Risk Analysis of Marine Environmental Elements Based on Kendall Return Period
Abstract
:1. Introduction
2. Research Method
2.1. Principle of Maximum Entropy
2.2. G-H Copula Function
2.3. Calculation Method of Return Period
3. Case Analysis
3.1. Background Information
3.2. Construction of Marginal Distribution and Joint Distribution
3.2.1. Construction of Marginal Distribution
3.2.2. Construction of Two-Dimensional Joint Distribution
3.3. Calculation of Return Period and Design Value
3.3.1. Calculation of Return Period
3.3.2. Calculation of Design Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, J.; Zheng, J.H.; Zhang, C.; Joly, A.; Zhang, W.; Xu, P.F.; Sui, T.T.; Chen, T. A 39-year high resolution wave hindcast for the Chinese coast: Model validation and wave climate analysis. Ocean Eng. 2018, 183, 224–235. [Google Scholar] [CrossRef]
- Bertin, X.; Prouteau, E.; Letetrel, C. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Change 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Hamdi, Y.; Garnier, E.; Giloy, N.; Duluc, C.M.; Rebour, V. Analysis of the risk associated with coastal flooding hazards: A new historical extreme storm surges dataset for Dunkirk, France. Nat. Hazard Earth Syst. 2018, 18, 3383–3402. [Google Scholar] [CrossRef] [Green Version]
- Salvadori, G.; Tomasicchio, G.R.; D’Alessandro, F. Practical guidelines for multivariate analysis and design in coastal and off-shore engineering. Coast. Eng. 2014, 88, 1–14. [Google Scholar] [CrossRef]
- Dong, S.; Chen, C.C.; Tao, S.S. Joint probability design of marine environmental elements for wind turbines. Int. J. Hydrogen Energy 2017, 42, 18595–18601. [Google Scholar] [CrossRef]
- Salvadori, G.; Francesco, S. Design hyetograph analysis with 3-copula function. Hydrol. Sci. J. 2006, 51, 223–238. [Google Scholar]
- Salvadori, G.; Tomasicchio, G.R.; D’Alessandro, F. Multivariate approach to design coastal and off-shore structures. Int. Coast. Symp. 2013, 65, 386–391. [Google Scholar] [CrossRef]
- Xu, H.S.; Xu, K.; Bin, L.L.; Lian, J.J.; Ma, C. Joint Risk of rainfall and storm surges during typhoons in a coastal city of Haidian Island, China. Int. J. Environ. Res. Pub. Heal. 2018, 15, 1377. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Jiao, C.S.; Tao, S.S. Joint return probability analysis of wind speed and rainfall intensity in typhoon-affected sea area. Nat. Hazards 2017, 86, 1193–1205. [Google Scholar] [CrossRef]
- Dong, S.; Wang, N.; Lu, H.; Tang, L.J. Bivariate distributions of group height and length for ocean waves using Copula methods. Coast. Eng. 2015, 96, 49–61. [Google Scholar] [CrossRef]
- Salvadori, G.; Michele, C.D. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Wist, H.; Myrhaug, D.; Rue, H. Statistical properties of successive wave heights and successive wave periods. Appl. Ocean Res. 2004, 26, 114–136. [Google Scholar]
- De Waal, D.J.; Van Gelder, P.H.A.J.M. Modelling of extreme wave heights and periods through copulas. Extremes 2005, 8, 345–356. [Google Scholar] [CrossRef]
- Muhaisen, O.S.H.; Elramlawee, N.J.E.; García, P.A. Copula-EVT-based simulation for optimal rubble-mound breakwater design. Civ. Eng. Environ. Syst. 2010, 27, 315–328. [Google Scholar] [CrossRef]
