Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydro-Saline Dynamic Assessment
2.2.1. Water Level and Salinity Variations in the Lagoons
- (i)
- Salinity measured monthly from 1999 to 2019 at locations 1 to 11 (see Figure 2). For these field campaigns, conductivity was measured with a WTW TetraCon 325 conductivity meter about 20 cm below the water surface and converted to salinity using the international oceanographic table [28]. For conductivities exceeding 60,000 µS/cm, one or several successive dilutions were performed with distilled water to fall within the validity range of the equation to derive salinity from conductivity.
- (ii)
- Data from field instruments recording every 5–15 min and averaged on an hourly basis between 1999 and 2019 at three locations close to the connections with: (i) the Sea (location 12, Figure 2), (ii) “the Former Saltworks” (location 15, Figure 2) and (iii) the Fumemorte drainage channel (location 14, Figure 2). During this period, water levels were monitored using float-operated Thalimedes Shaft Encoders with integral data logger from OTT Hydrometry, with the exception of location 12 where an OTT Hydrometry R 20 scrolling paper water level gauge was used for 1999 and 2000.
- (iii)
- Water level and salinity data recorded by CTD probes from OTT Hydrometry recording every 5–15 min and averaged on an hourly basis between 2017 and 2019 (with the exception of several periods of non-operation due to either water levels being too low for the conductivity sensor to remain immersed, salinity values being outside the instruments’ range, or instrumental problems such as clogging of the probe or internal battery problems), at five locations in the lagoons (locations 18, 19, 20, 21, and 22, Figure 2). Another CTD probe was installed in 2019 in one sluice gate of the Comtesse hydraulic structure to measure the salinity of the corresponding flow (location 17, Figure 2). All CTD probes were located about 10 cm above the bottom of the lagoons or of the sluice gate.
2.2.2. Total Volume and Dissolved Salt Mass Variations
- -
- the total number of cells of the DEM;
- -
- the mean water level in the Vaccarès Lagoon System, which is the average value of the water levels measured at the locations 12, 14, and 15 (see Figure 2);
- -
- the interpolated bathymetry of cell number i; and
- -
- the area of cell number i.
2.2.3. Water Fluxes between the Vaccarès Lagoon System and (i) the Mediterranean Sea, (ii) “the Former Saltworks”
- -
- the flow of the sluice gate i (m3·s−1);
- -
- the width of the sluice number i (m);
- -
- the upstream water height above the sill of the sluice gate i (m);
- -
- the downstream water height above the sill of the sluice gate i (m); and
- -
- the discharge coefficient of the sluice number i (−). Values of the different were determined for the Fourcade and Comtesse structures with flow measurement campaigns, using an electromagnetic digital current meter (NAUTILUS C 2000, from OTT Hydrometry).
- -
- is the total flow estimated for the 13 sluice gates (m3·s−1),
Water Level and Sluice Gates Opening Data for the Fourcade Structure
Water Level and Sluice Gates Opening Data for the Comtesse Structure
2.2.4. Water Fluxes between the Vaccarès Lagoon System and the Agricultural Drainage Channels
2.2.5. Evaporation and Rainfall
2.2.6. Estimation of the Order of Magnitude of All Unmonitored Water Inputs and Outputs
- -
- agricultural drainage inflows through the Roquemaure and Rousty channels (“ROQ” and “ROU” in Figure 1);
- -
- seasonal and short-lived agricultural drainage inflows from private estates, located mainly around the Vaccarès lagoon and west of the Impériaux (in dark gray in Figure 1);
- -
- rainfall runoff from areas along the Vaccarès, Impériaux, and Lion/Dame lagoons;
- -
- seasonal and short-lived drainage of surrounding marshes into the lagoons; and
- -
- exchanges of groundwater and surface water.
- -
- N the duration of the considered period in days (typically a year),
- -
- (m3): the cumulative volumes, over the N days, that are not due to precipitation, evaporation, sea-lagoon exchanges, and Fumemorte inflows.
- -
- (m3): the change in volume in the Vaccarès Lagoon System between the beginning and the end of the period of N days, calculated as the difference between the volume at the end and at the beginning of the period. To limit the uncertainty in its estimation, we chose periods beginning and ending on days when the water levels at locations 12, 14, and 15 were nearly equal (often corresponding to windless days). This allowed to limit the uncertainties on the estimation of the average water level in the Vaccarès from these three measurements, and consequently on the estimation of the corresponding volume. As much as possible, we have chosen beginning and ending dates allowing to cover a period close to one year
- -
- (m3): the cumulative volumes of rain over the N days,
- -
- (m3): the cumulative volumes of evaporation over the N days,
- -
- (m3): the cumulative volumes from the sea into the lagoons over the N days
- -
- (m3): the cumulative volumes from the lagoons into the sea over the N days, and
- -
- (m3): the cumulative volumes from the Fumemorte channel over the N days.
