Explorative Visual Analysis of Rap Music
Abstract
:1. Introduction
2. Related Work
2.1. Similarity of Musicians
2.2. Song Similarity
2.3. Text Alignment
3. Data
4. Methodology
4.1. Tasks and Design Rationales
- Q1: Which artists have collaborated, were part of the same label or group, and are similarly based on their lyrics? (Graph Section 4.3)
- Q2: What are the most similar artists or songs for a specific artist? (Artist Profile Section 4.4)
- Q3: Which songs of two artists have similar lines or are remixes, covers, or interpolations of a song? (Side-by-Side Alignments and Variant Graphs Section 4.5)
- Q4: How many songs has an artist released (in a certain period of time)? Which artists belong to a genre or have composed songs in a certain genre? (Scatterplot Section 4.6)
- Q5: When were songs that are associated with a specific genre released? (Genre Timeline Section 4.7)
- Q6: What vocabulary is used in a genre, by an artist, or in a song, and how does the vocabulary differ (TagCloud and TagPie Section 4.8)
- Q7: How is the sentiment for a specific song? Are there artists that have on average a negative or a positive sentiment? (Sentiment Barcodes Section 4.9)
4.2. Artist Similarity
4.3. Artist Similarity Graph
4.4. Artist View
4.5. Monolingual Alignments
4.6. Scatterplot
4.7. Genre Timeline
4.8. Compare Vocabulary
4.9. Sentiment Analysis
5. User Feedback
6. Discussion
6.1. Imprecision and Incompleteness
6.2. Future Work
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kopano, B.N. Rap music as an extension of the Black rhetorical tradition: “ Keepin’it real”. West. J. Black Stud. 2002, 26, 204. [Google Scholar]
- Spotify AB. Top Tracks 2019 Deutschland. 2008. Available online: https://open.spotify.com/playlist/37i9dQZF1DX4HROODZmf5u (accessed on 27 October 2021).
- GMG Inc. 2014. Available online: https://genius.com/ (accessed on 27 October 2021).
- YouTube LLC. YouTube. 2005. Available online: https://www.youtube.com (accessed on 27 October 2021).
- Spotify AB. Spotify. 2008. Available online: https://www.spotify.com/ (accessed on 27 October 2021).
- SoundCloud Limited. SoundCloud. 2007. Available online: https://soundcloud.com/ (accessed on 27 October 2021).
- Yousef, T.; Janicke, S. A Survey of Text Alignment Visualization. IEEE Trans. Vis. Comput. Graph. 2020, 27, 1149–1159. [Google Scholar] [CrossRef]
- Meinecke, C.; Jänicke, S. Detecting Text Reuse and Similarities between Artists in Rap Music through Visualization; OSF: Charlottesville, VA, USA, 2021. [Google Scholar]
- Lim, D.; Benson, A.R. Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform. arXiv 2020, arXiv:2006.08108. [Google Scholar]
- Jänicke, S.; Franzini, G.; Cheema, M.F.; Scheuermann, G. Visual Text Analysis in Digital Humanities; Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Moretti, F. Distant Reading; Verso Books: Brooklyn, NY, USA, 2013. [Google Scholar]
- Khulusi, R.; Kusnick, J.; Meinecke, C.; Gillmann, C.; Focht, J.; Jänicke, S. A Survey on Visualizations for Musical Data; Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Kim, J.H.; Tomasik, B.; Turnbull, D. Using Artist Similarity to Propagate Semantic Information. ISMIR 2009, 9, 375–380. [Google Scholar]
- Schedl, M.; Hauger, D. Mining microblogs to infer music artist similarity and cultural listening patterns. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 877–886. [Google Scholar]
- Schedl, M.; Knees, P.; Widmer, G. A web-based approach to assessing artist similarity using co-occurrences. In Proceedings of the Fourth International Workshop on Content-Based Multimedia Indexing (CBMI’05), Riga, Latvia, 21–23 June 2005. [Google Scholar]
- Jänicke, S.; Focht, J.; Scheuermann, G. Interactive visual profiling of musicians. IEEE Trans. Vis. Comput. Graph. 2016, 22, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Vavrille, F. LivePlasma. 2017. Available online: http://www.liveplasma.com/ (accessed on 27 October 2021).
- Spotify AB. Spotify Artist Explorer. 2018. Available online: https://artist-explorer.glitch.me/ (accessed on 27 October 2021).
- Gibney, M. Music-Map. 2011. Available online: https://www.music-map.de (accessed on 27 October 2021).
- Cano, P.; Koppenberger, M. The emergence of complex network patterns in music artist networks. In Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, 10–14 October 2004; pp. 466–469. [Google Scholar]
- Gleich, M.D.; Zhukov, L.; Lang, K. The World of Music: SDP layout of high dimensional data. Inf. Vis. 2005, 2005, 100. [Google Scholar]
- Daniels, M. The Largest Vocabulary in Hip Hop. 2014. Available online: https://pudding.cool/projects/vocabulary/ (accessed on 27 October 2021).