- Chen, Z.S.; Liu, C.M.; Li, Z.Q. Analysis on encounter probabilities for coastal surge heights and corresponding wind velocities based on Copula function. Acta Oceanol. Sin. 2012, 34, 11–18. [Google Scholar]
- Xu, H.S.; Chen, J.J.; Bin, L.L.; Quan, K. Joint distribution of multiple typhoon hazard factors. Sci. Geogr. Sin. 2018, 38, 2118–2124. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework. Hydrol. Earth Syst. Sci. 2011, 15, 3293–3305. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.D.; Liang, B.C.; Wu, G.X.; Wang, S.Q.; Li, P. Ultra-long return level estimation of extreme wind speed based on the deductive method. Ocean Eng. 2019, 197, 106900. [Google Scholar] [CrossRef]
- Wu, G.X.; Wang, J.; Liang, B.C.; Lee, Y.D. Simulation of detailed wave motions and coastal hazards. J. Coast. Res. 2014, 72, 127–132. [Google Scholar] [CrossRef]
- Wu, G.X.; Shi, F.Y.; Kirby, J.T.; Liang, B.C.; Shi, J. Modeling wave effects on storm surge and coastal inundation. Coast. Eng. 2018, 140, 371–382. [Google Scholar]
- Jaynes, E.T. Information Theory and statistical mechanics I. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Xu, D.L.; Zhang, J.; Zheng, G.Z. Maximum entropy estimation of n-year extreme waveheights. China Ocean Eng. 2004, 18, 307–314. [Google Scholar]
- Dong, S.; Tao, S.S.; Chen, C.C.; Soares, C.G. Interval estimations of return wave height based on maximum entropy distribution. J. Coast. Res. 2014, 30, 967–974. [Google Scholar]
- Dong, S.; Tao, S.S.; Li, X.; Soares, C.G. Trivariate maximum entropy distribution of significant wave height, wind speed and relative direction. Renew. Energ. 2015, 78, 538–549. [Google Scholar] [CrossRef]
- Singh, V.P. Log-Pearson Type III Distribution. In Entropy-Based Parameter Estimation in Hydrology; Springer: Dordrecht, The Netherlands, 1998; Volume 29, pp. 252–274. [Google Scholar]
- Sklar, A. Fonctions de Répartition À N Dimensions Et Leurs Marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 1999; p. 139. [Google Scholar]
- Salvadori, G. Bivariate return periods via 2-Copulas. Stat. Methodol. 2004, 1, 129–144. [Google Scholar]
- Salvadori, G.; Michele, C.D. On the use of Copulas in hydrology: Theory and practice. J. Hydrol. Eng. 2007, 12, 369–380. [Google Scholar]
- Xu, L.J.; Chen, Z.H.; Zhou, D.C.; Xie, L.L. The secondary return period of wind-wave joint distribution based on Archimedean Copula function. J. Tianjin Univ. Sci. Technol. 2013, 46, 114–120. [Google Scholar]
- Xiao, Y.F.; Duan, Z.D.; Xiao, Y.Q.; Ou, J.P.; Chang, L.; Li, Q.S. Typhoon wind hazard analysis for southeast China coastal regions. Struct. Saf. 2011, 33, 286–295. [Google Scholar]
- Ou, J.P.; Duan, Z.D.; Chang, L. Typhoon Risk Analysis for Key Coastal Cities of Southeast China. J. Nat. Disasters 2002, 11, 9–17. [Google Scholar]
Environmental Element | Parameter Values | Test Values of Goodness of Fit | ||||
---|---|---|---|---|---|---|
α | β | a0 | KS-p | RMSE | PPCC | |
wave height | 15.495 | 2.461 | −1.651 | 0.8435 | 0.2852 | 0.9847 |
surge height | 2.303 | 2.335 | 0.205 | 0.9750 | 0.0840 | 0.9923 |
wind speed | 1.817 | 0.223 | 7.546 | 0.8602 | 1.0185 | 0.9849 |
Combination | τ | ρ | θ |
---|---|---|---|
wave–surge | 0.4392 | 0.5926 | 1.7832 |
surge–wind | 0.3008 | 0.4235 | 1.4302 |
wave–wind | 0.1563 | 0.2438 | 1.1852 |
Marginal Return Period (a) | Wave–Surge | Surge–Wind | Wave–Wind | ||||||
