Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Seawater Sampling
2.2. Strains and Culture Media
2.3. Salmonella spp. Detection Using Real Time PCR Method
2.4. E. coli Quantification
2.5. Sites Characteristics Determination
2.6. Data Analysis
3. Results
3.1. Beach Characteristics
3.2. Microbiological Parameters
3.3. Water Quality Versus Beach Characteristics
4. Discussion
4.1. E. coli and Salmonella spp. Distribution
4.2. Microbiological Load and Beach Characteristic
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNWTO. World Tourism Barometer and Statistical Annex, May 2020. UNWTO World Tour. Barom. 2020, 18, 1–48. [Google Scholar] [CrossRef]
- Ministerio de Comercio Industria y Turismo. Resultados para el Turismo 2018; Mincomercio: Bogotá, Colombia, 2018; pp. 1–19.
- Dodds, R.; Kelman, I. How Climate Change is Considered in Sustainable Tourism Policies: A Case of The Mediterranean Islands of Malta and Mallorca. Tour. Rev. Int. 2008, 12, 57–70. [Google Scholar] [CrossRef]
- Williams, A.T.; Micallef, A. Beach Management, Principles & Practice; Earthscan: London, UK, 2009; ISBN 978-1-84407-435-8. [Google Scholar]
- Pranzini, E.; Anfuso, G.; Botero, C.M.; Cabrera, A.; Campos, Y.A.; Martinez, G.C.; Williams, A.T. Sand colour at Cuba and its influence on beach nourishment and management. Ocean Coast. Manag. 2016, 126, 51–60. [Google Scholar] [CrossRef]
- Anfuso, G.; Williams, A.T.; Hernández, J.C.; Pranzini, E. Coastal scenic assessment and tourism management in western Cuba. Tour. Manag. 2014, 42, 307–320. [Google Scholar] [CrossRef]
- Mooser, A.; Anfuso, G.; Mestanza-Ramón, C.; Williams, A.T. Management Implications for the Most Attractive Scenic Sites along the Andalusia Coast (SW Spain). Sustainability 2018, 10, 1328. [Google Scholar] [CrossRef] [Green Version]
- Mestanza-Ramón, C.; Pranzini, E.; Anfuso, G.; Botero, C.M.; Chica-Ruiz, J.A.; Mooser, A. An Attempt to Characterize the “3S” (Sea, Sun, and Sand) Parameters: Application to the Galapagos Islands and Continental Ecuadorian Beaches. Sustainability 2020, 12, 3468. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Díaz, M.M.; Reina-Aranza, Y.C.; Orozco-Gallo, A.J.; Yabrudy-Vega, J.; Barcos-Robles, R. Composición de la economía de la Región Caribe de Colombia. Ens. Econ. Reg. 2013, 53, 1–66. [Google Scholar]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G. Killing the goose with the golden eggs: Litter effects on scenic quality of the Caribbean coast of Colombia. Mar. Pollut. Bull. 2018, 127, 22–38. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G.; Arias, M.; Gracia, C.A. Magnitudes, sources, and management of beach litter along the Atlantico department coastline, Caribbean coast of Colombia. Ocean Coast. Manag. 2017, 138, 142–157. [Google Scholar] [CrossRef]
- Moreno, H.S.; Bolívar-Anillo, H.J.; Soto-Varela, Z.E.; Aranguren, Y.; Gonzaléz, C.P.; Daza, D.A.V.; Anfuso, G. Microbiological water quality and sources of contamination along the coast of the Department of Atlántico (Caribbean Sea of Colombia). Preliminary results. Mar. Pollut. Bull. 2019, 142, 303–308. [Google Scholar] [CrossRef]
- Torres-Bejarano, F.; González-Márquez, L.C.; Díaz-Solano, B.H.; Torregroza-Espinosa, A.C.; Cantero-Rodelo, R. Effects of beach tourists on bathing water and sand quality at Puerto Velero, Colombia. Environ. Dev. Sustain. 2016, 20, 255–269. [Google Scholar] [CrossRef]
- Instituto de Investigaciones Marinas Y Costeras (INVEMAR). Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras en el Caribe y Pacífico Colombianos; INVEMAR: Santa Marta, Colombia, 2020; pp. 1–213. [Google Scholar]