3. Results
3.1. Effect of Temporal Monitoring Strategy on Salinity Dynamics Assessment
3.1.1. Vaccarès Lagoon
3.1.2. Lion/Dame Lagoons
3.1.3. Impériaux Lagoon
3.2. Specific Information from Monthly long-Term Salinity Monitoring
3.2.1. Spatial Variations in Salinity
3.2.2. Monthly Salinity Temporal Variations per Lagoons
3.3. Complementary Contributions of Monthly and Hourly Measurements in Understanding the Hydrosaline Dynamics of the Vaccarès Lagoon System: Water Volume and Total Dissolved Salt Mass Evolution
3.3.1. Water Volumes Exchanged with the Sea, the Atmosphere and the Agricultural Watersheds, Influence on Salinity
3.3.2. Long Term Evolution of the Total Dissolved Salt Mass in the Vaccarès Lagoon System
3.4. Estimation of the Order of Magnitude of All Unmonitored Water Inputs and Outputs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kjerfve, B. Chapter 1 Coastal Lagoons. In Coastal Lagoon Processes; Elsevier Oceanography Series; 1994; Volume 60, pp. 1–8. [Google Scholar]
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Chapter 15—Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. In Coasts and Estuaries The Future; 2019; pp. 253–276. ISBN 978-0-12-814003-1. [Google Scholar]
- Cromwell, J.E. Barrier Coast Distribution: A World Survey. In Proceedings of the Abstract Volume of the Second National Coastal and Shallow Water Research Conference, Baton Rouge, LA, USA; 1971; p. 50. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M. Mediterranean Coastal Lagoons in an Ecosystem and Aquatic Resources Management Context. Phys. Chem. Earth Parts A/B/C 2011, 36, 160–166. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Pérez-Marcos, M. Coastal Lagoons: “Transitional Ecosystems” between Transitional and Coastal Waters. J. Coast. Conserv. 2011, 15, 369–392. [Google Scholar] [CrossRef]
- Le Fur, I.; De Wit, R.; Plus, M.; Oheix, J.; Simier, M.; Ouisse, V. Submerged Benthic Macrophytes in Mediterranean Lagoons: Distribution Patterns in Relation to Water Chemistry and Depth. Hydrobiologia 2018, 808, 175–200. [Google Scholar] [CrossRef]
- Quammen, M.L.; Onuf, C.P. Laguna Madre: Seagrass Changes Continue Decades after Salinity Reduction. Estuaries 1993, 16, 302. [Google Scholar] [CrossRef]
- Lirman, D.; Deangelo, G.; Serafy, J.; Hazra, A.; Smith Hazra, D.; Herlan, J.; Luo, J.; Bellmund, S.; Wang, J.; Clausing, R. Seasonal Changes in the Abundance and Distribution of Submerged Aquatic Vegetation in a Highly Managed Coastal Lagoon. Hydrobiologia 2008, 596, 105–120. [Google Scholar] [CrossRef]
- Steinhardt, T.; Selig, U. Influence of Salinity and Sediment Resuspension on Macrophyte Germination in Coastal Lakes. J. Limnol. 2011, 70, 11. [Google Scholar] [CrossRef]
- Paton, D.C.; Rogers, D.J.; Hill, B.M.; Bailey, C.P.; Ziembicki, M. Temporal Changes to Spatially Stratified Waterbird Communities of the Coorong, South Australia: Implications for the Management of Heterogenous Wetlands. Anim. Conserv. 2009, 12, 408–417. [Google Scholar] [CrossRef]
- Rodríguez-Climent, S.; Caiola, N.; Ibáñez, C. Salinity as the Main Factor Structuring Small-Bodied Fish Assemblages in Hydrologically Altered Mediterranean Coastal Lagoons. Sci. Mar. 2013, 77, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Venice System. The Venice System for the Classification of Marine Waters According to Salinity. Limnol. Oceanogr. 1958, 3, 346–347. [Google Scholar] [CrossRef]
