xiong, H.; Cui, Z.; Lu, D. Taking Advantage of Collective Intelligence and BIM-Based Virtual Reality in Fire Safety Inspection for Commercial and Public Buildings. Appl. Sci. 2019, 9, 5068. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, R.; Liu, Z.; Sun, C.; Glisic, B. Virtual Tours, Augmented Reality, and Informational Modeling for Visual Inspection and Structural Health Monitoring (Conference Presentation). In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019; Wang, K.-W., Sohn, H., Huang, H., Lynch, J.P., Eds.; SPIE: Denver, CO, USA, 2019; p. 6. [Google Scholar]
- Available online: https://www.sintef.no/en/projects/flexaqua/ (accessed on 26 April 2020).
- Wright, C.; Murphy, J.; Pakrashi, V. The Dynamic Effects of Marine Growth on a Tension Moored Floating Wind Turbine. In Progress in Renewable Energies Offshore; CRC Press: Lisbon, Portugal, 2016; pp. 723–732. [Google Scholar]
- Technologies, U. Unity Real-Time Development Platform|3D, 2D VR & AR Visualizations. Available online: https://unity.com/ (accessed on 26 April 2020).
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In AI 2006: Advances in Artificial Intelligence; Sattar, A., Kang, B., Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., et al., Eds.; Springe: Berlin, Heidelberg, 2006; Volume 4304, pp. 1015–1021. [Google Scholar]
- Pakrashi, V.; Schoefs, F.; Memet, J.B.; O’Connor, A. ROC Dependent Event Isolation Method for Image Processing Based Assessment of Corroded Harbour Structures. Struct. Infrastruct. Eng. 2010, 6, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Rouhan, A.; Schoefs, F. Probabilistic Modeling of Inspection Results for Offshore Structures. Struct. Saf. 2003, 25, 379–399. [Google Scholar] [CrossRef] [Green Version]
- Schoefs, F.; Boéro, J.; Clément, A.; Capra, B. The Aδ Method for Modelling Expert Judgement and Combination of Non-Destructive Testing Tools in Risk-Based Inspection Context: Application to Marine Structures. Struct. Infrastruct. Eng. 2012, 8, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-H.; Liou, C.-S. Applying an On-Line Crack Detection Technique for Laser Cutting by Controlled Fracture. Int. J. Adv. Manuf. Technol. 2001, 18, 724–730. [Google Scholar] [CrossRef]
- Mahiddine, A.; Seinturier, J.; Boï, D.P.J.-M.; Drap, P.; Merad, D.; Long, L. Underwater Image Preprocessing for Automated Photogrammetry in High Turbidity Water: An Application on the Arles-Rhone XIII Roman Wreck in the Rhodano River, France. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 189–194. [Google Scholar]
- O′Byrne, M.; Schoefs, F.; Ghosh, B.; Pakrashi, V. Texture Analysis Based Damage Detection of Ageing Infrastructural Elements: Texture Based Damage Detection. Comput. Aided Civ. Infrastruct. Eng. 2013, 28, 162–177. [Google Scholar]
- O’Byrne, M.; Ghosh, B.; Schoefs, F.; Pakrashi, V. Image-Based Damage Assessment for Underwater Inspections, 1st ed.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2018. [Google Scholar]
- O′Byrne, M.; Pakrashi, V.; Schoefs, F.; Ghosh, B. Semantic Segmentation of Underwater Imagery Using Deep Networks Trained on Synthetic Imagery. JMSE 2018, 6, 93. [Google Scholar]
Case Study | Alignment to UN Sustainable Development Goals |
Fisheries | 14. Life Below Water |
Marine Growth | 9. Industry, Innovation and Infrastructure |
Structural Inspections | 11. Sustainable Cities and Communities |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Byrne, M.; Ghosh, B.; Schoefs, F.; Pakrashi, V. Applications of Virtual Data in Subsea Inspections. J. Mar. Sci. Eng. 2020, 8, 328. https://doi.org/10.3390/jmse8050328
O’Byrne M, Ghosh B, Schoefs F, Pakrashi V. Applications of Virtual Data in Subsea Inspections. Journal of Marine Science and Engineering. 2020; 8(5):328. https://doi.org/10.3390/jmse8050328
Chicago/Turabian StyleO’Byrne, Michael, Bidisha Ghosh, Franck Schoefs, and Vikram Pakrashi. 2020. "Applications of Virtual Data in Subsea Inspections" Journal of Marine Science and Engineering 8, no. 5: 328. https://doi.org/10.3390/jmse8050328
APA StyleO’Byrne, M., Ghosh, B., Schoefs, F., & Pakrashi, V. (2020). Applications of Virtual Data in Subsea Inspections. Journal of Marine Science and Engineering, 8(5), 328. https://doi.org/10.3390/jmse8050328