- Larrea-Murrell, J.A.; Rojas-Badía, M.M.; Romeu-Álvarez, B.; Rojas-Hernández, N.M.; Heydrich-Pérez, M. Bacterias indicadoras de contaminación fecal en la evaluación de la calidad de las aguas: Revisión de la literatura. Rev. CENIC Cienc. Biol. 2013, 44, 24–34. [Google Scholar]
- Cassini, A.; Colzani, E.; Kramarz, P.; Kretzschmar, M.; Takkinen, J. Impact of food and water-borne diseases on European population health. Curr. Opin. Food Sci. 2016, 12, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Savichtcheva, O.; Okabe, S. Alternative indicators of fecal pollution: Relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res. 2006, 40, 2463–2476. [Google Scholar] [CrossRef]
- European Community Commission (ECC). Directive 2006/7/EC Concerning the Management of Bathing Water Quality and Repealing; ECC: Brussels, Belgium, 2006; pp. 37–51. [Google Scholar]
- United States Environmental Protection Agency (EPA). Recreational Water Quality Criteria; EPA: Washington, DC, USA, 2012; pp. 1–69.
- Ministerio de Agricultura. Decreto 1594 de 1984; Ministerio de Agricultura: Bogotá, Colombia, 1984; pp. 1–55. [Google Scholar]
- Ministerio de Ambiente y Desarrollo Sostenible. Decreto 3930 de 2010; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2010; pp. 1–18. [Google Scholar]
- Noble, R.T.; Blackwood, A.D.; Griffith, J.F.; McGee, C.D.; Weisberg, S.B. Comparison of Rapid Quantitative PCR-Based and Conventional Culture-Based Methods for Enumeration of Enterococcus spp. and Escherichia coli in Recreational Waters. Appl. Environ. Microbiol. 2010, 76, 7437–7443. [Google Scholar] [CrossRef] [Green Version]
- Korajkic, A.; McMinn, B.R.; Harwood, V.J. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. Int. J. Environ. Res. Public Health 2018, 15, 2842. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Vajpayee, P.; Bhatti, S.; Ronnie, N.; Shah, N.; McClure, P.; Shanker, R. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR. Ecotoxicol. Environ. Saf. 2013, 93, 121–127. [Google Scholar] [CrossRef]
- González, R.A.; Noble, R.T. Comparisons of statistical models to predict fecal indicator bacteria concentrations enumerated by qPCR- and culture-based methods. Water Res. 2014, 48, 296–305. [Google Scholar] [CrossRef]
- Sánchez-Vargas, F.M.; Abu-El-Haija, M.A.; Gómez-Duarte, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel Med. Infect. Dis. 2011, 9, 263–277. [Google Scholar] [CrossRef]
- Meena, B.; Anburajan, L.; Selvaganapathi, K.; Vinithkumar, N.V.; Dharani, G. Characteristics and dynamics of Salmonella diversity and prevalence of biomarker genes in Port Blair Bays, South Andaman, India. Mar. Pollut. Bull. 2020, 160, 111582. [Google Scholar] [CrossRef]
- Rubini, S.; Galletti, G.; D’Incau, M.; Govoni, G.; Boschetti, L.; Berardelli, C.; Barbieri, S.; Merialdi, G.; Formaglio, A.; Guidi, E.; et al. Occurrence of Salmonella enterica subsp. enterica in bivalve molluscs and associations with Escherichia coli in molluscs and faecal coliforms in seawater. Food Control 2018, 84, 429–435. [Google Scholar] [CrossRef]
- Gallardo, G. Evaluación del potencial turístico de las playas del departamento del Atlántico—Colombia, desde la perspectiva ambiental. Rev. Dimens. Empres. 2013, 11, 62–69. [Google Scholar] [CrossRef]
- Andrade, C. Cambios Recientes del Nivel del Mar en Colombia. In Deltas de Colombia: Morfodinámica y Vulnerabilidad ante el Cambio Global, 1st ed.; Universidad EAFIT: Medellín, Colombia, 2008; pp. 103–122. [Google Scholar]
