On Ordinal Information-Based Weighting Methods and Comparison Analyses
Abstract
:1. Introduction
2. Weighting Methods Accounting for Ordinal Information
2.1. Surrogate Weighting Methods
2.2. Methods Based on Pairwise and Absolute Dominance Notions
- The maximax or optimist, based on their maximum guaranteed value, i.e., .
- The maximin or pessimist, based on their minimum guaranteed value, i.e., .
- The minimax regret rule, based on the maximum loss of value with respect to a better alternative, i.e., , where represents the maximum regret incurred when choosing alternative j, i.e., .
- The central value rule, based on the midpoint of the range of possible performances, i.e., .
2.3. Other Weighting Methods Based on Ordinal Information
3. Weighting Methods Accounting for Additional Information
3.1. Precise/Imprecise Cardinal Information
3.2. Ratio-Based Methods
- The weight ratios should be equal to the comparative priorities, i.e., .
- The weight should satisfy the condition of mathematical transitivity, i.e., and then .
3.3. Ranking of Differences between the Weights of Consecutive Criteria
3.4. Semantic Scales to Account for Differences between the Weights of Consecutive Criteria
- , equally important;
- , slightly more important;
- , more important (clearly more important), and
- , much more important.
3.5. Additional Information on the Basis of Preference Statements
4. Comparison Analyses of Weight Elicitation Methods
4.1. Comparison Analyses When Only a Ranking of Criteria Is Available
4.2. Comparison Analyses When Additional Information Is Provided by the DM
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiménez, A.; Rios-Insua, S.; Mateos, A. A decision support system for multiattribute utility evaluation based on imprecise assignments. Decis. Support Syst. 2003, 36, 65–79. [Google Scholar] [CrossRef]
- Jiménez, A.; Rios-Insua, S.; Mateos, A. A generic multi-attribute analysis system. Comput. Oper. Res. 2006, 33, 1081–1101. [Google Scholar] [CrossRef]
- Belton, V. Multiple Criteria Decision Analysis-Practically the Only Way to Choose. In Operational Research Tutorial Papers; Hendry, L.C., Englese, R.W., Eds.; Operational Research Society: Birmingham, UK, 1990; pp. 53–101. [Google Scholar]
- Raiffa, H. The Art and Science of Negotiation; Harvard University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Stewart, T.J. Robustness of additive value function method in MCDM. J. Multi-Criteria Decis. Anal. 1996, 5, 301–309. [Google Scholar] [CrossRef]
- Ríos, D.; French, S. A framework for sensitivity analysis in discrete multi-objective decision-making. Eur. J. Oper. Res. 1991, 5, 176–190. [Google Scholar]
- Aguayo, E.A.; Mateos, A.; Jiménez-Martín, A. A new dominance intensity method to deal with ordinal information about a DM’s preferences within MAVT. Knowl. Based Syst. 2014, 69, 159–169. [Google Scholar] [CrossRef]
- Lakmayer, S.; Danielson, M.; Ekenberg, L. Automatically Generated Weight Methods for Human and Machine Decision-Making. In Advances and Trends in Artificial Intelligence. Theory and Applications; Lecture Notes in Computer Science, 13925; Fujita, H., Wang, Y., Xiao, Y., Moonis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 195–206. [Google Scholar]
- Riabacke, M.; Danielson, M.; Ekenberg, L. State-of-the-art prescriptive criteria weight elicitation. Adv. Decis. Sci. 2012, 2012, 276584. [Google Scholar] [CrossRef]
- Şahin, M.A. A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. Int. J. Environ. Sci. Technol. 2021, 18, 1591–1616. [Google Scholar] [CrossRef]
- Sarabando, P.; Dias, L.C. Multi-attribute choice with ordinal information: A comparison of different decision rules. IEEE Trans. Syst. Man Cybern. 2009, 39, 545–554. [Google Scholar] [CrossRef]
