Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Application of Experimental Circulation Models
2.2. In SituSamplings and Physico-Chemical Measurements
2.3. Microbiological Measurements
- Protocol A: also known as the direct viable count method, it was adopted for the determination of VBNC E. coli. Two subsamples were prepared, one subjected to a freezing/thawing treatment and one used as control. In particular 40 mL of both the subsamples were added with 4 mL of Yeast Extract (at a concentration of 50 mg/L [16]), 4 mL of nalidixic acid (at a concentration of 40 µg/mL, dissolved in 0.05 M NaOH) and 4 mL of glycine (2%) and incubated in the dark for 140 min at 35 °C. Later, one of the two tubes was frozen at −20 °C and thawed at room temperature. Both the tubes were then treated as described in protocol C. After glycine treatment, which induced the transformation of V cells into spheroplasts, further lysed by the freezing and thawing cycle. the number of the lysed cells corresponded to the number of V E. coli. The number of VBNC E. coli was obtained by the difference between T (obtained from the total abundance estimated in the control tube) and that of V E. coli (obtained after the freezing/thawing process).
- Protocol B: applied for the determination of D E. coli. Variable volumes (from 40 to 15 mL depending on sample contamination) of seawater were filtered through a Millipore black membrane (25 mm diameter, pore size 0.22 µm) (Merck Millipore, Milan, Italy), and incubated with propidium iodide (Sigma-Aldrich, Milan, Italy) at a concentration of 2 µg/mL; the membranes were then rinsed with phosphate buffered saline (PBS) and treated as described below in Protocol C.
- Protocol C: this analytical protocol is known as the fluorescent antibody method for the determination of T E, coli cells [18], as modified by Caruso et al. [19]. Known volumes (at least 10 mL) of formalin fixed sample (final concentration 2%) were filtered through a Nuclepore black membrane (25 mm diameter, pore size 0.22 µm) and incubated for 30 min at room temperature with 1 mL of a mix of polyclonal immune sera (Behring Serum test Coli anti pool A, B and C, Behring, Marburg, Germany), specific for enteropathogenic E. coli serotypes, diluted 1:80 in PBS. After rinsing with PBS, the filter was incubated for additional 30 min with 1 mL of anti fluorescein isothiocyanate (FITC) conjugated immunoglobulin (FITC-goat anti-rabbit IgG conjugate, Sigma-Aldrich, Milan, Italy) diluted 1:160 in PBS and rinsed with PBS after incubation. All the filters obtained from these protocols—4 filters per each sample, namely two for VBNC cells, one for D cells and one for T cells—were mounted on a slide by inserting a drop of Difco FA mounting fluid (BD, Franklin Lakes, NJ, USA), covered with a coverslip and frozen until observation under epifluorescence microscope (Zeiss Axioplan, Zeiss Oberkochen, Germany) equipped with filter sets specific for FITC (BP450-490, FT510, BP515-565) and propidium iodide (BP546/12; FT580; LP590, the same used for rhodamine).
2.4. Numerical Simulations by Mathematical Models
- (i)
- the analysis of the dispersion and transport processes of V and VBNC fractions of E. coli population through the use of innovative laboratory protocols;
- (ii)
- the calculation of the FT-related spatial distribution for both V and VBNC fractions;
- (iii)
- the development of an index of water quality that combines the dispersion and transport of V and VBNC E. coli with their residence times as indicated by FT.
3. Results
3.1. Estimation of the E. coli Fractions Discharged into Seawater
3.2. Dispersion and Residence Times of E. coli Fractions
3.3. BWQI Development and Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Hassard, F.; Andrews, A.; Jones, D.L.; Parsons, L.; Jones, V.; Cox, B.A.; Daldorph, P.; Brett, H.; McDonald, J.E.; Malham, S.K. Physicochemical factors influence the abundance and culturability of human enteric pathogens and fecal indicator organisms in estuarine water and sediment. Front. Microbiol. 2017, 8, 1996. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Almeida, V.; Almeida Santos, M.; Chambel, L. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J. Appl. Microbiol. 2011, 110, 1601–1611. [Google Scholar] [CrossRef]
- Ohtomo, R.; Saito, M. Increase in the culturable cell number of Escherichia coli during recovery from saline stress: Possible implication for resuscitation from the VBNC state. Microb. Ecol. 2001, 42, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Mancuso, M.; Crisafi, E. Combined fluorescent antibody assay and viability staining for the assessment of the physiological states of Escherichia coli in seawaters. J. Appl. Microbiol. 2003, 95, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, G.; Denaro, R.; Genovese, M.; Giuliano, L.; Mancuso, M.; Yakimov, M. New methodological strategies for detecting bacterial indicators. Chem. Ecol. 2004, 20, 167–181. [Google Scholar] [CrossRef]