- Kjerfve, B.; Schettini, C.A.F.; Knoppers, B.; Lessa, G.; Ferreira, H.O. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil. Estuar. Coast. Shelf Sci. 1996, 42, 701–725. [Google Scholar] [CrossRef] [Green Version]
- Moore, N.H.; Slinn, D.J. The Physical Hydrology of a Lagoon System on the Pacific Coast of Mexico. Estuar. Coast. Shelf Sci. 1984, 19, 413–426. [Google Scholar] [CrossRef]
- De Pascalis, F.; Pérez-Ruzafa, A.; Gilabert, J.; Marcos, C.; Umgiesser, G. Climate Change Response of the Mar Menor Coastal Lagoon (Spain) Using a Hydrodynamic Finite Element Model. Estuar. Coast. Shelf Sci. 2012, 114, 118–129. [Google Scholar] [CrossRef]
- Webster, I.T. The Hydrodynamics and Salinity Regime of a Coastal Lagoon—The Coorong, Australia—Seasonal to Multi-Decadal Timescales. Estuar. Coast. Shelf Sci. 2010, 90, 264–274. [Google Scholar] [CrossRef]
- Kjerfve, B.; Magill, K.E. Geographic and Hydrodynamic Characteristics of Shallow Coastal Lagoons. Mar. Geol. 1989, 88, 187–199. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An Overview of Ecological Status, Vulnerability and Future Perspectives of European Large Shallow, Semi-Enclosed Coastal Systems, Lagoons and Transitional Waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bajo, M.; Bellafiore, D.; Cucco, A.; De Pascalis, F.; Ghezzo, M.; Umgiesser, G. Toward Homogenization of Mediterranean Lagoons and Their Loss of Hydrodiversity. Geophys. Res. Lett. 2014, 41, 5935–5941. [Google Scholar] [CrossRef]
- Schumann, R.; Baudler, H.; Glass, Ä.; Dümcke, K.; Karsten, U. Long-Term Observations on Salinity Dynamics in a Tideless Shallow Coastal Lagoon of the Southern Baltic Sea Coast and Their Biological Relevance. J. Mar. Syst. 2006, 60, 330–344. [Google Scholar] [CrossRef]
- Derolez, V.; Soudant, D.; Malet, N.; Chiantella, C.; Richard, M.; Abadie, E.; Aliaume, C.; Bec, B. Two Decades of Oligotrophication: Evidence for a Phytoplankton Community Shift in the Coastal Lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 2020, 241, 106810. [Google Scholar] [CrossRef]
- Santhanam, H.; Amal Raj, S. Spatial and Temporal Analyses of Salinity Changes in Pulicat Lagoon, a Transitional Ecosystem, during 1996–2015. Water Sci. 2019, 33, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Boutron, O.; Bertrand, O.; Fiandrino, A.; Höhener, P.; Sandoz, A.; Chérain, Y.; Coulet, E.; Chauvelon, P. An Unstructured Numerical Model to Study Wind-Driven Circulation Patterns in a Managed Coastal Mediterranean Wetland: The Vaccarès Lagoon System. Water 2015, 7, 5986–6016. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.A.; Rose, P.M. Atlas of Anatidae Populations in Africa and Western Eurasia; Wetlands International: Wageningen, The Netherlands, 1996; Volume 41. [Google Scholar]
- SHOM. Ouvrage de Marée. Références Altimétriques Maritimes. Ports de France Metropolitaine et d’outre-Mer. Cotes Du Zéro Hydrographique et Niveaux Caractéristiques de La Marée; SHOM: 13 rue du Chatellier, 29200 Brest, France; ISBN 978-2-11-097286-6.