- Schramm, K. Wer Hat den Größten? 2015. Available online: https://story.br.de/rapwortschatz/ (accessed on 27 October 2021).
- The DataFace; Daniels, M. The Language of Hip Hop. 2017. Available online: https://pudding.cool/2017/09/hip-hop-words/ (accessed on 27 October 2021).
- Lévesque, F.; Hurtut, T. MuzLink: Connected beeswarm timelines for visual analysis of musical adaptations and artist relationships. Inf. Vis. 2021, 20, 170–191. [Google Scholar] [CrossRef]
- Lu, S.; Akred, J. History of Rock in 100 Songs. 2018. Available online: https://svds.com/rockandroll/#thebeatles (accessed on 27 October 2021).
- Schedl, M.; Knees, P.; Widmer, G. Discovering and Visualizing Prototypical Artists by Web-Based Co-Occurrence Analysis. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), London, UK, 11–15 September 2005; pp. 21–28. [Google Scholar]
- Logan, B.; Kositsky, A.; Moreno, P. Semantic analysis of song lyrics. In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME)(IEEE Cat. No. 04TH8763), Taipei, Taiwan, 27–30 June 2004; IEEE: New York, NY, USA, 2004; Volume 2, pp. 827–830. [Google Scholar]
- Baumann, S.; Hummel, O. Using cultural metadata for artist recommendations. In Proceedings of the Third International Conference on WEB Delivering of Music, Leeds, UK, 15–17 September 2003; IEEE: New York, NY, USA, 2003; pp. 138–141. [Google Scholar]
- Oramas, S.; Sordo, M.; Espinosa-Anke, L.; Serra, X. A semantic-based approach for artist similarity. In Proceedings of the 16th International Society for Music Information Retrieval (ISMIR) Conference, Malaga, Spain, 26–30 October 2015; pp. 100–106. [Google Scholar]
- Knees, P.; Schedl, M. A survey of music similarity and recommendation from music context data. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2013, 10, 1–21. [Google Scholar] [CrossRef]
- Deldjoo, Y.; Schedl, M.; Knees, P. Content-driven Music Recommendation: Evolution, State of the Art, and Challenges. arXiv 2021, arXiv:2107.11803. [Google Scholar]
- Ribeiro, R.P.; Almeida, M.A.; Silla Jr, C.N. The ethnic lyrics fetcher tool. EURASIP J. Audio Speech Music Process. 2014, 2014, 27. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Tang, S.; Raposo, F.; Chen, L. Deep cross-modal correlation learning for audio and lyrics in music retrieval. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Yoshii, K.; Nakano, T.; Goto, M.; Morishima, S. LyricsRadar: A Lyrics Retrieval System Based on Latent Topics of Lyrics. In Proceedings of the 16th International Society for Music Information Retrieval (ISMIR) Conference, Taipei, Taiwan, 27–31 October 2014; pp. 585–590. [Google Scholar]
- Ono, J.; Corrêa, D.; Ferreira, M.; Mello, R.; Nonato, L.G. Similarity graph: Visual exploration of song collections. In SIBGRAPI; IEEE, Institute of Electrical and Electronics Engineers United States: New York, NY, USA, 2015. [Google Scholar]
- De Prisco, R.; Lettieri, N.; Malandrino, D.; Pirozzi, D.; Zaccagnino, G.; Zaccagnino, R. Visualization of music plagiarism: Analysis and evaluation. In Proceedings of the 2016 20th International Conference Information Visualisation (IV), Lisbon, Portugal, 19–22 July 2016; IEEE: New York, NY, USA, 2016; pp. 177–182. [Google Scholar]
- Abdul-Rahman, A.; Roe, G.; Olsen, M.; Gladstone, C.; Whaling, R.; Cronk, N.; Morrissey, R.; Chen, M. Constructive Visual Analytics for Text Similarity Detection; Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2017; Volume 36, pp. 237–248. [Google Scholar]
- Jänicke, S.; Geßner, A.; Büchler, M.; Scheuermann, G. Visualizations for Text Re-use. In Proceedings of the Information Visualization Theory and Applications (IVAPP), Lisbon, Portugal, 5–8 January 2014; IEEE: New York, NY, USA, 2014; pp. 59–70. [Google Scholar]
- Asokarajan, B.; Etemadpour, R.; Abbas, J.; Huskey, S.J.; Weaver, C. TexTile: A Pixel-Based Focus+ Context Tool For Analyzing Variants Across Multiple Text Scales; EuroVis (Short Papers); The Eurographics Association: Norrkoping, Sweden, 2017; pp. 49–53. [Google Scholar]
- Di Pietro, C.; Del Turco, R.R. Between Innovation and Conservation: The Narrow Path of User Interface Design for Digital Scholarly Editions. Bleier Klug Neuber Schneider 2018, 133–163. [Google Scholar]
- Riehmann, P.; Potthast, M.; Stein, B.; Froehlich, B. Visual Assessment of Alleged Plagiarism Cases; Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2015; Volume 34, pp. 61–70. [Google Scholar]
