Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach
Abstract
:1. Introduction
2. Breakwater-Integrated OWC
2.1. Structural Response/Stability to Waves
2.2. Hydraulic Performance
3. Breakwater-Integrated OTD
3.1. Structural Response/Stability to Waves
3.2. Hydraulic Performance
4. Hybridisation
5. Proof of Concept of the Breakwater-Integrated HWEC
5.1. Physical Model Testing
5.2. Numerical Modelling
5.2.1. Model Set-Up
- In the laboratory a piston-type wavemaker with an active absorption system was used at the offshore boundary of the wave tank for the generation of various regular and irregular wave conditions. Likewise, in the numerical model a moving wall at the left offshore boundary of the computational domain was implemented to replicate the exact wavemaker motion measured during the experimental tests. Thus, regular and irregular wave time series were generated in FLUENT using the corresponding wave paddle motion measured in the laboratory. This movement was transferred to the model using the measured wave paddle position over time, X(t), and the associated velocity, V(t). This procedure allows replicating wave-by-wave conditions tested in the laboratory (see A in Figure 7).
- Symmetry for the top boundary of the domain (see B in Figure 7) since it has been confirmed that the length of the air region above the water is big enough so not to affect the results in the water region.
- A pressure outlet for the boundary in the air phase just above the HWEC device (see C in Figure 7).
- A fan boundary condition for the OWC (see A in Figure 8).
- A pressure outlet for the sinks of the OTD devices (see B in Figure 8).
- No slip conditions at the bottom, breakwater toe and all other parts of the HWEC device.
5.2.2. Model Validation
5.2.3. HWEC Geometry Optimisation
5.2.4. Hydraulic Performance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barstow, S.; Mørk, G.; Mollison, D.; Cruz, J. The wave energy resource. In Ocean Wave Energy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 93–132. [Google Scholar]
- Greaves, D.; Iglesias, G. Wave and Tidal Energy; Wiley Online Library: Hoboken, NJ, USA, 2018; ISBN 9781119014447. Online ISBN 9781119014492. [Google Scholar] [CrossRef]
- Magagna, D.; Uihlein, A. 2014 JRC Ocean Energy Status Report; European Commission Joint Research Centre: Ispra, Italy, 2015. [Google Scholar]
- Torre-Enciso, Y.; Ortubia, I.; De Aguileta, L.L.; Marqués, J. Mutriku wave power plant: From the thinking out to the reality. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; Volume 710. [Google Scholar]
- Arena, F.; Romolo, A.; Malara, G.; Fiamma, V.; Laface, V. The first worldwide application at full-scale of the REWEC3 device in the Port of Civitavecchia: Initial energetic performances. In Progress in Renewable Energies Offshore, Proceedings of the 2nd International Conference on Renewable Energies Offshore (RENEW2016), Lisbon, Portugal, 24–26 October 2016; Taylor & Francis Group: London, UK, 2016; p. 303. [Google Scholar]
- Contestabile, P.; Crispino, G.; Di Lauro, E.; Ferrante, V.; Gisonni, C.; Vicinanza, D. Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead. Renew. Energy 2020, 147, 705–718. [Google Scholar] [CrossRef]
- Vicinanza, D.; Contestabile, P.; Nørgaard, J.Q.H.; Andersen, T.L. Innovative rubble mound breakwaters for overtopping wave energy conversion. Coast. Eng. 2014, 88, 154–170. [Google Scholar] [CrossRef]
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Falcão, A.F.; Henriques, J.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Vicinanza, D.; Lauro, E.D.; Contestabile, P.; Gisonni, C.; Lara, J.L.; Losada, I.J. Review of innovative harbor breakwaters for wave-energy conversion. J. Waterw. Port Coast. Ocean Eng. 2019, 145, 03119001. [Google Scholar] [CrossRef]
- Das Neves, L.; Samadov, Z.; Di Lauro, E.; Delecluyse, K.; Haerens, P. The integration of a hybrid Wave Energy Converter in port breakwaters. In Proceedings of the 13th European Wave and Tidal Energy Conference, Naples, Italy, 1–6 September 2019. [Google Scholar]