- Paugam, C.; Sous, D.; Rey, V.; Meulé, S.; Faure, V.; Boutron, O.; Luna-Laurent, E.; Migne, E. Wind Tides and Surface Friction Coefficient in Semi-Enclosed Shallow Lagoons. Estuar. Coast. Shelf Sci. 2021, 257, 107406. [Google Scholar] [CrossRef]
- De Wit, R.; Vincent, A.; Foulc, L.; Klesczewski, M.; Scher, O.; Loste, C.; Thibault, M.; Poulin, B.; Ernoul, L.; Boutron, O. Seventy-Year Chronology of Salinas in Southern France: Coastal Surfaces Managed for Salt Production and Conservation Issues for Abandoned Sites. J. Nat. Conserv. 2019, 49, 95–107. [Google Scholar] [CrossRef]
- Unesco. Joint Panel on Oceanographic Tables and Standards. International Oceanographic Tables: Volume 3; Unesco: Paris, France, 1981. [Google Scholar]
- Chauvelon, P.; Tournoud, M.-G.; Sandoz, A. Integrated Hydrological Modelling of a Managed Coastal Mediterranean Wetland (Rhone Delta, France): Initial Calibration. Hydrol. Earth Syst. Sci. Discuss. 2003, 7, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Loubet, A. Modélisation de l’hydrosystème Vaccarès: Contribution à Une Gestion Adaptative Des Ressources En Eau Dans Le Delta Du Rhône, France. Ph.D. Thesis, Aix-Marseille University, Marseille, France, 2012. [Google Scholar]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. In Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences; The Royal Society, 6-9 Carlton House Terrace: London, England, 1948; Volume 193, pp. 120–145. [Google Scholar]
- Chauvelon, P. A Wetland Managed for Agriculture as an Interface between the Rhône River and the Vaccares Lagoon (Camargue, France): Transfers of Water and Nutrients. Hydrobiologia 1998, 373–374, 181–191. [Google Scholar] [CrossRef]
- Crivelli, A.J.; Auphan, N.; Chauvelon, P.; Sandoz, A.; Menella, J.-Y.; Poizat, G. Glass Eel Recruitment, Anguilla anguilla (L.), in a Mediterranean Lagoon Assessed by a Glass Eel Trap: Factors Explaining the Catches. Hydrobiologia 2008, 602, 79–86. [Google Scholar] [CrossRef]
- Vandewalle, P.; Coulet, E.; Chérain, Y. Plan de Gestion 2001–2005 de La Réserve Nationale de Camargue. Section B: Évaluation Du Patrimoine et Définition Des. Objectifs. Société Nationale de Protection de La Nature—Réserve Naturelle Nationale de Camargue, 2001.
- Boutron, O.; Luna-Laurent, E.; Chérain, Y. Etude de L’équilibre Hydrologique Entre les Apports d’eau Douce et d’eau Salée dans le Système Vaccarès et les Etangs et Marais des Salins de Camargue; Tour du Valat Research Institute: Arles, France, 2021; p. 65. [Google Scholar]
- Umgiesser, G.; Ferrarin, C.; Cucco, A.; De Pascalis, F.; Bellafiore, D.; Ghezzo, M.; Bajo, M. Comparative Hydrodynamics of 10 Mediterranean Lagoons by Means of Numerical Modeling. J. Geophys. Res. Oceans 2014, 119, 2212–2226. [Google Scholar] [CrossRef]
- Ferrarin, C.; Umgiesser, G. Hydrodynamic Modeling of a Coastal Lagoon: The Cabras Lagoon in Sardinia, Italy. Ecol. Model. 2005, 188, 340–357. [Google Scholar] [CrossRef]
- Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A. Assessing Hydrological Effects of Human Interventions on Coastal Systems: Numerical Applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 2013, 17, 1733–1748. [Google Scholar] [CrossRef] [Green Version]
- Minghelli, A.; Vadakke-Chanat, S.; Chami, M.; Guillaume, M.; Migne, E.; Grillas, P.; Boutron, O. Estimation of Bathymetry and Benthic Habitat Composition from Hyperspectral Remote Sensing Data (BIODIVERSITY) Using a Semi-Analytical Approach. Remote Sens. 2021, 13, 1999. [Google Scholar] [CrossRef]
- Akridge, D.G. Methods for Calculating Brine Evaporation Rates during Salt Production. J. Archaeol. Sci. 2008, 35, 1453–1462. [Google Scholar] [CrossRef]
- Ali, H.; Madramootoo, C.A.; Abdel Gwad, S. Evaporation Model of Lake Qaroun as Influenced by Lake Salinity. Irrig. Drain. 2001, 50, 9–17. [Google Scholar] [CrossRef]
