Digital Transformation in Healthcare 4.0: Critical Factors for Business Intelligence Systems
Abstract
:1. Introduction
2. Theoretical Background
2.1. Literature Review Methodology
2.2. Hospital 4.0
2.3. BI in Healthcare
2.4. Critical Success Factors for BI Systems
3. Methodology and Proposed Framework
3.1. Management Support
3.2. User Involvement
3.3. Processes
3.4. Information Technology
3.5. Individual Characteristics
3.6. Strategy
3.7. Social Factors
3.8. Organizational Learning Culture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Do Nascimento, I.J.B.; Marcolino, M.S.; Abdulazeem, H.M.; Weerasekara, I.; Azzopardi-Muscat, N.; Gonçalves, M.A.; Novillo-Ortiz, D. Impact of big data analytics on people’s health: Overview of systematic reviews and recommendations for future studies. J. Med. Internet Res. 2021, 23, e27275. [Google Scholar] [CrossRef] [PubMed]
- Galetsi, P.; Katsaliaki, K. Big data analytics in health: An overview and bibliometric study of research activity. Health Inf. Libr. J. 2020, 37, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; Moors, E.H. Caring for healthcare entrepreneurs—Towards successful entrepreneurial strategies for sustainable innovations in Dutch healthcare. Technol. Forecast. Soc. Chang. 2013, 80, 1360–1374. [Google Scholar] [CrossRef]
- Behkami, N.A.; Daim, T.U. Research forecasting for health information technology (HIT), using technology intelligence. Technol. Forecast. Soc. Chang. 2012, 79, 498–508. [Google Scholar] [CrossRef]
- Li, M.; Mao, J. Hedonic or utilitarian? Exploring the impact of communication style alignment on user’s perception of virtual health advisory services. Int. J. Inf. Manag. 2015, 35, 229–243. [Google Scholar] [CrossRef]
- Lopes, J.; Braga, J.; Santos, M.F. Adaptive Business Intelligence platform and its contribution as a support in the evolution of Hospital 4.0. Procedia Comput. Sci. 2021, 184, 905–910. [Google Scholar] [CrossRef]
- Pai, F.Y.; Huang, K.I. Applying the technology acceptance model to the introduction of healthcare information systems. Technol. Forecast. Soc. Chang. 2011, 78, 650–660. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Gaardboe, R.; Sandalgaard, N.; Nyvang, T. An assessment of business intelligence in public hospitals. Int. J. Inf. Syst. Proj. Manag. 2017, 5, 5–18. [Google Scholar] [CrossRef]
- Foshay, N.; Kuziemsky, C. Towards an implementation framework for business intelligence in healthcare. Int. J. Inf. Manag. 2014, 34, 20–27. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, C.; Li, L. Bringing business intelligence to health information technology curriculum. J. Inf. Syst. Educ. 2014, 25, 317–326. [Google Scholar]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, M.C.; Masud, M.; Wu, W.H.; Chen, L.J.; Wu, Y.C.J. Design and evaluation of hospital-based business intelligence system (HBIS): A foundation for design science research methodology. Comput. Hum. Behav. 2016, 62, 495–505. [Google Scholar] [CrossRef]
- Lopes, J.; Guimarães, T.; Santos, M.F. Adaptive business intelligence: A new architectural approach. Procedia Comput. Sci. 2020, 177, 540–545. [Google Scholar] [CrossRef]
- Yeoh, W. Business intelligence systems implementation: Testing a critical success factors framework in multiple cases. Int. J. Bus. Inf. Syst. 2011, 8, 192–209. [Google Scholar] [CrossRef]
- Harison, E. Critical success factors of business intelligence system implementations: Evidence from the energy sector. Int. J. Enterp. Inf. Syst. 2012, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Olszak, C.M.; Ziemba, E. Critical success factors for implementing business intelligence systems in small and medium enterprises on the example of upper Silesia, Poland. Interdiscip. J. Inf. Knowl. Manag. 2012, 7, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, W.; Popovič, A. Extending the understanding of critical success factors for implementing business intelligence systems. J. Assoc. Inf. Sci. Technol. 2016, 67, 134–147. [Google Scholar] [CrossRef]
- Brooks, P.; El-Gayar, O.; Sarnikar, S. A framework for developing a domain specific business intelligence maturity model: Application to healthcare. Int. J. Inf. Manag. 2015, 35, 337–345. [Google Scholar] [CrossRef]
