Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test
Abstract
:1. Introduction
2. Geometry and Parameters
- (1)
- The slit diameter D, i.e., the position of the slit on the blade, is selected at a level every 30 mm from 35% to 70% of the impeller diameter, i.e., 90 mm, 120 mm, 150 mm, and 180 mm.
- (2)
- The slit width E, the slit width affects the flow of liquid through the slit, with four levels chosen: 1.5 mm, 3.0 mm, 4.5 mm, and 6.0 mm.
- (3)
- The long and short blade lap length L, a factor that determines the start of the action of the deflector blade on the fluid, is selected at four levels: 5 mm, 10 mm, 15 mm, and 20 mm.
3. Numerical Modeling
3.1. Three-Dimensional Model
3.2. Grids
3.3. Boundary Conditions
4. Pump Performance Validation
5. Orthogonal Test and Results
5.1. Determination of Orthogonal Test Schemes
5.2. Summary of Orthogonal Test Results
5.3. Analysis of Orthogonal Test Results
5.3.1. Direct Analysis of Test Results
5.3.2. Analysis of Extreme Variance of Test Results
5.4. Flow Field Analysis
6. Conclusions
- (1)
- Numerical calculations of the initial model head and efficiency are slightly higher than the test results at the rated flow condition. In the range of 0.6Qdes to 1.4Qdes, the error between the numerical prediction of head and efficiency and the test results is less than 5%. This shows that the numerical calculation method used in this paper has good accuracy in predicting the performance of low-specific speed centrifugal pumps.
- (2)
- The slit diameter and slit width in the range of 0.6Qdes~1.4Qdes have a high influence on the head and efficiency of the low-specific speed centrifugal pump, while the lap length has the least influence on the head and efficiency of the low specific speed centrifugal pump. In the orthogonal tests of this study, the hydraulic model of scheme 1 (90 mm slit diameter, 1.5 mm slit width and 5 mm lap length of long and short blade) has the best performance.
- (3)
- The impeller slit can effectively reduce the vortex intensity in the middle of the impeller runner and reduce the energy loss in the runner. In the range of 0.6Qdes~1.4Qdes, the head of the optimized model is almost the same as that of the initial model, but the efficiency is significantly improved. Therefore, the combination of orthogonal testing and numerical prediction can effectively improve the performance of low specific speed centrifugal pumps.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.D.; Kurokawa, J.; Matsui, J. Performance and internal flow characteristics of a very low specific speed centrifugal pump. ASME J. Fluids Eng. 2006, 128, 341–349. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, L.; Jiang, X.; Pang, Q.; Ye, D. Vibration in a multistage centrifugal pump under varied conditions. Shock Vib. 2019, 2019, 2057031. [Google Scholar] [CrossRef]
- Pei, J.; Wang, W.; Yuan, S. Statistical analysis of pressure fluctuations during unsteady flow for low-specific-speed centrifugal pumps. J. Cent. South Univ. 2014, 21, 1017–1024. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Pet. Sci. Eng. 2020, 196, 107653. [Google Scholar]
- Kelder, J.D.H.; Dijkers, R.J.H.; Van Esch, B.; Kruyt, N.P. Experimental and theoretical study of the flow in the volute of a low specific-speed pump. Fluid Dyn. Res. 2001, 28, 267. [Google Scholar] [CrossRef]