- Instituto de investigaciones marinas y costeras (INVEMAR). Climatologie de la Vitesse et la Direction des Vent pour le Mar Territoriale sous Juridiction Colombianne 8° a 19° N e 69° a 84° W. In Atlas ERS 1 et 2 et Quickscat, Colombie; INVEMAR: Santa Marta, Colombia, 2006. [Google Scholar]
- Botero, C.; Pereira Pomarico, C.; Cervantes, O. Estudios de Calidad Ambiental de Playas en Latinoamérica: Revisión de los Principales Parámetros y Metodologías Utilizadas. Investig. Ambient. 2013, 4, 5–15. [Google Scholar]
- Milanés, C.; Lastra, R.; Sierra Correa, P. Estudios de Caso sobre Manejo Integrado de Zonas Costeras en Iberoamérica: Gestión, Riesgo y Buenas Prácticas, 1st ed.; Universidad de la Costa: Barranquilla, Colombia, 2019; p. 472. [Google Scholar]
- Praveena, S.M.; Chen, K.S.; Ismail, S.N.S. Indicators of microbial beach water quality: Preliminary findings from Teluk Kemang beach, Port Dickson (Malaysia). Mar. Pollut. Bull. 2013, 76, 417–419. [Google Scholar] [CrossRef]
- Griffin, D.W.; Lipp, E.K.; McLaughlin, M.R.; Rose, J.B. Marine Recreation and Public Health Microbiology: Quest for the Ideal Indicator. Bioscience 2001, 51, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Torres Bejarano, F.; Cantero Rodelo, R.; Díaz-Solano, B.; Mendoza Lozano, J.M.; López Mejía, Y.F. Análisis socioambiental de las playas Puerto Velero y Caño Dulce en Tubará, Atléntico, Colombia. Teor. Prax. 2014, 9, 161–179. [Google Scholar] [CrossRef]
- Noble, R.T.; Moore, D.; Leecaster, M.; McGee, C.; Weisberg, S. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 2003, 37, 1637–1643. [Google Scholar] [CrossRef]
- Davies, C.M.; Long, J.A.; Donald, M.; Ashbolt, N.J. Survival of fecal microorganisms in marine and freshwater sediments. Appl. Environ. Microbiol. 1995, 61, 1888–1896. [Google Scholar] [CrossRef] [Green Version]
- Sinton, L.W.; Hall, C.; Braithwaite, R. Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water. J. Water Health 2007, 5, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Pérez, M.; Anfuso, E.; Acevedo, A.; Perales, J.A.; Garrido, C. Microbial indicators of faecal contamination in waters and sediments of beach bathing zones. Int. J. Hyg. Environ. Health 2008, 211, 510–517. [Google Scholar] [CrossRef]
- Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E.; Elmir, S. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 2004, 38, 3119–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.S.; Pendrak, M.L.; Abela-Ridder, B.; Punderson, J.W.; Fedorko, D.P.; Foley, S.L. An overview of Salmonella typing. Clin. Appl. Immunol. Rev. 2004, 4, 189–204. [Google Scholar] [CrossRef]
- Coburn, B.; Grassl, G.A.; Finlay, B.B. Salmonella, the host and disease: A brief review. Immunol. Cell Biol. 2007, 85, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef]
- Barnes, M.A.; Turner, C.R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 2016, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Turner, C.R.; Jerde, C.L.; Renshaw, M.A.; Chadderton, W.L.; Lodge, D.M. Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environ. Sci. Technol. 2014, 48, 1819–1827. [Google Scholar] [CrossRef]
- Salter, I. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation. PLoS ONE 2018, 13, e0192409. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.A.; Wangensteen, O.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of environmental DNA in marine systems. Commun. Biol. 2018, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Wuertz, S. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res. 2009, 43, 4850–4859. [Google Scholar] [CrossRef]