- Spruit, M.; Vroon, R.; Batenburg, R. Towards healthcare business intelligence in long-term care: An explorative case study in the Netherlands. Comput. Hum. Behav. 2014, 30, 698–707. [Google Scholar] [CrossRef]
- Hanson, R.M. Good health information–an asset not a burden! Aust. Health Rev. 2011, 35, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, M.Z.; Collier, P.A.; Davern, M.J. Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. Int. J. Account. Inf. Syst. 2008, 9, 135–153. [Google Scholar] [CrossRef]
- Ferranti, J.M.; Langman, M.K.; Tanaka, D.; McCall, J.; Ahmad, A. Bridging the gap: Leveraging business intelligence tools in support of patient safety and financial effectiveness. J. Am. Med. Inform. Assoc. 2010, 17, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setiawan, M.A. In the making of effective decision making in public health domain with business intelligence dashboard. IOP Conf. Ser. Mater. Sci. Eng. 2019, 482, 012029. [Google Scholar] [CrossRef]
- Tumpa, Z.N.; Saifuzzaman, M.; Rabby, S.F.; Crearie, L.; Stansfield, M. Understanding Business Intelligence in The Context of Mental Healthcare Sector of Bangladesh for Improving Health Services. In Proceedings of the 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 1–3 December 2020; pp. 1–4. [Google Scholar]
- Eder, F.; Koch, S. Critical success factors for the implementation of business intelligence systems. Int. J. Bus. Intell. Res. 2018, 9, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Jahantigh, F.F.; Habibi, A.; Sarafrazi, A. A conceptual framework for business intelligence critical success factors. Int. J. Bus. Inf. Syst. 2019, 30, 109–123. [Google Scholar] [CrossRef]
- Kamariotou, M.; Kitsios, F. Critical Factors of Strategic Information Systems Planning Phases in SMEs. In Information Systems; Themistocleous, M., Rupino da Cunha, P., Eds.; EMCIS 2018; Springer LNBIP 341; Springer Nature: Cham, Switzerland, 2019; pp. 503–517. [Google Scholar]
- Kitsios, F.; Kamariotou, M. Strategizing information systems: An empirical analysis of IT alignment and success in SMEs. Computers 2019, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Kitsios, F.; Kamariotou, M. Information Systems Strategy and Strategy-as-Practice: Planning Evaluation in SMEs. In Proceedings of the Americas Conference on Information Systems (AMCIS2019), Cancun, Mexico, 15–17 August 2019; pp. 1–10. [Google Scholar]
- Kitsios, F.; Kamariotou, M. Decision Support Systems and Strategic Information Systems Planning for Strategy Implementation. In Strategic Innovative Marketing; Kavoura, A., Sakas, D., Tomaras, P., Eds.; Springer Proceedings in Business and Economics; Springer: Cham, Switzerland, 2017; pp. 327–332. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing The Past To Prepare For The Future: Writing A Literature Review. MIS Q. 2002, 26, 13–23. [Google Scholar]
- Kitsios, F.; Kamariotou, M. Artificial intelligence and business strategy towards digital transformation: A research agenda. Sustainability 2021, 13, 2025. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Service innovation process digitization: Areas for exploitation and exploration. J. Hosp. Tour. Technol. 2021, 12, 4–18. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Job satisfaction behind motivation: An empirical study in public health workers. Heliyon 2021, 7, e06857. [Google Scholar] [CrossRef] [PubMed]
- Kitsios, F.; Kamariotou, M.; Manthou, V.; Batsara, A. Hospital Information Systems: Measuring End-User Satisfaction. In EMCIS 2020, Lecture Notes in Business Information Processing; Themistocleous, M., Papadaki, M., Kamal, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 463–479. [Google Scholar]
- Kitsios, F.; Stefanakakis, S.; Kamariotou, M.; Dermentzoglou, L. E-service Evaluation: User satisfaction measurement and implications in health sector. Comput. Stand. Interfaces 2019, 63, 16–26. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Saurin, T.A.; Fogliatto, F.S.; Rosa, V.M.; Tonetto, L.M.; Magrabi, F. Impacts of Healthcare 4.0 digital technologies on the resilience of hospitals. Technol. Forecast. Soc. Chang. 2021, 166, 120666. [Google Scholar] [CrossRef]