- Peng, G.; Fan, F.; Zhou, L.; Huang, X.; Ma, J. Optimal Hydraulic Design to Minimize Erosive Wear in a Centrifugal Slurry Pump Impeller. Eng. Fail. Anal. 2021, 120, 105105. [Google Scholar] [CrossRef]
- Durmusoglu, Y.; Kocak, G.; Deniz, C.; Zincir, B. Energy efficiency analysis of pump systems in a ship power plant and a case study of a container ship. In Proceedings of the 16th IAMU Annual General Assembly, Opatija, Croatia,, 7–10 October 2015. [Google Scholar]
- Su, C.L.; Chung, W.L.; Yu, K.T. An energy-savings evaluation method for variable-frequency-drive applications on ship central cooling systems. IEEE Trans. Ind. Appl. 2013, 50, 1286–1294. [Google Scholar] [CrossRef]
- Baoling, C.; Zuchao, Z.; Zhang, J.; Ying, C. The flow simulation and experimental study of low-specific-speed high-speed complex centrifugal impellers. Chin. J. Chem. Eng. 2006, 14, 435–441. [Google Scholar]
- Jafarzadeh, B.; Hajari, A.; Alishahi, M.; Akbari, M. The flow simulation of a low-specific-speed high-speed centrifugal pump. Appl. Math. Model. 2011, 35, 242–249. [Google Scholar] [CrossRef]
- Yuan, S.; Cao, W.; Li, S. Theory and design method of non-overload centrifugal pumps. Chin. J. Mech. Eng. 1992, 5, 252–260. [Google Scholar]
- Ni, Y.Y.; Yuan, S.Q.; Yuan, J.P.; Zhang, J.F. Model of enlarged flow design for low specific speed centrifugal pump. Drain. Irrig. Mach. 2008, 26, 21–24. [Google Scholar]
- Liu, Z.; Xu, H.; Lu, W.; Chen, T. Influence of diameter of rear sealing ring on axial force characteristics of centrifugal pump. J. Drain. Irrig. Mach. Eng. 2020, 38, 115–120. [Google Scholar]
- Culley, D.E.; Bright, M.M.; Prahst, P.S.; Strazisar, A.J. Active flow separation control of a stator vane using embedded injection in a multistage compressor experiment. J. Turbomach. 2004, 126, 24–34. [Google Scholar] [CrossRef]
- Gupta, A.; Alsultan, A.; Amano, R.S.; Kumar, S.; Welsh, A.D. Design and analysis of wind turbine blades: Winglet, tubercle, and slotted. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Zhu, B.; Chen, H. Cavitating suppression of low specific speed centrifugal pump with gap drainage blades. J. Hydrodyn. 2012, 24, 729–736. [Google Scholar] [CrossRef]
- Ye, D.; Li, H.; Wang, Y. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 022009. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Long, B.; Wang, C.; Han, C.; Li, L. Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance. Energies 2020, 13, 1628. [Google Scholar]
- Yang, Y.; Zhou, L.; Hang, J.; Du, D.; Shi, W.; He, Z. Energy characteristics and optimal design of diffuser meridian in an electrical submersible pump. Renew. Energy 2021, 167, 718–727. [Google Scholar] [CrossRef]
- Shi, W.; Hou, Y.; Zhou, L.; Li, Y.; Xue, S. Numerical simulation and test of performance of deep-well centrifugal pumps with different stages. J. Drain. Irrig. Mach. Eng. 2019, 37, 562–567. [Google Scholar]
- Zhou, L.; Han, C.; Bai, L.; Li, W.; El-Emam, M.; Shi, W. CFD-DEM bidirectional coupling simulation and experimental investigation of particle ejections and energy conversion in a spouted bed. Energy 2020, 211, 118672. [Google Scholar] [CrossRef]