- Olaolu, T.D.; Akpor, O.B.; Akor, C.O. Pollution Indicators and Pathogenic Microorganisms in Wastewater Treatment: Implication on Receiving Water Bodies. Int. J. Environ. Prot. Policy 2014, 2, 205. [Google Scholar] [CrossRef]
- El Boulani, A.; Mimouni, R.; Mannas, H.; Hamadi, F.; Chaouqy, N. Salmonella in Wastewater: Identification, Antibiotic Resistance and the Impact on the Marine Environment. Curr. Top. Salmonella Salmonellosis 2017, 8, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Yamahara, K.M.; Sassoubre, L.M.; Goodwin, K.D.; Boehm, A.B. Occurrence and Persistence of Bacterial Pathogens and Indicator Organisms in Beach Sand along the California Coast. Appl. Environ. Microbiol. 2012, 78, 1733–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, J.A.; Blackwood, A.D.; Griffith, J.F.; Noble, R.T.; Schiff, K.C. Quantification of pathogens and markers of fecal contamination during storm events along popular surfing beaches in San Diego, California. Water Res. 2018, 136, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Massinai, A.; Tahir, A.; Abu, N. High concentrations of pathogenic Salmonella spp. during the wet season on bathing beaches in Makassar City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 253, 012044. [Google Scholar] [CrossRef]
- Park, S.H.; Hanning, I.; Jarquin, R.; Moore, P.; Donoghue, D.J.; Donoghue, A.M.; Ricke, S. Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157:H7, and Salmonella serotypes in water samples. FEMS Microbiol. Lett. 2011, 316, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Efstratiou, M.A.; Tsirtsis, G. Do 2006/7/EC European Union Bathing Water Standards exclude the risk of contact with Salmonella or Candida albicans? Mar. Pollut. Bull. 2009, 58, 1039–1044. [Google Scholar] [CrossRef]
- Bolton, F.J.; Surman, S.B.; Martin, K.; Wareing, D.R.A.; Humphrey, T.J. Presence of campylobacter and salmonella in sand from bathing beaches. Epidemiol. Infect. 1999, 122, 7–13. [Google Scholar] [CrossRef]
- Stewart, J.R.; Gast, R.J.; Fujioka, R.S.; Solo-Gabriele, H.M.; Meschke, J.S.; Amaral-Zettler, L.; Del Castillo, E.; Polz, M.F.; Collier, T.K.; Strom, M.; et al. The coastal environment and human health: Microbial indicators, pathogens, sentinels and reservoirs. Environ. Health 2008, 7, S3. [Google Scholar] [CrossRef] [Green Version]
- Solo-Gabriele, H.M.; Harwood, V.J.; Kay, D.; Fujioka, R.S.; Sadowsky, M.J.; Whitman, R.L.; Wither, A.; Caniça, M.; Da Fonseca, R.C.; Duarte, A.; et al. Beach sand and the potential for infectious disease transmission: Observations and recommendations. J. Mar. Biol. Assoc. UK 2016, 96, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Eichmiller, J.J.; Staley, C.; Sadowsky, M.J.; Ishii, S. Correlations between pathogen concentration and fecal indicator marker genes in beach environments. Sci. Total. Environ. 2016, 573, 826–830. [Google Scholar] [CrossRef]
- Baudart, J.; Robyns, A.; Peuchet, S.; Drocourt, J.; LeBaron, P. Sensitive counting of viable Enterobacteriaceae in seawaters and relationship with fecal indicators. J. Microbiol. Methods 2011, 84, 482–485. [Google Scholar] [CrossRef]
- Sánchez-Moreno, H.; Bolívar-Anillo, H.J.; Villate-Daza, D.A.; Escobar-Olaya, G.; Anfuso, G. Influencia de los impactos antrópicos sobre la evolución del bosque de manglar en Puerto Colombia (Mar Caribe colombiano). Rev. Latinoam. Recur. Nat. 2019, 15, 1–16. [Google Scholar]
- Secretaría de Agua Potable. Cobertura del Servicio de Alcantarillado en el Departamento del Atlántico. Available online: https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/COBERTURA-SERVICIO-DE-ALCANTARILLADO-DEPARTAMENTO-/x3hc-qyph (accessed on 15 December 2020).