- Shen, C.C.; Chang, R.E.; Hsu, C.J.; Chang, I.C. How business intelligence maturity enabling hospital agility. Telemat. Inform. 2017, 34, 450–456. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Beyond open data hackathons: Exploring digital innovation success. Information 2019, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Perez, J.; Poon, C.C.; Merrifield, R.D.; Wong, S.T.; Yang, G.Z. Big data for health. IEEE J. Biomed. Health Inform. 2015, 19, 1193–1208. [Google Scholar] [CrossRef]
- Ahuja, S.P.; Mani, S.; Zambrano, J. A survey of the state of cloud computing in healthcare. Netw. Commun. Technol. 2012, 1, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Stantchev, V.; Barnawi, A.; Ghulam, S.; Schubert, J.; Tamm, G. Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 2015, 185, 121–128. [Google Scholar]
- Flower, J. Who owns health care’s most valuable information? Physician Exec. 2006, 32, 54–56. [Google Scholar]
- Mettler, T.; Vimarlund, V. Understanding business intelligence in the context of healthcare. Health Inform. J. 2009, 15, 254–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.C.; Hevner, A.R.; Berndt, D.J. Design of an information volatility measure for health care decision making. Decis. Support. Syst. 2012, 52, 331–341. [Google Scholar] [CrossRef]
- Aruldoss, M.; Travis, M.L.; Venkatesan, V.P. A survey on recent research in business intelligence. J. Enterp. Inf. Manag. 2014, 27, 831–866. [Google Scholar] [CrossRef] [Green Version]
- Gastaldi, L.; Pietrosi, A.; Lessanibahri, S.; Paparella, M.; Scaccianoce, A.; Provenzale, G.; Corso, M.; Gridelli, B. Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital. Technol. Forecast. Soc. Chang. 2018, 128, 84–103. [Google Scholar] [CrossRef]
- Niu, Y.; Ying, L.; Yang, J.; Bao, M.; Sivaparthipan, C.B. Organizational business intelligence and decision making using big data analytics. Inf. Process. Manag. 2021, 58, 102725. [Google Scholar] [CrossRef]
- Bach, M.P.; Zoroja, J.; Čeljo, A. An extension of the technology acceptance model for business intelligence systems: Project management maturity perspective. Int. J. Inf. Syst. Proj. Manag. 2017, 5, 5–21. [Google Scholar] [CrossRef]
- Bach, M.P.; Čeljo, A.; Zoroja, J. Technology acceptance model for business intelligence systems: Preliminary research. Procedia Comput. Sci. 2016, 100, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. The diffusion stages of business intelligence & analytics (BI&A): A systematic mapping study. Procedia Technol. 2014, 16, 172–179. [Google Scholar]
- Li, X.; Hsieh, J.P.A.; Rai, A. Motivational differences across post-acceptance information system usage behaviors: An investigation in the business intelligence systems context. Inf. Syst. Res. 2013, 24, 659–682. [Google Scholar] [CrossRef] [Green Version]
- Ratia, M.; Myllärniemi, J.; Helander, N. The new era of business intelligence: Big Data potential in the private health care value creation. Meditari Account. Res. 2018, 26, 531–546. [Google Scholar] [CrossRef]
- Wixom, B.; Watson, H. The BI-based organization. Int. J. Bus. Intell. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Trieu, V.H. Getting value from Business Intelligence systems: A review and research agenda. Decis. Support. Syst. 2017, 93, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Pine, M.; Schindler, J.; Stanek, M.; Hanlon, C.; Manas, J.S. Harnessing the power of enhanced data for healthcare quality improvement: Lessons from a minnesota hospital association pilot project/practitioner application. J. Healthc. Manag. 2012, 57, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Parente, S.T.; Dunbar, J.L. Is health information technology investment related to the financial performance of US hospitals? An exploratory analysis. Int. J. Healthc. Technol. Manag. 2001, 3, 48–58. [Google Scholar] [CrossRef]
- Chaudhry, K.; Dhingra, S. Modeling the Critical Success Factors for Business Intelligence Implementation: An ISM Approach. Int. J. Bus. Intell. Res. 2021, 12, 1–21. [Google Scholar] [CrossRef]