- Yun, L.; Rongsheng, Z.; Wang, D.-Z.; Junlian, Y.; Tianbin, L. Numerical and experimental investigation on the diffuser optimization of a reactor coolant pump with orthogonal test approach. J. Mech. Sci. Technol. 2016, 30, 4941–4948. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Zheng, Y.; Fernandez-Rodriguez, E.; Sun, A.; Yang, C.; Wang, J. Multiobjective optimization design and experimental investigation on the axial flow pump with orthogonal test approach. Complexity 2019, 2019, 1467565. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Guo, Y.; Li, R.; Su, Q.; Chai, Y. Optimization design and experimental study of vortex pump based on orthogonal test. Sci. Prog. 2020, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Q.; Jiang, X.; Zhu, J.; Wu, G.; Wang, X.; Wang, L. Influences of radial clearance between impeller and diffuser on flow field in side chambers of multistage centrifugal pump. J. Drain. Irrig. Mach. Eng. 2019, 37, 580–586. [Google Scholar]
- Zhou, L.; Deshpande, K.; Zhang, X.; Agarwal, R. Process simulation of Chemical Looping Combustion using ASPEN Plus for a mixture of biomass and coal with various oxygen carriers. Energy 2020, 195, 116955. [Google Scholar] [CrossRef]
- Peng, G.; Huang, X.; Zhou, L.; Zhou, G.; Zhou, H. Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Eng. Fail. Anal. 2020, 114, 104602. [Google Scholar] [CrossRef]
Factors | A(D/mm) | B(E/mm) | C(L/mm) | |
---|---|---|---|---|
Levels | ||||
1 | 90 | 1.5 | 5 | |
2 | 120 | 3.0 | 10 | |
3 | 150 | 4.5 | 15 | |
4 | 180 | 6.0 | 20 |
Test Schemes | Factor Letter | Factor Value | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
1 | A1 | B1 | C1 | 90 | 1.5 | 5 |
2 | A1 | B2 | C2 | 90 | 3.0 | 10 |
3 | A1 | B3 | C3 | 90 | 4.5 | 15 |
4 | A1 | B4 | C4 | 90 | 6.0 | 20 |
5 | A2 | B1 | C2 | 120 | 1.5 | 10 |
6 | A2 | B2 | C1 | 120 | 3.0 | 5 |
7 | A2 | B3 | C4 | 120 | 4.5 | 20 |
8 | A2 | B4 | C3 | 120 | 6.0 | 15 |
9 | A3 | B1 | C3 | 150 | 1.5 | 20 |
10 | A3 | B2 | C4 | 150 | 3.0 | 5 |
11 | A3 | B3 | C1 | 150 | 4.5 | 10 |
12 | A3 | B4 | C2 | 150 | 6.0 | 15 |
13 | A4 | B1 | C4 | 180 | 1.5 | 20 |
14 | A4 | B2 | C3 | 180 | 3.0 | 15 |
15 | A4 | B3 | C2 | 180 | 4.5 | 10 |
16 | A4 | B4 | C1 | 180 | 6.0 | 5 |
Schemes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
H/m | 84.49 | 83.63 | 83 | 82.86 | 84.05 | 83.98 | 83.08 | 83.58 |
η/% | 20.81 | 20.53 | 20.37 | 20.84 | 20.89 | 21.82 | 20.49 | 21.47 |
P/kW | 6.63 | 6.65 | 6.66 | 6.49 | 6.57 | 6.29 | 6.62 | 6.36 |
Schemes | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
H/m | 84.2 | 83.35 | 82.36 | 81.98 | 83.01 | 80.94 | 79.44 | 79.14 |
η/% | 21.18 | 20.95 | 20.65 | 21.28 | 20.71 | 20.51 | 20.63 | 20.26 |
P/kW | 6.49 | 6.50 | 6.51 | 6.29 | 6.55 | 6.45 | 6.29 | 6.38 |
Schemes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
H/m | 82.39 | 81.16 | 80.17 | 79.29 | 81.72 | 80.97 | 79.89 | 79.15 |
η/% | 28.62 | 27.44 | 27.21 | 26.91 | 27.79 | 27.68 | 26.23 | 26.88 |
P/kW | 7.84 | 8.05 | 8.02 | 8.02 | 8.01 | 7.96 | 8.29 | 8.02 |
Schemes | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
H/m | 81.24 | 80.04 | 78.57 | 77.4 | 80.42 | 78.47 | 77.26 | 76.86 |
η/% | 27.54 | 27.2 | 26.33 | 26.12 | 27.51 | 27.36 | 27.24 | 27.1 |
P/kW | 8.03 | 8.01 | 8.12 | 8.07 | 7.96 | 7.81 | 7.72 | 7.72 |
Schemes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
H/m | 80.54 | 78.83 | 78.35 | 77.93 | 79.08 | 78.61 | 77.75 | 76.98 |
η/% | 34.32 | 33.77 | 33.39 | 33.13 | 33.96 | 33.84 | 33.4 | 33.13 |
P/kW | 8.94 | 8.90 | 8.94 | 8.96 | 8.87 | 8.85 | 8.87 | 8.86 |
Schemes | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