- Lamine, I.; Alla, A.A.; Bourouache, M.; Moukrim, A. Monitoring of Physico-Chemical and Microbiological Quality of Taghazout Seawater (Southwest of Morocco): Impact of the New Tourist Resort “Taghazout Bay”. J. Ecol. Eng. 2019, 20, 79–89. [Google Scholar] [CrossRef]
- Morcote, O.; Rodríguez-Burgos, K.; Meisel, R.; Rodríguez-Lar, I.; Berrocal, J.; Madera, N.; Ursola, H.; Oyaga-Martínez, R.F.; Enamorado-Estrada, J.; González, A.; et al. Panorama y Sociojuridico de los Derechos Humanos, Sociales y Ambientales, 1st ed.; Universidad Simón Bolívar: Barranquilla, Colombia, 2018; pp. 1–204. [Google Scholar]
- Díaz, B.; Yonoff, M. Ordenamiento turístico para siete (7) playas del Departamento del Atlántico. Rev. Tur. Patrim. Desarro. 2018, 8, 1–19. [Google Scholar]
- Rangel-Buitrago, N.; Gracia, C.A.; Anfuso, G.; Ergin, A.; Williams, A.T. Evaluación de las características paisajísticas mediante la lógica matemática en la zona central de la costa Caribe Colombiana. Études Caribéennes 2016, 34, 33–34. [Google Scholar] [CrossRef]
Beach | Sample Number | E. coli | Salmonella spp. | Stream/ Channel | Beach Facilities | Beach Typology |
---|---|---|---|---|---|---|
Sabanilla | 1, 2, 3 | 248 ± 111 | Absence | Absence | Presence | Rural |
Salgar | 4, 5, 6, 7 | 84 ± 48 | Presence | Presence | Presence | Urban |
Pradomar | 8, 9, 10 | 51 ± 42 | Absence | Presence | Presence | Urban |
Puerto Colombia | 11, 12 | 135 ± 8 | Presence | Absence | Presence | Urban |
Puerto Velero | 13, 14, 15 | 21 ± 34 | Absence | Absence | Presence | Rural |
Caño Dulce | 16, 17, 18 | 5 ± 4 | Absence | Absence | Presence | Rural |
Playa Mendoza | 19, 20 | 0 ± 0 | Absence | Absence | Presence | Village |
Tubará | 21 | 2 * | Absence | Presence | Absence | Rural |
Turipana | 22, 23 | 32 ± 43 | Absence | Absence | Presence | Remote |
Abello | 24 | 0 * | Absence | Presence | Absence | Rural |
Palmarito | 25 | 7 * | Presence | Presence | Presence | Rural |
Santa Veronica | 26, 27, 28 | 1 ± 1 | Presence | Absence | Presence | Village |
Salinas del Rey | 29 | 3 * | Absence | Absence | Absence | Remote |
Astilleros | 30 | 0 * | Absence | Absence | Absence | Remote |
Cluster Number | Beach | Beach (%) | Number of Beaches Salmonella spp. Positive (%) | Number of Beaches per E. coli Counts (%) | ||||
---|---|---|---|---|---|---|---|---|
<1 cfu/100 mL | 1–10 cfu/100 mL | 10–100 cfu/100 mL | 100–200 cfu/100 mL | 200–300 cfu/100 mL | ||||
1 | Pradomar Puerto Velero Turipana | 21 | 0 | - | - | 21.43 | - | - |
2 | Abello Astillero Caño Dulce Palmarito Playa Mendoza Salinas del Rey Santa Veronica Tubará | 57 | 14 | 21.42 | 35.71 | - | - | - |
3 | Pto. Colombia Salgar | 14 | 14 | - | - | 7.14 | 7.14 | - |
4 | Sabanilla | 7 | 0 | - | - | - | - | 7.14 |
Total | 100 | 28 | 100 |
Beach | Indicator Microorganisms and Pathogens | ||||||
