An Ecological Risk Assessment of Sediments in a Developing Environment—Batticaloa Lagoon, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analysis
2.3. Assessment of Ecological Risks
2.3.1. Sediment Quality Guidelines
2.3.2. Pollution Load Index (PLI)
2.3.3. Potential Ecological Risk Index (PERI)
3. Results and Discussion
3.1. Stratigraphy
3.2. Trace Element Concentrations
3.3. Sediment Quality Guidelines
3.4. Pollution and Ecological Risk
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rainbow, P.S. Phylogeny of trace metal accumulation in crustaceans. In Metal Metabolism in Aquatic Environments; Langston, W.J., Bebianno, M., Eds.; Chapman and Hall: London, UK, 1998; pp. 285–319. [Google Scholar]
- Rainbow, P.S. Trace metal concentrations in aquatic invertebrates: Why and so what? Environ. Pollut. 2002, 120, 497–507. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Bawa-Allah, K.A.; Kayode, S.J.; Akeem, O.A. Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 377–397. [Google Scholar] [CrossRef]
- Fusi, M.; Beone, G.M.; Suciu, N.A.; Sacchi, A.; Trevisan, M.; Capri, E.; Cannicci, S. Ecological status and sources of anthropogenic contaminants in mangroves of the Wouri River Estuary (Cameroon). Mar. Pollut. Bull. 2016, 109, 723–733. [Google Scholar] [CrossRef]
- Hernandezcrespo, C.; Martin, M.A. Determination of background levels and pollution assessment for seven metals (Cd, Cu, Ni, Pb, Zn, Fe, Mn) in sediments of a Mediterranean coastal lagoon. Catena 2015, 133, 206–214. [Google Scholar] [CrossRef]
- Laut, L.L.M.; Martins, M.V.A.; Fontana, L.F.; Silva, F.S.; Mendonça-Filho, J.G.; Clemente, I.M.M.M.; Ballalai, J. Ecological status evaluation of Itaipu Lagoon (Niterói) based on biochemical composition of organic matter. J. Sediment. Environ. 2016, 1, 304–323. [Google Scholar] [CrossRef] [Green Version]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Chen, M.; Ma, L.Q. Comparison of Four USEPA Digestion Methods for Trace Metal Analysis Using Certified and Florida Soils. J. Environ. Qual. 1998, 27, 1294–1300. [Google Scholar] [CrossRef]
- McBride, M.B. Toxic Metal Accumulation from Agricultural Use of Sludge: Are USEPA Regulations Protective? J. Environ. Qual. 1995, 24, 5–18. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Müller, G. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chemiker-Zeitung 1981, 105, 157–164. [Google Scholar]
- Tang, W.; Shan, B.; Zhang, H.; Mao, Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard. Mater. 2010, 176, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Marchand, C.; Lallier-Vergès, E.; Baltzer, F.; Albéric, P.; Cossa, D.; Baillif, P. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem. 2006, 98, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mays, P.; Edwards, G. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol. Eng. 2001, 16, 487–500. [Google Scholar] [CrossRef]
- Parizanganeh, A.; Lakhan, V.C.; Jalalian, H.; Ahmad, S.R. Contamination of Nearshore Surficial Sediments from the Iranian Coast of the Caspian Sea. Soil Sediment Contam. Int. J. 2007, 17, 19–28. [Google Scholar] [CrossRef]
- Sugirtharan, M.; Pathmarajah, S.; Mowjood, M. Variation of Salinity in Batticaloa Lagoon in Sri Lanka during Wet Season. Trop. Agric. Res. 2015, 25, 403–411. [Google Scholar] [CrossRef]
- Adikaram, M.; Pitawala, A.; Ishiga, H.; Jayawardana, D. Chemical composition and possible sources of suspended particulate matter in the peripheral environments of Batticaloa lagoon, Sri Lanka. Reg. Stud. Mar. Sci. 2017, 16, 294–303. [Google Scholar] [CrossRef]
- Kularatne, R.K. Phytoremediation of Pb by Avicennia marina (Forsk.) Vierh and Spatial Variation of Pb in the Batticaloa Lagoon, Sri Lanka During Driest Periods: A Field Study. Int. J. Phytoremediat. 2014, 16, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Adikaram, M.; Pitawala, A.; Ishiga, H.; Jayawardana, D. Spatial distribution, enrichment, and source of environmentally important elements in Batticaloa lagoon, Sri Lanka. Environ. Sci. Pollut. Res. 2017, 24, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Ogasawara, M. Trace element analysis of rock samples by X-ray fluorescence spectrometry, using Rh anode tube. Bull. Geol. Surv. Japan 1987, 38, 57–68. [Google Scholar]
- IAEA. Trace Elements in Marine Sediments, Reference Sheet-433; International Atomic Energy Agency: Vienna, Austria, 2004; Available online: https://www.iaea.org/nael/refmaterial/iaea433.pdf (accessed on 13 January 2016).