---|---|---|---|---|---|---|---|---|---|
T∪ | T∩ | Tk | T∪ | T∩ | Tk | T∪ | T∩ | Tk | |
5 | 3.57 | 8.40 | 6.80 | 3.29 | 10.40 | 7.80 | 3.03 | 14.30 | 9.70 |
10 | 6.95 | 17.80 | 14.40 | 6.36 | 23.40 | 17.70 | 5.80 | 36.10 | 24.90 |
20 | 13.72 | 36.90 | 29.80 | 12.51 | 49.80 | 38.00 | 11.37 | 83.00 | 58.50 |
50 | 34.06 | 94.00 | 76.10 | 30.99 | 129.40 | 99.30 | 28.08 | 227.70 | 163.80 |
100 | 67.95 | 189.20 | 153.30 | 61.78 | 262.10 | 201.60 | 55.94 | 470.70 | 341.40 |
200 | 135.75 | 379.70 | 307.60 | 123.37 | 527.80 | 406.30 | 111.66 | 957.50 | 697.70 |
500 | 339.12 | 951.30 | 770.70 | 308.15 | 1324.80 | 1020.60 | 278.82 | 2418.60 | 1767.20 |
Wave height (m)–surge height (m) | ||||||||
T/a | marginal distribution | T∪ | T∩ | Tk | ||||
wave | surge | wave | surge | wave | surge | wave | surge | |
5 | 5.94 | 1.66 | 6.42 | 1.85 | 5.32 | 1.36 | 5.61 | 1.47 |
10 | 6.76 | 2.06 | 7.20 | 2.25 | 6.15 | 1.74 | 6.39 | 1.85 |
20 | 7.48 | 2.44 | 7.86 | 2.64 | 6.88 | 2.12 | 7.09 | 2.23 |
50 | 8.35 | 2.93 | 8.69 | 3.12 | 7.75 | 2.60 | 7.97 | 2.71 |
100 | 8.95 | 3.29 | 9.26 | 3.48 | 8.39 | 2.96 | 8.58 | 3.06 |
200 | 9.52 | 3.64 | 9.83 | 3.83 | 8.98 | 3.31 | 9.15 | 3.42 |
500 | 10.24 | 4.09 | 10.53 | 4.28 | 9.72 | 3.77 | 9.90 | 3.88 |
Surge height (m)–wind speed (m·s−1) | ||||||||
T/a | marginal distribution | T∪ | T∩ | Tk | ||||
surge | wind | surge | wind | surge | wind | surge | wind | |
5 | 1.66 | 19.90 | 1.91 | 22.42 | 1.31 | 16.26 | 1.43 | 17.79 |
10 | 2.06 | 23.78 | 2.31 | 26.30 | 1.64 | 19.55 | 1.78 | 20.97 |
20 | 2.44 | 27.50 | 2.69 | 30.03 | 1.99 | 22.90 | 2.12 | 24.29 |
50 | 2.93 | 32.27 | 3.17 | 34.74 | 2.45 | 27.51 | 2.58 | 28.79 |
100 | 3.29 | 35.80 | 3.52 | 38.20 | 2.80 | 30.91 | 2.93 | 32.32 |
200 | 3.64 | 39.28 | 3.87 | 41.73 | 3.15 | 34.37 | 3.28 | 35.71 |
500 | 4.09 | 43.83 | 4.33 | 46.16 | 3.61 | 39.00 | 3.73 | 40.28 |
Wave height (m)–wind speed (m·s−1) | ||||||||
T/a | marginal distribution | T∪ | T∩ | Tk | ||||
wave | wind | wave | wind | wave | wind | wave | wind | |
5 | 5.94 | 19.90 | 6.66 | 22.49 | 5.22 | 14.36 | 5.39 | 16.82 |
10 | 6.76 | 23.78 | 7.36 | 26.64 | 5.87 | 17.13 | 6.03 | 19.65 |
20 | 7.48 | 27.50 | 8.04 | 30.38 | 6.48 | 19.90 | 6.62 | 22.56 |
50 | 8.35 | 32.27 | 8.87 | 35.09 | 7.20 | 24.28 | 7.38 | 26.57 |
100 | 8.95 | 35.80 | 9.44 | 38.55 | 7.76 | 27.68 | 7.97 | 29.69 |
200 | 9.52 | 39.28 | 9.98 | 42.15 | 8.29 | 31.37 | 8.52 | 33.08 |
500 | 10.24 | 43.83 | 10.68 | 46.57 | 9.04 | 35.81 | 9.28 | 37.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, G. Risk Analysis of Marine Environmental Elements Based on Kendall Return Period. J. Mar. Sci. Eng. 2020, 8, 393. https://doi.org/10.3390/jmse8060393
Li Y, Liu G. Risk Analysis of Marine Environmental Elements Based on Kendall Return Period. Journal of Marine Science and Engineering. 2020; 8(6):393. https://doi.org/10.3390/jmse8060393
Chicago/Turabian StyleLi, Yuanxin, and Guilin Liu. 2020. "Risk Analysis of Marine Environmental Elements Based on Kendall Return Period" Journal of Marine Science and Engineering 8, no. 6: 393. https://doi.org/10.3390/jmse8060393
APA StyleLi, Y., & Liu, G. (2020). Risk Analysis of Marine Environmental Elements Based on Kendall Return Period. Journal of Marine Science and Engineering, 8(6), 393. https://doi.org/10.3390/jmse8060393