H/m | 79.23 | 77.77 | 75.87 | 74.6 | 77.6 | 76.15 | 75.7 | 74.87 |
η/% | 33.29 | 33.02 | 32.26 | 31.45 | 34.12 | 33.83 | 33.71 | 33.56 |
P/kW | 9.07 | 8.98 | 8.96 | 9.04 | 8.67 | 8.58 | 8.56 | 8.50 |
H/m | η/% | |||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
K1 | 334 | 335.76 | 329.96 | 82.56 | 83.6 | 83.52 |
K2 | 334.68 | 331.88 | 329.12 | 84.68 | 83.8 | 83.32 |
K3 | 331.88 | 327.88 | 331.72 | 84.08 | 82.16 | 83.52 |
K4 | 322.52 | 327.56 | 332.32 | 82.12 | 83.84 | 83 |
k1 | 83.5 | 83.94 | 82.49 | 20.64 | 20.9 | 20.88 |
k2 | 83.67 | 82.97 | 82.28 | 21.17 | 20.95 | 20.83 |
k3 | 82.97 | 81.97 | 82.93 | 21.02 | 20.54 | 20.88 |
k4 | 80.63 | 81.89 | 83.08 | 20.53 | 20.96 | 20.75 |
R | 3.04 | 2.05 | 0.8 | 0.64 | 0.43 | 0.14 |
Orderliness | 1 | 2 | 3 | 1 | 2 | 3 |
Key Factor Secondary Factor | |||
---|---|---|---|
H/m | A | B | C |
η/% | A | B | C |
H/m | η/% | |||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
K1 | 323 | 325.76 | 318.8 | 110.2 | 111.44 | 109.72 |
K2 | 321.72 | 320.64 | 317.56 | 108.56 | 109.68 | 108.6 |
K3 | 317.24 | 315.88 | 319.04 | 107.2 | 107 | 109 |
K4 | 313 | 312.68 | 319.64 | 109.2 | 107 | 107.84 |
k1 | 80.75 | 81.44 | 79.7 | 27.55 | 27.86 | 27.43 |
k2 | 80.43 | 80.16 | 79.39 | 27.14 | 27.42 | 27.15 |
k3 | 79.31 | 78.97 | 79.76 | 26.8 | 26.75 | 27.25 |
k4 | 78.25 | 78.17 | 79.91 | 27.3 | 26.75 | 26.96 |
R | 2.5 | 3.27 | 0.53 | 0.75 | 1.11 | 0.47 |
Orderliness | 2 | 1 | 3 | 2 | 1 | 3 |
Key Factor Secondary Factor | |||
---|---|---|---|
H/m | B | A | C |
η/% | B | A | C |
H/m | η/% | |||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
K1 | 315.64 | 316.44 | 309.88 | 134.6 | 135.68 | 133.96 |
K2 | 312.44 | 311.36 | 308.2 | 134.32 | 134.48 | 132.88 |
K3 | 307.48 | 307.68 | 310.72 | 130 | 132.76 | 133.64 |
K4 | 304.32 | 304.36 | 311.04 | 135.2 | 131.28 | 133.68 |
k1 | 78.91 | 79.11 | 77.47 | 33.65 | 33.92 | 33.49 |
k2 | 78.11 | 77.84 | 77.05 | 33.58 | 33.62 | 33.22 |
k3 | 76.87 | 76.92 | 77.68 | 32.5 | 33.19 | 33.41 |
k4 | 76.08 | 76.09 | 77.76 | 33.8 | 32.82 | 33.42 |
R | 2.83 | 3.02 | 0.71 | 1.3 | 1.1 | 0.27 |
Orderliness | 2 | 1 | 3 | 1 | 2 | 3 |
Key Factor Secondary Factor | |||
---|---|---|---|
H/m | B | A | C |
η/% | A | B | C |
Target | Flow Rates | A | B | C |
---|---|---|---|---|
H/m | 0.6Qdes | A2 | B1 | C4 |
1.0Qdes | A1 | B1 | C4 | |
1.4Qdes | A1 | B1 | C4 | |
η/% | 0.6Qdes | A2 | B2 | C1 |
1.0Qdes | A1 | B1 | C1 | |
1.4Qdes | A4 | B1 | C1 | |
Combination | — | A1 | B1 | C1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhou, L.; Zhou, H.; Lv, W.; Wang, J.; Shi, W.; He, Z. Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test. J. Mar. Sci. Eng. 2021, 9, 121. https://doi.org/10.3390/jmse9020121
Yang Y, Zhou L, Zhou H, Lv W, Wang J, Shi W, He Z. Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test. Journal of Marine Science and Engineering. 2021; 9(2):121. https://doi.org/10.3390/jmse9020121
Chicago/Turabian StyleYang, Yang, Ling Zhou, Hongtao Zhou, Wanning Lv, Jian Wang, Weidong Shi, and Zhaoming He. 2021. "Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test" Journal of Marine Science and Engineering 9, no. 2: 121. https://doi.org/10.3390/jmse9020121
APA StyleYang, Y., Zhou, L., Zhou, H., Lv, W., Wang, J., Shi, W., & He, Z. (2021). Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test. Journal of Marine Science and Engineering, 9(2), 121. https://doi.org/10.3390/jmse9020121