- Rosa-Santos, P.; Taveira-Pinto, F.; Clemente, D.; Cabral, T.; Fiorentin, F.; Belga, F.; Morais, T. Experimental study of a hybrid wave energy converter integrated in a harbor breakwater. J. Mar. Sci. Eng. 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S. A Study on Design of a Wave Power Extracting Caisson Breakwater; Wave Power Laboratory, Port and Harbour Research Institute: Negase, Japan, 1988. [Google Scholar]
- Goda, Y. Random Seas and Maritime Structures. In Advanced Series on Ocean Engineering; World Scientific Publishing Company: Singapore, 2000; p. 15. [Google Scholar]
- Müller, G.U.; Whittaker, T.J.T. An investigation of breaking wave pressures on inclined walls. Ocean Eng. 1993, 20, 349–358. [Google Scholar] [CrossRef]
- Muller, G.; Whittaker, T.J.T. Field Measurements of Breaking Wave Loads on a Shoreline Wave Power Station. Proc. Inst. Civ. Eng. Water Marit. Energy 1995, 112, 187–197. [Google Scholar] [CrossRef]
- Jayakumar, V.S. Wave Force on Oscillating Water Column Type Wave Energy Caisson: An Experiment Study. Ph.D. Thesis, Department of Ocean Engineering, Indian Institute of Technology, Madras, India, 1994. [Google Scholar]
- Neumann, F.; Sarmento, A.J.N.A. OWC-caisson economy and its dependency on breaking wave design loads. In The Eleventh International Offshore and Polar Engineering Conference; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 2001. [Google Scholar]
- Hull, P.; Müller, G. An investigation of breaker heights, shapes and pressures. Ocean Eng. 2002, 29, 59–79. [Google Scholar] [CrossRef]
- Thiruvenkatasamy, K.; Neelamani, S.; Sato, M. Nonbreaking wave forces on multiresonant oscillating water column wave power caisson breakwater. J. Waterw. Port Coast. Ocean Eng. 2005, 131, 77–84. [Google Scholar] [CrossRef]
- Patterson, C.; Dunsire, R.; Hillier, S. Development of wave energy breakwater at Siadar, Isle of Lewis. In Coasts, Marine Structures and Breakwaters: Adapting to Change, Proceedings of the 9th International Conference Organised by the Institution of Civil Engineers, Edinburgh, UK, 16–18 September 2009; Thomas Telford Ltd.: London, UK, 2010; pp. 1–738. [Google Scholar]
- Huang, Y.; Shi, H.; Liu, D.; Liu, Z. Study on the breakwater caisson as oscillating water column facility. J. Ocean Univ. China 2010, 9, 244–250. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Liu, Z.; Ma, Z. Experiment study on a new designed OWC caisson breakwater. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–5. [Google Scholar]
- Kuo, Y.S.; Lin, C.S.; Chung, C.Y.; Wang, Y.K. Wave loading distribution of oscillating water column caisson breakwaters under non-breaking wave forces. J. Mar. Sci. Technol. 2014, 23, 78–87. [Google Scholar]
- Viviano, A.; Naty, S.; Foti, E.; Bruce, T.; Allsop, W.; Vicinanza, D. Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves. Renew. Energy 2016, 99, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Naty, S.; Viviano, A.; Foti, E. Wave energy exploitation system integrated in the coastal structure of a Mediterranean port. Sustainability 2016, 8, 1342. [Google Scholar] [CrossRef] [Green Version]
- Sainflou, G. Essai sur les digues maritimes verticales. Ann. Ponts Chaussées 1928, 98, 5–48. [Google Scholar]
- Ashlin, S.J.; Sundar, V.; Sannasiraj, S.A. Pressures and forces on an oscillating water column–type wave energy caisson breakwater. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017020. [Google Scholar] [CrossRef]
- Pawitan, K.A.; Dimakopoulos, A.S.; Vicinanza, D.; Allsop, W.; Bruce, T. A loading model for an OWC caisson based upon large-scale measurements. Coast. Eng. 2019, 145, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Allsop, W.; Bruce, T.; Alderson, J.; Ferrante, V.; Russo, V.; Vicinanza, D.; Kudella, M. Large scale test on a generalised oscillating water column wave energy converter. In Proceedings of the HYDRALAB IV Joint User Meeting, Lisbon, Portugal, 2–4 July 2014. [Google Scholar]
- Zanuttigh, B.; Margheritini, L.; Gambles, L.; Martinelli, L. Analysis of wave reflection from wave energy converters installed as breakwaters in harbour. In Proceedings of the European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- US Army Corps of Engineers. Coastal Engineering Manual. Engineer Manual 1110-2-1100; US Army Corps of Engineers: Washington, DC, USA, 2002.