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; p. 312. [Google Scholar]
- Kang, X.; Song, J.; Yuan, H.; Duan, L.; Li, X.; Li, N.; Liang, X.; Qu, B. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: Bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicol. Environ. Saf. 2017, 143, 296–306. [Google Scholar] [CrossRef]
- Ratnayake, A.S.; Sampei, Y.; Ratnayake, N.P.; Roser, B.P. Middle to late Holocene environmental changes in the depositional system of the tropical brackish Bolgoda Lake, coastal southwest Sri Lanka. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 465, 122–137. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Hirabayashi, S.; Goto, K.; Okuno, J.; Sproson, A.D.; Haraguchi, T.; Ratnayake, N.; Miyairi, Y. Holocene Indian Ocean sea level, Antarctic melting history and past Tsunami deposits inferred using sea level reconstructions from the Sri Lankan, Southeastern Indian and Maldivian coasts. Quat. Sci. Rev. 2019, 206, 150–161. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Fernando, G.; Dissanayake, C.; Rupasinghe, M. Stream sediment geochemistry of the Upper Mahaweli River Basin of Sri Lanka—Geological and environmental significance. J. Geochem. Explor. 2008, 99, 1–28. [Google Scholar] [CrossRef]
- Young, S.M.; Pitawala, A.; Ishiga, H. Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Geochemistry 2013, 73, 357–371. [Google Scholar] [CrossRef]
- Baeyens, W.; Mirlean, N.; Bundschuh, J.; De Winter, N.; Baisch, P.; Júnior, F.M.R.d.S.; Gao, Y. Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review. Sci. Total Environ. 2019, 681, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Medeanic, S.; Garcia, F.; Travassos, M.P.; Baisch, P. Arsenic enrichment in shelf and coastal sediment of the Brazilian subtropics. Cont. Shelf Res. 2012, 35, 129–136. [Google Scholar] [CrossRef]
- Tran, T.A.M.; Leermakers, M.; Hoang, T.L.; Nguyen, V.H.; Elskens, M. Metals and arsenic in sediment and fish from Cau Hai lagoon in Vietnam: Ecological and human health risks. Chemosphere 2018, 210, 175–182. [Google Scholar] [CrossRef]
- Barik, S.K.; Muduli, P.R.; Mohanty, B.; Rath, P.; Samanta, S. Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India. Environ. Sci. Pollut. Res. 2018, 25, 572–587. [Google Scholar] [CrossRef]
- Nazneen, S.; Singh, S.; Raju, N. Heavy metal fractionation in core sediments and potential biological risk assessment from Chilika lagoon, Odisha state, India. Quat. Int. 2019, 507, 370–388. [Google Scholar] [CrossRef]
Sample | Concentration (ppm) | ||||||
---|---|---|---|---|---|---|---|
As | Pb | Zn | Cu | Ni | Cr | ||
BLC 01 | min | 1.9 | 10.0 | 8.6 | 3.5 | 8.1 | 13.7 |
max | 3.4 | 68.1 | 20.1 | 9.4 | 19.9 | 123.7 | |
average | 2.5 | 14.6 | 12.3 | 5.3 | 12.0 | 56.8 | |
BLC 02 | min | 2.1 | 16.0 | 18.7 | 9.0 | 6.0 | 12.0 |
max | 3.5 | 18.4 | 32.1 | 15.7 | 11.3 | 168.0 | |
average | 2.8 | 17.0 | 24.2 | 11.8 | 8.3 | 57.7 | |
BLC 04 | min | 1.6 | 15.4 | 8.7 | 3.7 | 9.7 | 12.4 |
max | 6.0 | 20.3 | 112.7 | 36.2 | 43.1 | 99.1 | |
average | 3.4 | 17.2 | 41.7 | 13.1 | 19.3 | 52.5 | |
Surface sediments | min | 3.4 | 14.5 | 20.9 | 5.6 | 7.0 | 52.2 |
max | 9.6 | 26.4 | 155.1 | 216.4 | 41.1 | 145.9 | |
average | 5.4 | 20.6 | 86.9 | 33.5 | 18.3 | 93.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adikaram, M.; Pitawala, A.; Ishiga, H.; Jayawardana, D.; Eichler, C.M. An Ecological Risk Assessment of Sediments in a Developing Environment—Batticaloa Lagoon, Sri Lanka. J. Mar. Sci. Eng. 2021, 9, 73. https://doi.org/10.3390/jmse9010073
Adikaram M, Pitawala A, Ishiga H, Jayawardana D, Eichler CM. An Ecological Risk Assessment of Sediments in a Developing Environment—Batticaloa Lagoon, Sri Lanka. Journal of Marine Science and Engineering. 2021; 9(1):73. https://doi.org/10.3390/jmse9010073
Chicago/Turabian StyleAdikaram, Madurya, Amarasooriya Pitawala, Hiroaki Ishiga, Daham Jayawardana, and Carla M. Eichler. 2021. "An Ecological Risk Assessment of Sediments in a Developing Environment—Batticaloa Lagoon, Sri Lanka" Journal of Marine Science and Engineering 9, no. 1: 73. https://doi.org/10.3390/jmse9010073
APA StyleAdikaram, M., Pitawala, A., Ishiga, H., Jayawardana, D., & Eichler, C. M. (2021). An Ecological Risk Assessment of Sediments in a Developing Environment—Batticaloa Lagoon, Sri Lanka. Journal of Marine Science and Engineering, 9(1), 73. https://doi.org/10.3390/jmse9010073