Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Kurniawan, H.; Salim, A.; Suhartanto, H.; Hasibuan, Z.A. E-cultural heritage and natural history framework: An integrated approach to digital preservation. In Proceedings of the International Conference on Telecommunication Technology and Applications, St. Maarten, The Netherlands, 20–25 March 2011; pp. 177–182. [Google Scholar]
- Ivanova, K.; Dobreva, M.; Stanchev, P.; Totkov, G. Access to Digital Cultural Heritage: Innovative Applications of Automated Metadata Generation; Plovdiv University Publishing House “Paisii Hilendarski”: Plovdiv, Bulgaria, 2012. [Google Scholar]
- Llamas, J.; Lerones, P.M.; Medina, R.; Zalama, E.; Gómez-García-Bermejo, J. Classification of architectural heritage images using deep learning techniques. Appl. Sci. 2017, 7, 992. [Google Scholar] [CrossRef] [Green Version]
- Kambau, R.A.; Hasibuan, Z.A.; Pratama, M.O. Classification for Multiformat Object of Cultural Heritage using Deep Learning. In Proceedings of the 2018 IEEE Third International Conference on Informatics and Computing(ICIC), Palembang, Indonesia, 17–18 October 2018; pp. 1–7. [Google Scholar]
- Amato, G.; Falchi, F.; Gennaro, C. Fast image classification for monument recognition. J. Comput. Cult. Herit. (JOCCH). 2015, 8, 18. [Google Scholar] [CrossRef]
- Grilli, E.; Dininno, D.; Petrucci, G.; Remondino, F. From 2D to 3D supervised segmentation and classification for cultural heritage applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Meroño, J.E.; Perea, A.J.; Aguilera, M.J.; Laguna, A.M. Recognition of materials and damage on historical buildings using digital image classification. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Anzid, H.; Le Goic, G.; Bekkari, A.; Mansouri, A.; Mammass, D. Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine. Procedia Comput. Sci. 2019, 148, 107–115. [Google Scholar] [CrossRef]
- Ćosović, M.; Amelio, A.; Junuz, E. Classification Methods in Cultural heritage. In Proceedings of the 1st International Workshop on Visual Pattern Extraction and Recognition for Cultural Heritage Understanding Co-Located with 15th Italian Research Conference on Digital Libraries (IRCDL 2019), Pisa, Italy, 30 January 2019. [Google Scholar]
- Jankovic, R. Classifying Cultural Heritage Images by Using Decision Tree Classifiers in WEKA. In Proceedings of the 1st International Workshop on Visual Pattern Extraction and Recognition for Cultural Heritage Understanding Co-Located with 15th Italian Research Conference on Digital Libraries (IRCDL 2019), Pisa, Italy, 30 January 2019; pp. 119–127. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Won, C.S.; Park, D.K.; Park, S.J. Efficient Use of MPEG-7 Edge Histogram Descriptor. ETRI J. 2002, 24, 23–30. [Google Scholar] [CrossRef]
- Prajapati, N.; Nandanwar, A.K.; Prajapati, G. Edge histogram descriptor, geometric moment and Sobel edge detector combined features based object recognition and retrieval system. Int. J. Comput. Sci. Inf. Technol. 2016, 7, 0975–9646. [Google Scholar]
- Jalab, H.A. Image retrieval system based on color layout descriptor and Gabor filters. In Proceedings of the 2011 IEEE Conference on Open Systems, Langkawi, Malaysia, 25–28 September 2011; pp. 32–36. [Google Scholar]
- More, N.K.; Dubey, S. JPEG Picture Compression Using Discrete Cosine Transform. Int. J. Sci. Res. (IJSR) 2013, 2, 134–138. [Google Scholar]
- Pal, S.K.; Mitra, S. Multilayer perceptron, fuzzy sets, and classification. IEEE. Trans. Neural Netw. 1992, 3, 683–697. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Webb, G.I.; Boughton, J.R.; Wang, Z. Not so naive Bayes: aggregating one-dependence estimators. Mach. Learn. 2005, 58, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Cerquides, J.; De Mántaras, R.L. Robust Bayesian linear classifier ensembles. In Proceedings of the European Conference on Machine Learning, Porto, Portugal, 3–7 October 2005; Volume 3720, pp. 72–83. [Google Scholar]
- Adnan, M.N.; Islam, M.Z. Forest PA: Constructing a decision forest by penalizing attributes used in previous trees. Expert Syst. Appl. 2017, 89, 389–403. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Wojna, A.; Latkowski, R. Rseslib 3: Library of rough set and machine learning methods with extensible architecture. In Transactions on Rough Sets XXI; Springer: Berlin/Heidelberg, Germany, 2019; Volume 10810, pp. 301–323. [Google Scholar]
- Kumari, M.; Godara, S. Comparative Study of Data Mining Classification Methods in Cardiovascular Disease Prediction 1; CiteSeer: Princeton, NJ, USA, 2011. [Google Scholar]
- Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [PubMed] [Green Version]
- Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 2006, 8, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Ture, M.; Kurt, I.; Kurum, A.T.; Ozdamar, K. Comparing classification techniques for predicting essential hypertension. Expert Syst. Appl. 2005, 29, 583–588. [Google Scholar] [CrossRef]
- Kurt, I.; Ture, M.; Kurum, A.T. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 2008, 34, 366–374. [Google Scholar] [CrossRef]
- Tsoi, A.C.; Pearson, R. Comparison of three classification techniques: CART, C4.5 and Multi-Layer Perceptrons. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1991; pp. 963–969. [Google Scholar]
- Yogaswara, R.D.; Wibawa, A.D. Comparison of Supervised Learning Image Classification Algorithms for Food and Non-Food Objects. In Proceedings of the IEEE 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 26–27 November 2018; pp. 317–324. [Google Scholar]
- Siraj, F.; Salahuddin, M.A.; Yusof, S.A.M. Digital image classification for malaysian blooming flower. In Proceedings of the IEEE 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, Tuban, Indonesia, 28–30 September 2010; pp. 33–38. [Google Scholar]
- Al Zorgani, M.; Ugail, H. Comparative Study of Image Classification using Machine Learning Algorithms; Technical Report; EasyChair: New York, NY, USA, 2018. [Google Scholar]
- Liu, H.; Cocea, M.; Ding, W. Decision tree learning based feature evaluation and selection for image classification. In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 2, pp. 569–574. [Google Scholar]
Algorithm | MLP | Forest PA | AODE | RSeslibKnn |
---|---|---|---|---|
Correctly classified instances | 84.83% | 77.92% | 79.25% | 82.17% |
Kappa statistics | 0.810 | 0.724 | 0.741 | 0.777 |
Precision | 0.849 | 0.778 | 0.793 | 0.824 |
Recall | 0.848 | 0.779 | 0.793 | 0.822 |
F-measure | 0.848 | 0.778 | 0.791 | 0.820 |
ROC Area | 0.974 | 0.954 | 0.959 | 0.888 |
Running time (in seconds) | 1038.09 | 54.02 | 122.72 | 93.14 |
Algorithm | MLP | Forest PA | AODE | RSeslibKnn |
---|---|---|---|---|
Correctly classified instances | 98.9% | 78.67% | 80.83% | 80.67% |
Kappa statistics | 0.986 | 0.733 | 0.760 | 0.758 |
Precision | 0.989 | 0.787 | 0.808 | 0.811 |
Recall | 0.989 | 0.787 | 0.808 | 0.807 |
F-measure | 0.986 | 0.797 | 0.807 | 0.805 |
ROC Area | 0.996 | 0.959 | 0.965 | 0.879 |
Running time (in seconds) | 892.02 | 62.01 | 115.17 | 109.27 |
Algorithm | Altar | Column | Dome | Gargoyle | Vault | Classified as |
---|---|---|---|---|---|---|
216 | 6 | 2 | 0 | 19 | altar | |
4 | 193 | 9 | 18 | 14 | column | |
MLP | 3 | 16 | 220 | 13 | 1 | dome |
0 | 8 | 15 | 196 | 6 | gargoyle | |
20 | 12 | 3 | 13 | 193 | vault | |
217 | 9 | 2 | 1 | 14 | altar | |
13 | 163 | 27 | 19 | 16 | column | |
AODE | 2 | 13 | 213 | 21 | 4 | dome |
0 | 7 | 25 | 174 | 19 | gargoyle | |
32 | 7 | 1 | 17 | 184 | vault | |
206 | 14 | 1 | 2 | 20 | altar | |
7 | 167 | 27 | 21 | 16 | column | |
Forest PA | 2 | 17 | 215 | 14 | 5 | dome |
1 | 12 | 26 | 170 | 16 | gargoyle | |
29 | 13 | 0 | 22 | 177 | vault | |
231 | 4 | 2 | 0 | 6 | altar | |
19 | 169 | 17 | 15 | 18 | column | |
RSeslibKnn | 8 | 13 | 224 | 8 | 0 | dome |
3 | 12 | 29 | 174 | 7 | gargoyle | |
33 | 6 | 2 | 12 | 188 | vault |
Algorithm | Altar | Column | Dome | Gargoyle | Vault | Classified as |
---|---|---|---|---|---|---|
239 | 0 | 0 | 0 | 1 | altar | |
1 | 237 | 0 | 0 | 2 | column | |
MLP | 0 | 1 | 238 | 1 | 0 | dome |
0 | 0 | 0 | 238 | 2 | gargoyle | |
0 | 2 | 2 | 1 | 235 | vault | |
217 | 6 | 3 | 0 | 17 | altar | |
10 | 168 | 27 | 18 | 15 | column | |
AODE | 3 | 13 | 217 | 18 | 2 | dome |
0 | 8 | 23 | 179 | 15 | gargoyle | |
28 | 11 | 0 | 13 | 189 | vault | |
201 | 18 | 1 | 3 | 20 | altar | |
6 | 177 | 22 | 22 | 11 | column | |
Forest PA | 1 | 18 | 210 | 22 | 2 | dome |
2 | 13 | 26 | 176 | 8 | gargoyle | |
30 | 12 | 0 | 19 | 180 | vault | |
226 | 1 | 5 | 2 | 9 | altar | |
19 | 170 | 22 | 15 | 12 | column | |
RSeslibKnn | 6 | 13 | 223 | 10 | 1 | dome |
4 | 10 | 29 | 175 | 7 | gargoyle | |
40 | 7 | 0 | 20 | 174 | vault |
Algorithm | MLP | Forest PA | AODE | RSeslibKnn | CNN |
---|---|---|---|---|---|
Before attribute selection | 84.83 | 77.92 | 79.25 | 82.17 | 92.91 |
After attribute selection | 98.9 | 78.67 | 80.83 | 80.67 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janković, R. Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection. Information 2020, 11, 12. https://doi.org/10.3390/info11010012
Janković R. Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection. Information. 2020; 11(1):12. https://doi.org/10.3390/info11010012
Chicago/Turabian StyleJanković, Radmila. 2020. "Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection" Information 11, no. 1: 12. https://doi.org/10.3390/info11010012
APA StyleJanković, R. (2020). Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection. Information, 11(1), 12. https://doi.org/10.3390/info11010012