- Simonetti, I.; Cappietti, L. Hydraulic performance of oscillating water column structures as anti-reflection devices to reduce harbour agitation. Coast. Eng. 2020. [Google Scholar] [CrossRef]
- Contestabile, P.; Ferrante, V.; Di Lauro, E.; Vicinanza, D. Full-scale prototype of an overtopping breakwater for wave energy conversion. Coast. Eng. Proc. 2017, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Margheritini, L.; Vicinanza, D.; Frigaard, P. SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device. Renew. Energy 2009, 34, 1371–1380. [Google Scholar] [CrossRef]
- Margheritini, L.; Stratigaki, V.; Troch, P. Geometry optimization of an overtopping wave energy device implemented into the new breakwater of the Hanstholm port expansion. In The Twenty-Second International Offshore and Polar Engineering Conference; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 2012. [Google Scholar]
- Buccino, M.; Vicinanza, D.; Salerno, D.; Banfi, D.; Calabrese, M. Nature and magnitude of wave loadings at Seawave Slot-cone Generators. Ocean Eng. 2015, 95, 34–58. [Google Scholar] [CrossRef]
- Contestabile, P.; Iuppa, C.; Di Lauro, E.; Cavallaro, L.; Andersen, T.L.; Vicinanza, D. Wave loadings acting on innovative rubble-mound breakwater for overtopping wave energy conversion. Coast. Eng. 2017, 122, 60–74. [Google Scholar] [CrossRef]
- Buccino, M.; Dentale, F.; Salerno, D.; Contestabile, P.; Calabrese, M. The use of CFD in the analysis of wave loadings acting on Seawave slot-cone generators. Sustainability 2016, 8, 1255. [Google Scholar] [CrossRef] [Green Version]
- Di Lauro, E.; Lara, J.L.; Maza, M.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Stability analysis of a non-conventional breakwater for wave energy conversion. Coast. Eng. 2019, 145, 36–52. [Google Scholar] [CrossRef]
- Di Lauro, E.; Maza, M.; Lara, J.L.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Advantages of an innovative vertical breakwater with an overtopping wave energy converter. Coast. Eng. 2020, 159, 103713. [Google Scholar] [CrossRef]
- Palma, G.; Contestabile, P.; Zanuttigh, B.; Formentin, S.M.; Vicinanza, D. Integrated assessment of the hydraulic and structural performance of the OBREC device in the Gulf of Naples, Italy. Appl. Ocean Res. 2020, 101, 102217. [Google Scholar] [CrossRef]
- Iuppa, C.; Contestabile, P.; Cavallaro, L.; Foti, E.; Vicinanza, D. Hydraulic performance of an innovative breakwater for overtopping wave energy conversion. Sustainability 2016, 8, 1226. [Google Scholar] [CrossRef] [Green Version]
- EurOtop. Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application; Van der Meer, J.W., Allsop, N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P., Zanuttigh, B., Eds.; Available online: www.overtopping-manual.com (accessed on 15 February 2021).