- Calder, I.R.; Neal, C. Evaporation from Saline Lakes: A Combination Equation Approach. Hydrol. Sci. J. 1984, 29, 89–97. [Google Scholar] [CrossRef]
- Kokya, B.A.; Kokya, T.A. Proposing a Formula for Evaporation Measurement from Salt Water Resources. Hydrol. Process. 2008, 22, 2005–2012. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Gallego-Elvira, B.; Maestre-Valero, J.F.; Tanguy, M. Simultaneous Solution for Water, Heat and Salt Balances in a Mediterranean Coastal Lagoon (Mar Menor, Spain). Estuar. Coast. Shelf Sci. 2011, 91, 250–261. [Google Scholar] [CrossRef]
- Boutron, O. Modélisation de Scénarios de Gestion Prospectifs Du Vaccarès. Action CS14 Du Contrat de Delta: “Suivi et Amélioration de La Qualité de l’eau Du Vaccarès”; Tour du Valat Research Institute: Arles, France, 2020; p. 30. [Google Scholar]
- Chauvelon, P.; Sandoz, A.; Heurteaux, V.; Berceaux, A. Satellite Remote Sensing and GIS Used to Quantify Water Input for Rice Cultivation (Rhône Delta, France). In Proceedings of the Remote Sensing and Hydrology 2000; IAHS: Santa Fe, NM, USA, 2001; Volume 276, pp. 446–450. [Google Scholar]
- Espel, D.; Diepens, N.J.; Boutron, O.; Buffan-Dubau, E.; Chérain, Y.; Coulet, E.; Grillas, P.; Probst, A.; Silvestre, J.; Elger, A. Dynamics of the Seagrass Zostera Noltei in a Shallow Mediterranean Lagoon Exposed to Chemical Contamination and Other Stressors. Estuar. Coast. Shelf Sci. 2019, 222, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Comoretto, L.; Arfib, B.; Chiron, S. Pesticides in the Rhône River Delta (France): Basic Data for a Field-Based Exposure Assessment. Sci. Total Environ. 2007, 380, 124–132. [Google Scholar] [CrossRef]
- Chiron, S.; Comoretto, L.; Rinaldi, E.; Maurino, V.; Minero, C.; Vione, D. Pesticide By-Products in the Rhône Delta (Southern France). The Case of 4-Chloro-2-Methylphenol and of Its Nitroderivative. Chemosphere 2009, 74, 599–604. [Google Scholar] [CrossRef]
Precipitation | Evaporation | Sea- > Lagoons | Lagoons- > Sea | Fumemorte | Others | |
---|---|---|---|---|---|---|
1999 1 | 15.8 | −44.3 | 2.1 | −4.4 | 10.5 | 22.5 |
2000 2 | 15.8 | −46.5 | 0.8 | −0.6 | 11.2 | 21.5 |
2001 3 | 16.3 | −50.5 | 1.5 | −6.2 | 10.8 | 23.9 |
2002 4 | 19.2 | −48.8 | 1.8 | −2.9 | 11.4 | 26.9 |
2003 5 | 21.4 | −48.2 | 2.9 | −13.2 | 9.1 | 27.8 |
2004 6 | 14.0 | −44.0 | 4.6 | −7.0 | 10.2 | 14.9 |
2005 7 | 20.6 | −44.4 | 4.6 | −3.5 | 15.1 | 13.2 |
2006 8 | 10.8 | −46.0 | 8.0 | −4.5 | 12.2 | 11.3 |
2007 9 | 11.5 | −47.4 | 8.7 | −0.9 | 13.4 | 13.4 |
Average values | 16.2 | −46.7 | 3.9 | −4.8 | 11.5 | 19.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutron, O.; Paugam, C.; Luna-Laurent, E.; Chauvelon, P.; Sous, D.; Rey, V.; Meulé, S.; Chérain, Y.; Cheiron, A.; Migne, E. Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring. J. Mar. Sci. Eng. 2021, 9, 701. https://doi.org/10.3390/jmse9070701
Boutron O, Paugam C, Luna-Laurent E, Chauvelon P, Sous D, Rey V, Meulé S, Chérain Y, Cheiron A, Migne E. Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring. Journal of Marine Science and Engineering. 2021; 9(7):701. https://doi.org/10.3390/jmse9070701
Chicago/Turabian StyleBoutron, Olivier, Caroline Paugam, Emilie Luna-Laurent, Philippe Chauvelon, Damien Sous, Vincent Rey, Samuel Meulé, Yves Chérain, Anais Cheiron, and Emmanuelle Migne. 2021. "Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring" Journal of Marine Science and Engineering 9, no. 7: 701. https://doi.org/10.3390/jmse9070701
APA StyleBoutron, O., Paugam, C., Luna-Laurent, E., Chauvelon, P., Sous, D., Rey, V., Meulé, S., Chérain, Y., Cheiron, A., & Migne, E. (2021). Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring. Journal of Marine Science and Engineering, 9(7), 701. https://doi.org/10.3390/jmse9070701