- Bonamano, S.; Madonia, A.; Piazzolla, D.; Paladini de Mendoza, F.; Piermattei, V.; Scanu, S.; Marcelli, M. Development of a predictive tool to support environmentally sustainable management in port basins. Water 2017, 9, 898. [Google Scholar] [CrossRef] [Green Version]
- Salmoun, F.; El Yemlahi, A.; Magalhaes, J.M. Monitoring Tangier (Morocco) coastal waters for As, Fe and P concentrations using ESA Sentinels-2 and 3 data: An exploratory study. Reg. Stud. Mar. Sci. 2019, 32, 100882. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of bathing water quality using thermal images Landsat 8 on the west coast of Tangier: Preliminary results. Remote Sens. 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Piazzolla, D.; Cafaro, V.; de Lucia, G.A.; Mancini, E.; Scanu, S.; Bonamano, S.; Piermattei, V.; Vianello, A.; Della Ventura, G.; Marcelli, M. Microlitter pollution in coastal sediments of the northern Tyrrhenian Sea, Italy: Microplastics and fly-ash occurrence and distribution. Estuar. Coast. Shelf Sci. 2020, 241, 106819. [Google Scholar] [CrossRef]
- Bonamano, S.; Madonia, A.; Borsellino, C.; Stefanì, C.; Caruso, G.; De Pasquale, F.; Piermattei, V.; Zappalà, G.; Marcelli, M. Modeling the dispersion of viable and total Escherichia coli cells in the artificial semi-enclosed bathing area of Santa Marinella (Latium, Italy). Mar. Pollut. Bull. 2015, 95, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Zappalà, G.; Caruso, G.; Bonamano, S.; Madonia, A.; Piermattei, V.; Martellucci, R.; Di Cicco, A.; Pannocchi, A.; Stefanì, C.; Borsellino, C.; et al. A multi-platform approach to marine environment assessment in the Civitavecchia (Rome) area. J. Oper. Oceanogr. 2016, 9 (Suppl. 1), S131–S143. [Google Scholar] [CrossRef]
- Ostoich, M.; Ghezzo, M.; Umgiesser, G.; Zambon, M.; Tomiato, L.; Ingegneri, F.; Mezzadri, G. Modelling as decision support for the localisation of submarine urban wastewater outfall: Venice lagoon (Italy) as a case study. Environ. Sci. Pollut. Res. 2018, 25, 34306–34318. [Google Scholar] [CrossRef]
- Madonia, A.; Caruso, G.; Piazzolla, D.; Bonamano, S.; Piermattei, V.; Zappalà, G.; Marcelli, M. Chromophoric Dissolved Organic Matter as a tracer of fecal contamination for bathing water quality monitoring in the northern Tyrrhenian Sea (Latium, Italy). J. Mar. Sci. Eng. 2020, 8, 430. [Google Scholar] [CrossRef]
- Bonamano, S.; Piermattei, V.; Madonia, A.; Paladini de Mendoza, F.; Pierattini, A.; Martellucci, R.; Stefanì, C.; Zappalà, G.; Caruso, G.; Marcelli, M. The Civitavecchia Coastal Environment Monitoring System (C-CEMS): A new tool to analyze the conflicts between coastal pressures and sensitivity areas. Ocean Sci. 2016, 12, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Yokomaku, D.; Yamaguchi, N.; Nasu, M. Improved Direct Viable Count procedure for quantitative estimation of bacterial viability in freshwater environments. Appl. Environ. Microbiol. 2000, 66, 5544–5548. [Google Scholar] [CrossRef] [Green Version]
- Altug, G.; Cardak, M.; Ciftci, P.S.; Gurun, S. The application of viable count procedures for measuring viable cells in the various marine environments. J. Appl. Microbiol. 2010, 108, 88–95. [Google Scholar] [CrossRef]
- Zaccone, R.; Crisafi, E.; Caruso, G. Evaluation of fecal pollution in coastal Italian waters by immunofluorescence. Aquat. Microb. Ecol. 1995, 9, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Zaccone, R.; Crisafi, E. Use of the indirect immunofluorescence method for detection and enumeration of Escherichia coli in seawater samples. Lett. Appl. Microbiol. 2001, 31, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Takeoka, H. Fundamental concepts of exchange and transport time scales in a coastal sea. Contin. Shelf Res. 1984, 3, 311–326. [Google Scholar] [CrossRef]
- Benedetti-Cecchi, L.; Crowe, T.; Boehme, L.; Boero, F.; Christensen, A.; Grémare, A.; Hernandez, F.; Kromkamp, J.C.; Nogueira Garcia, E.; Petihakis, G.; et al. Strengthening Europe’s capability in biological ocean observations. In EMB Future Science Brief 3 of the European Marine Board; Muñiz Piniella, A., Kellett, P., Larkin, K., Heymans, J.J., Eds.; European Marine Board: Ostend, Belgium, 2018; pp. 1–76. ISBN 9789492043559. [Google Scholar]
- Elliott, M.; Boyes, S.J.; Barnard, S.; Borja, A. Using best expert judgement to harmonize marine environmental status assessment and maritime spatial planning. Mar. Pollut. Bull. 2018, 133, 367–377. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive 2008/56/EC of the European Parliament and of the Council of the 17 June 2008 establishing a framework for Community actions in the field of marine environmental policy (Marine Strategy Framework Directive). OJEC 2008, L164, 19–40. [Google Scholar]