- Jänicke, S.; Wrisley, D.J. Interactive visual alignment of medieval text versions. In Proceedings of the 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Phoenix, AZ, USA, 3–6 October 2017; IEEE: New York, NY, USA, 2017; pp. 127–138. [Google Scholar]
- Meinecke, C.; Wrisley, D.; Janicke, S. Explaining Semi-Supervised Text Alignment through Visualization. IEEE Trans. Vis. Comput. Graph. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jänicke, S.; Geßner, A.; Franzini, G.; Terras, M.; Mahony, S.; Scheuermann, G. TRAViz: A visualization for variant graphs. Digit. Scholarsh. Humanit. 2015, 30, i83–i99. [Google Scholar] [CrossRef] [Green Version]
- Riehmann, P.; Gruendl, H.; Potthast, M.; Trenkmann, M.; Stein, B.; Froehlich, B. Wordgraph: Keyword-in-context visualization for netspeak’s wildcard search. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1411–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, R.H.; Middell, G. Computer-supported collation with CollateX: Managing textual variance in an environment with varying requirements. Support. Digit. Humanit. 2011, 2. [Google Scholar]
- Brehmer, M.; Munzner, T. A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Munzner, T. Visualization Analysis and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Magdy, W.; McGillivray, B.; Garimella, K.; Tyson, G. Urban dictionary embeddings for slang NLP applications. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11 May 2020; pp. 4764–4773. [Google Scholar]
- Ethayarajh, K. Unsupervised random walk sentence embeddings: A strong but simple baseline. In Proceedings of the Third Workshop on Representation Learning for NLP, Melbourne, Australia, 20 July 2018; pp. 91–100. [Google Scholar]
- Johnson, J.; Douze, M.; Jégou, H. Billion-scale similarity search with GPUs. IEEE Trans. Big Data 2019, 7, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Shneiderman, B. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, Washington, DC, USA, 3–6 September 1996; IEEE: New York, NY, USA, 1996; pp. 336–343. [Google Scholar]
- Darville, J. Report: Three 6 Mafia Launch $6.45 Million Lawsuit against $Uicideboy$ over Samples. 2020. Available online: https://www.thefader.com/2020/09/08/report-three-6-mafia-launch-s645-million-lawsuit-against-suicideboys-over-samples (accessed on 27 October 2021).
- Jänicke, S.; Blumenstein, J.; Rücker, M.; Zeckzer, D.; Scheuermann, G. TagPies: Comparative Visualization of Textual Data. In Proceedings of the Information Visualization Theory and Applications (IVAPP), Funchal, Portugal, 27–29 January 2018; IEEE: New York, NY, USA, 2018; pp. 40–51. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations; Association for Computational Linguistics: Vancouver, BC, Canada, 2020; pp. 38–45. [Google Scholar]
- Town, N. Bert Base Multilingual Uncased Sentiment. 2020. Available online: https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment (accessed on 27 October 2021).
- Hinrichs, U.; Forlini, S.; Moynihan, B. Speculative practices: Utilizing infovis to explore untapped literary collections. IEEE Trans. Vis. Comput. Graph. 2015, 22, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artetxe, M.; Schwenk, H. Margin-based parallel corpus mining with multilingual sentence embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 3197–3203. [Google Scholar]
- Limited, W. WhoSampled. 2008. Available online: https://www.whosampled.com/ (accessed on 27 October 2021).
- Burrows, J. ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Lit. Linguist. Comput. 2002, 17, 267–287. [Google Scholar] [CrossRef]
- Cameron, H. Diddy’s Little Helpers. 2016. Available online: https://www.villagevoice.com/2006/11/14/diddys-little-helpers/ (accessed on 27 October 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meinecke, C.; Hakimi, A.D.; Jänicke, S. Explorative Visual Analysis of Rap Music. Information 2022, 13, 10. https://doi.org/10.3390/info13010010
Meinecke C, Hakimi AD, Jänicke S. Explorative Visual Analysis of Rap Music. Information. 2022; 13(1):10. https://doi.org/10.3390/info13010010
Chicago/Turabian StyleMeinecke, Christofer, Ahmad Dawar Hakimi, and Stefan Jänicke. 2022. "Explorative Visual Analysis of Rap Music" Information 13, no. 1: 10. https://doi.org/10.3390/info13010010
APA StyleMeinecke, C., Hakimi, A. D., & Jänicke, S. (2022). Explorative Visual Analysis of Rap Music. Information, 13(1), 10. https://doi.org/10.3390/info13010010