---|---|---|---|---|---|---|---|
E. coli (cfu/100 mL) | Enterococcus (cfu/100 mL) | Fecal Coliform (MPN/100 mL) (1) | Fecal Coliform (cfu/100 mL) | Clostridium (cfu/100 mL) | Salmonella (Presence/Absence) | Reference | |
Puerto Mocho | 16 ± 6 | 7 ± 2 | - | - | <20 | - | [12] |
Sabanilla | 54 ± 12 | ≈50 | - | - | <20 | - | [12] |
248 ± 111 | - | - | - | Absence | This study | ||
Salgar | ≈52 ± 8 | ≈50 | - | - | <20 | - | [12] |
- | - | 170 and 79 | - | - | - | [14] | |
84 ± 48 | - | - | - | - | Presence | This study | |
Pradomar | ≈500 | 440 ± 16 | - | - | <20 | - | [12] |
- | - | 78 and 490 | - | - | - | [14] | |
51 ± 42 | - | - | - | - | Absence | This study | |
Puerto Colombia | >500 | ≈ 50 | - | - | ≈ 40 | - | [12] |
- | - | 170 and 1400 | - | - | - | [14] | |
135 ± 8 | - | - | - | - | Presence | This study | |
Puerto Velero | >500 | 125 ± 20 | - | ≈ 120 | - | [12] | |
- | - | - | 18 | - | - | [36] | |
- | - | - | 67 | - | - | [13] | |
- | - | 79 (2) | - | - | - | [14] | |
21 ± 34 | - | - | - | - | Absence | This study | |
Caño Dulce | - | - | - | 33 | - | - | [36] |
920 and 2 | [14] | ||||||
5 ± 4 | Absence | This study | |||||
Playa Mendoza | 0 ± 0 | Absence | This study | ||||
Tubará | 2 | Absence | This study | ||||
Turipana | 32 ± 43 | Absence | This study | ||||
Abello | 0 | Absence | This study | ||||
Palmarito | 7 | Presence | This Study | ||||
Santa Veronica | 790 and 22 | [14] | |||||
1 ± 1 | Presence | This study | |||||
Salinas del Rey | 3 | Absence | This study | ||||
Astilleros | 0 | Absence | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Varela, Z.E.; Rosado-Porto, D.; Bolívar-Anillo, H.J.; Pichón González, C.; Granados Pantoja, B.; Estrada Alvarado, D.; Anfuso, G. Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics. J. Mar. Sci. Eng. 2021, 9, 122. https://doi.org/10.3390/jmse9020122
Soto-Varela ZE, Rosado-Porto D, Bolívar-Anillo HJ, Pichón González C, Granados Pantoja B, Estrada Alvarado D, Anfuso G. Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics. Journal of Marine Science and Engineering. 2021; 9(2):122. https://doi.org/10.3390/jmse9020122
Chicago/Turabian StyleSoto-Varela, Zamira E., David Rosado-Porto, Hernando José Bolívar-Anillo, Camila Pichón González, Bertha Granados Pantoja, Dalidier Estrada Alvarado, and Giorgio Anfuso. 2021. "Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics" Journal of Marine Science and Engineering 9, no. 2: 122. https://doi.org/10.3390/jmse9020122
APA StyleSoto-Varela, Z. E., Rosado-Porto, D., Bolívar-Anillo, H. J., Pichón González, C., Granados Pantoja, B., Estrada Alvarado, D., & Anfuso, G. (2021). Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics. Journal of Marine Science and Engineering, 9(2), 122. https://doi.org/10.3390/jmse9020122