- She, J.; Muñiz Piniella, Á.; Benedetti-Cecchi, L.; Boehme, L.; Boero, F.; Christensen, A.; Crowe, T.; Darecki, M.; Nogueira, E.; Gremare, A.; et al. An integrated approach to coastal and biological observations. Front. Mar. Sci. 2019, 6, 314. [Google Scholar] [CrossRef]
- Berg, R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996, 4, 430–435. [Google Scholar] [CrossRef]
- Anderson, K.L.; Whitlock, J.E.; Harwood, V.J. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl. Environ. Microbiol. 2005, 71, 3041–3048. [Google Scholar] [CrossRef] [Green Version]
- Korajkic, A.; Wanjugi, P.; Brooks, L.; Cao, Y.; Harwood, V.J. Persistence and decay of fecal microbiota in aquatic habitats. Microbiol. Mol. Biol. Rev. 2019, 83, e00005-19. [Google Scholar] [CrossRef]
- Fakruddin, M.D.; Shahneway Bin Mannan, K.; Andrews, S. Viable but Nonculturable Bacteria: Food safety and public health perspective. ISRN Microbiol. 2013. [Google Scholar] [CrossRef]
- Ding, T.; Suo, Y.; Xiang, Q.; Zhao, X.; Chen, S.; Ye, X.; Liu, D. Significance of Viable but Nonculturable Escherichia coli: Induction, detection, and control. J. Microbiol. Biotechnol. 2017, 27, 417–428. [Google Scholar] [CrossRef]
- Ishii, S.; Sadowsky, M.J. Escherichia coli in the environment: Implications for water quality and human health. Microbes Environ. 2008, 23, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Hur, H.-G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications-a review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Kell, D.B.; Kaprelyants, A.S.; Weichart, D.H.; Harwood, C.R.; Barer, M.R. Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie van Leeuwenhoek 1998, 73, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Arana, I.; Orruño, M.; Pérez-Pascual, D.; Seco, C.; Muela, A.; Barcina, I. Inability of Escherichia coli to resuscitate from the viable but nonculturable state. FEMS Microbiol. Ecol. 2007, 62, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orruño, M.; Kaberdin, V.R.; Arana, I. Survival strategies of Escherichia coli and Vibrio spp.: Contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J. Microbiol.Biotechnol. 2017, 33, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Tyrrell, G.; Hrudey, S.E.; Li, X.F. Induction of Escherichia coli O157:H7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation. Environ. Microbiol. Rep. 2009, 1, 155–161. [Google Scholar] [CrossRef]
- Özkanca, R.; Saribiyik, F.; Isik, K.; Sahin, N.; Kariptas, E.; Flint, K.P. Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples. Microbiol. Res. 2009, 164, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.F.C.; Singer, A.; Ukoumunne, O.C.; Gaze, W.H.; Garside, R. Is it safe to go back into the water? A systematic review and meta-analysis of the risk of acquiring infections from recreational exposure to seawater. Int. J. Epidemiol. 2018, 47, 572–586. [Google Scholar] [CrossRef]
- Caruso, G.; La Ferla, R.; Azzaro, M.; Zoppini, A.; Marino, G.; Petochi, T.; Corinaldesi, C.; Leonardi, M.; Zaccone, R.; Fonda Umani, S.; et al. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit. Rev. Microbiol. 2016, 42, 883–904. [Google Scholar] [CrossRef]
- Grifoll, M.; Jordà, G.; Borja, A.; Espino, M. A new risk assessment method for water quality degradation in harbour domains, using hydrodynamic models. Mar. Pollut. Bull. 2010, 60, 69–78. [Google Scholar] [CrossRef]
- Grifoll, M.; Del Campo, A.; Espino, M.; Mader, J.; González, M.; Borja, A. Water renewal and risk assessment of water pollution in semi-enclosed domains: Application to Bilbao Harbour (Bay of Biscay). J. Mar. Syst. 2013, 109–110, S241–S251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonamano, S.; Madonia, A.; Caruso, G.; Zappalà, G.; Marcelli, M. Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring. J. Mar. Sci. Eng. 2021, 9, 120. https://doi.org/10.3390/jmse9020120
Bonamano S, Madonia A, Caruso G, Zappalà G, Marcelli M. Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring. Journal of Marine Science and Engineering. 2021; 9(2):120. https://doi.org/10.3390/jmse9020120
Chicago/Turabian StyleBonamano, Simone, Alice Madonia, Gabriella Caruso, Giuseppe Zappalà, and Marco Marcelli. 2021. "Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring" Journal of Marine Science and Engineering 9, no. 2: 120. https://doi.org/10.3390/jmse9020120
APA StyleBonamano, S., Madonia, A., Caruso, G., Zappalà, G., & Marcelli, M. (2021). Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring. Journal of Marine Science and Engineering, 9(2), 120. https://doi.org/10.3390/jmse9020120