- Cases, M.; Furlong, L.; Albanell, J.; Altman, R.B.; Bellazzi, R.; Boyer, S.; Brand, A.; Brookes, A.J.; Brunak, S.; Clark, T.W.; et al. Improving data and knowledge management to better integrate health care and research. J. Intern. Med. 2013, 274, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Katsaliaki, K.; Mustafee, N. Applications of simulation within the healthcare context. J. Oper. Res. Soc. 2011, 62, 1431–1451. [Google Scholar] [CrossRef]
- Stewart, R.; Davis, K. Big data’ in mental health research: Current status and emerging possibilities. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1055–1072. [Google Scholar] [CrossRef] [Green Version]
- Ishaya, T.; Folarin, M. A service oriented approach to Business Intelligence in Telecoms industry. Telemat. Inform. 2012, 29, 273–285. [Google Scholar] [CrossRef]
- Chung, W.; Chen, H.; Nunamaker, J.F., Jr. A visual framework for knowledge discovery on the Web: An empirical study of business intelligence exploration. J. Manag. Inf. Syst. 2005, 21, 57–84. [Google Scholar] [CrossRef]
- Langseth, J.; Vivatrat, N. Why proactive business intelligence is a hallmark of the real-time enterprise: Outward bound. Intell. Enterp. 2003, 5, 34–41. [Google Scholar]
- Lateef, M.; Keikhosrokiani, P. Predicting Critical Success Factors of Business Intelligence Implementation for Improving SMEs’ Performances: A Case Study of Lagos State, Nigeria. J. Knowl. Econ. 2022, 1, 1–26. [Google Scholar] [CrossRef]
- Coddington, D.; Moore, K. Integrating physician perspectives into business intelligence. Healthc. Financ. Manag. J. Healthc. Financ. Manag. Assoc. 2012, 66, 158–160. [Google Scholar]
- Dutta, A.; Heda, S. Information systems architecture to support managed care business processes. Decis. Support. Syst. 2000, 30, 217–225. [Google Scholar] [CrossRef]
- Ali, M.S.; Miah, S.J. Identifying organizational factors for successful business intelligence implementation. Int. J. Bus. Intell. Res. 2018, 9, 47–63. [Google Scholar] [CrossRef]
- Elbashir, M.Z.; Collier, P.A.; Sutton, S.G.; Davern, M.J.; Leech, S.A. Enhancing the business value of business intelligence: The role of shared knowledge and assimilation. J. Inf. Syst. 2013, 27, 87–105. [Google Scholar] [CrossRef]
- Isık, Ö.; Jones, M.C.; Sidorova, A. Business intelligence success: The roles of BI capabilities and decision environments. Inf. Manag. 2013, 50, 13–23. [Google Scholar] [CrossRef]
- Rouhani, S.; Asgari, S.; Mirhosseini, S.V. Review study: Business intelligence concepts and approaches. Am. J. Sci. Res. 2012, 50, 62–75. [Google Scholar]
- Villamarín-García, J.M. Contributions from organisational collaboration to business intelligence solutions success. Int. J. Bus. Inf. Syst. 2020, 33, 103–131. [Google Scholar] [CrossRef]
- Hobek, R.; Ariyachandra, T.R.; Frolick, M.N. The importance of soft skills in business intelligence implementations. Bus. Intell. J. 2009, 14, 28–36. [Google Scholar]
- Farzaneh, M.; Isaai, M.T.; Arasti, M.R.; Mehralian, G. A framework for developing business intelligence systems: A knowledge perspective. Manag. Res. Rev. 2018, 41, 1358–1374. [Google Scholar] [CrossRef]
- Yeoh, W.; Koronios, A. Critical Sucess Factors for Business Intelligence Systems. J. Comput. Inf. Syst. 2010, 50, 23–32. [Google Scholar]
- Olszak, C.M. Toward better understanding and use of business intelligence in organizations. Inf. Syst. Manag. 2016, 33, 105–123. [Google Scholar] [CrossRef]
- Yeoh, W.; Koronios, A.; Gao, J. Managing the implementation of business intelligence systems: A critical success factors framework. Int. J. Enterp. Inf. Syst. 2008, 4, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Adamala, S.; Cidrin, L. Key success factors in business intelligence. J. Intell. Stud. Bus. 2011, 1, 107–127. [Google Scholar] [CrossRef]
- Salmeron, J.L.; Herrero, I. An AHP-based methodology to rank critical success factors of executive information systems. Comput. Stand. Interfaces 2005, 28, 1–12. [Google Scholar] [CrossRef]
- Dawson, L.; van Belle, J.-P. Critical success factors for business intelligence in the South African financial services sector. S. Afr. J. Inf. Manag. 2013, 15, 1–12. [Google Scholar] [CrossRef]