- Iuppa, C.; Cavallaro, L.; Musumeci, R.E.; Vicinanza, D.; Foti, E. Empirical overtopping volume statistics at an OBREC. Coast. Eng. 2019, 152, 103524. [Google Scholar] [CrossRef]
- Cavallaro, L.; Iuppa, C.; Castiglione, F.; Musumeci, R.E.; Foti, E. A Simple Model to Assess the Performance of an Overtopping Wave Energy Converter Embedded in a Port Breakwater. J. Mar. Sci. Eng. 2020, 8, 858. [Google Scholar] [CrossRef]
- Cappietti, L.; Simonetti, I.; Penchev, V.; Penchev, P. Laboratory tests on an original wave energy converter combining oscillating water column and overtopping devices. In Proceedings of the 3rd International Conference on Renewable Energies Offshore (RENEW-2018), Lisbon, Portugal, 8–10 October 2018. [Google Scholar]
- Lara, J.; de Eulate, M.Á.; Di Paolo, B.; Rodríguez, B.; Guanche, R.; Álvarez, A.; Mendoza, A.; Iturrioz, A.; Blanco, D.; Di Lauro, E. Physical and Numerical Modeling of an Innovative Vertical Breakwater for Sustainable Power Generation in Ports: SE@ PORTS Project. Coast. Struct. 2019, 158–168. [Google Scholar] [CrossRef]
- Frostick, L.E.; McLelland, S.J.; Mercer, T.G. (Eds.) Users Guide to Physical Modelling and Experimentation: Experience of the HYDRALAB Network; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Cabral, T.; Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Belga, F.; Cestaro, H. Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater. Energies 2020, 13, 236. [Google Scholar] [CrossRef] [Green Version]
- Cabral, T.; Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Cestaro, H. Evaluation of the Annual Electricity Production of a Hybrid Breakwater-Integrated Wave Energy Converter; Elsevier: Amsterdam, The Netherlands, 2020; Volume 213, p. 118845. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent Theory Guide; Release 15.0; ANSYS: Canonsburg, PA, USA, 2013; p. 780. [Google Scholar]
Test | Wave Gauge S1 | Wave Gauge S4 | Wave Gauge S5 | Wave Gauge S6 | Wave Gauge S9 | Wave Gauge in OWC Chamber |
---|---|---|---|---|---|---|
Val_Test_01 | 4.9 | 4.8 | 2.1 | 5.2 | 5.3 | 8.1 |
Val_Test_02 | 5.6 | 5.2 | 5.4 | 5.8 | 6.1 | 10.3 |
Val_Test_03 | 5.9 | 5.4 | 5.7 | 6.8 | 7.3 | 12.7 |
Model Scale | Prototype Scale | |||||
---|---|---|---|---|---|---|
Test | h (m) | Hs (m) | Tp (s) | h (m) | Hs (m) | Tp (s) |
Reference test | 0.488 | 0.034 | 1.27 | 24.40 | 1.70 | 9 |
Test_01 | 0.461 | 0.034 | 1.27 | 23.05 | 1.70 | 9 |
Test_02 | 0.475 | 0.034 | 1.27 | 23.75 | 1.70 | 9 |
Test_03 | 0.504 | 0.034 | 1.27 | 25.20 | 1.70 | 9 |
Test_04 | 0.520 | 0.034 | 1.27 | 26.00 | 1.70 | 9 |
Test_05 | 0.488 | 0.055 | 1.27 | 24.40 | 2.75 | 9 |
Test_06 | 0.488 | 0.075 | 1.27 | 24.40 | 3.75 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutrouveli, T.I.; Di Lauro, E.; das Neves, L.; Calheiros-Cabral, T.; Rosa-Santos, P.; Taveira-Pinto, F. Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach. J. Mar. Sci. Eng. 2021, 9, 226. https://doi.org/10.3390/jmse9020226
Koutrouveli TI, Di Lauro E, das Neves L, Calheiros-Cabral T, Rosa-Santos P, Taveira-Pinto F. Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach. Journal of Marine Science and Engineering. 2021; 9(2):226. https://doi.org/10.3390/jmse9020226
Chicago/Turabian StyleKoutrouveli, Theofano I., Enrico Di Lauro, Luciana das Neves, Tomás Calheiros-Cabral, Paulo Rosa-Santos, and Francisco Taveira-Pinto. 2021. "Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach" Journal of Marine Science and Engineering 9, no. 2: 226. https://doi.org/10.3390/jmse9020226
APA StyleKoutrouveli, T. I., Di Lauro, E., das Neves, L., Calheiros-Cabral, T., Rosa-Santos, P., & Taveira-Pinto, F. (2021). Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach. Journal of Marine Science and Engineering, 9(2), 226. https://doi.org/10.3390/jmse9020226