- Sadeghi, A. Success factors of high-tech SMEs in Iran: A fuzzy MCDM approach. J. High Technol. Manag. Res. 2018, 29, 71–87. [Google Scholar] [CrossRef]
- Thamir, A.; Poulis, E. Business intelligence capabilities and implementation strategies. Int. J. Glob. Bus. 2015, 8, 34–45. [Google Scholar]
- Watson, H. Real time: The next generation of decision-support data management. Bus. Intell. J. 2005, 10, 4–6. [Google Scholar]
- Grublješič, T.; Jaklič, J. Business intelligence acceptance: The prominence of organizational factors. Inf. Syst. Manag. 2015, 32, 299–315. [Google Scholar] [CrossRef]
- Kulkarni, U.; Robles-Flores, J.A.; Popovič, A. Business intelligence capability: The effect of top management and the mediating roles of user participation and analytical decision making orientation. J. Assoc. Inf. Syst. 2017, 18, 516–541. [Google Scholar] [CrossRef] [Green Version]
- Popovič, A.; Hackney, R.; Coelho, P.S.; Jaklič, J. Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decis. Support. Syst. 2012, 54, 729–739. [Google Scholar] [CrossRef]
- Fink, L.; Yogev, N.; Even, A. Business intelligence and organizational learning: An empirical investigation of value creation processes. Inf. Manag. 2017, 54, 38–56. [Google Scholar] [CrossRef]
- Ranjan, J. Business justification with business intelligence. J. Inf. Knowl. Manag. Syst. 2008, 38, 461–475. [Google Scholar] [CrossRef]
- Schulz, M.; Winter, P.; Choi, S.K.T. On the relevance of reports—Integrating an automated archiving component into a business intelligence system. Int. J. Inf. Manag. 2015, 35, 662–671. [Google Scholar] [CrossRef]
- Wang, C.H. A novel approach to conduct the importance-satisfaction analysis for acquiring typical user groups in business-intelligence systems. Comput. Hum. Behav. 2016, 54, 673–681. [Google Scholar] [CrossRef]
- Arefin, M.S.; Hoque, M.R.; Rasul, T. Organizational learning culture and business intelligence systems of health-care organizations in an emerging economy. J. Knowl. Manag. 2021, 25, 573–594. [Google Scholar] [CrossRef]
- Davenport, T. Business intelligence and organizational decisions. Int. J. Bus. Intell. Res. 2010, 1, 1–12. [Google Scholar] [CrossRef]
- Arefin, M.S.; Hoque, M.R.; Bao, Y. The impact of business intelligence on organization’s effectiveness: An empirical study. J. Syst. Inf. Technol. 2015, 17, 263–285. [Google Scholar] [CrossRef]
- Marsick, V.J.; Watkins, K.E. Demonstrating the value of an organization’s learning culture: The dimensions of the learning organization questionnaire. Adv. Dev. Hum. Resour. 2003, 5, 132–151. [Google Scholar] [CrossRef]
- Wanda, P.; Stian, S. The secret of my success: An exploratory study of business intelligence management in the Norwegian industry. Procedia Comput. Sci. 2015, 64, 240–247. [Google Scholar] [CrossRef] [Green Version]
Factors | References |
---|---|
Support from top management | [18,26,56,74,76,77,78,79,80,81,82,84,85] |
Well defined business process and requirements | [17,18,74,77,78,79] |
Clear business vision | [17,18,26,74,77,82,84] |
Project management | [17,74,80] |
Change management | [17,18,26,74,77,79] |
Participation of end-users | [17,18,74,77] |
Education | [74,78] |
Skills | [17,26,56,74,78,80] |
Data and information accuracy | [17,18,26,56,74,77,79,82,84] |
User-friendly system | [17,18,26,74,77,80] |
Organizational culture | [17,74,80,84] |
Resources | [17,26,56,74,79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitsios, F.; Kapetaneas, N. Digital Transformation in Healthcare 4.0: Critical Factors for Business Intelligence Systems. Information 2022, 13, 247. https://doi.org/10.3390/info13050247
Kitsios F, Kapetaneas N. Digital Transformation in Healthcare 4.0: Critical Factors for Business Intelligence Systems. Information. 2022; 13(5):247. https://doi.org/10.3390/info13050247
Chicago/Turabian StyleKitsios, Fotis, and Nikolaos Kapetaneas. 2022. "Digital Transformation in Healthcare 4.0: Critical Factors for Business Intelligence Systems" Information 13, no. 5: 247. https://doi.org/10.3390/info13050247
APA StyleKitsios, F., & Kapetaneas, N. (2022). Digital Transformation in Healthcare 4.0: Critical Factors for Business Intelligence Systems. Information, 13(5), 247. https://doi.org/10.3390/info13050247