- Silva, F.; Souza, C.; Silva, F.F.; Costa, H.; da Hora, H.; Erthal, M. Elicitation of criteria weights for multicriteria models: Bibliometrics, typologies, characteristics and applications. Braz. J. Oper. Prod. Manag. 2021, 18, 1–28. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Chen, T.Y.; Wang, J.C. A weight assessing method with habitual domains. Eur. J. Oper. Res. 1998, 110, 342–367. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Y.; Liang, H. Strategic weight manipulation in multiple attribute decision making. Omega Int. J. Manag. Sci. 2018, 75, 154–164. [Google Scholar] [CrossRef]
- Wang, Y.M.; Luo, Y. Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Math. Comput. Model. 2010, 5, 1–12. [Google Scholar] [CrossRef]
- Dawes, R.M.; Corrigan, B. Linear models in decision making. Psychol. Bull. 1974, 81, 95–106. [Google Scholar] [CrossRef]
- Stillwell, W.G.; Seaver, D.A.; Edwards, W. A comparison of weight approximation techniques in multiattribute utility decision making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [Google Scholar] [CrossRef]
- Barron, F.H.; Barrett, B.E. Decision quality using ranked attribute weights. Manag. Sci. 1996, 42, 1515–1523. [Google Scholar] [CrossRef]
- Edwards, W.; Barron, F.H. SMARTS and SMARTER: Improved simple methods for multi-attribute utility measurement. Organ. Behav. Hum. Decis. Process. 1994, 60, 306–325. [Google Scholar] [CrossRef]
- Lootsma, F.A. Multi-Criteria Decision Analysis via Ratio and Difference Judgements; Kluwer: Alphen aan den Rijn, The Netherlands, 1999. [Google Scholar]
- Lootsma, F.A.; Bots, P.W.G. The assignment of scores for output-based research funding. J. Multi-Criteria Decis. Anal. 1999, 8, 44–50. [Google Scholar] [CrossRef]
- Roberts, R.; Goodwin, P. Weights approximations in multi-attribute decision models. J. Multi-Criteria Decis. Anal. 2002, 11, 291–303. [Google Scholar] [CrossRef]
- Burk, N.B.; Nehring, R.M. An empirical comparison of rank-based surrogate weights in additive multiattribute. Decis. Anal. 2023, 20, 1–84. [Google Scholar]
- Jiménez, A.; Mateos, A.; Fernández del Pozo, J.A. Dominance measuring methods for the selection of cleaning services in a European underground transportation company. RAIRO Oper. Res. 2023, 50, 809–824. [Google Scholar] [CrossRef]
- Ahn, B.S.; Park, K.S. Least-squared ordered weighted averaging operator weights. Int. J. Intell. Syst. 2008, 23, 33–49. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L. Rank Ordering Methods for Multicriteria Decisions. In Proceedings of the 14th Group Decision and Negotiation-GDN 2014. Lecture Note in Business Information Processing, Toulouse, France, 10–13 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; Volume 180, pp. 128–135. [Google Scholar]
- Puerto, J.; Mármol, A.M.; Monroy, L.; Fernández, F.R. Decision criteria with partial information. Int. Trans. Oper. Res. 2000, 7, 51–65. [Google Scholar] [CrossRef]
- Salo, A.A.; Hämäläinen, R.P. Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. 2001, 31, 533–545. [Google Scholar] [CrossRef]
- Eum, Y.; Park, K.; Kim, H. Establishing dominance and potential optimality in multi-criteria analysis with imprecise weights and value. Comput. Oper. Res. 2001, 28, 397–409. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, C.H. Establishing dominance between alternatives with incomplete information in a hierarchically structured attribute tree. Eur. J. Oper. Res. 2000, 122, 79–90. [Google Scholar] [CrossRef]
- Park, K. Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans. Syst. Man Cybern. 2004, 34, 601–614. [Google Scholar] [CrossRef]
- Mateos, A.; Jiménez-Martín, A.; Aguayo, E.A.; Sabio, P. Dominance intensity measuring methods in MCDM with ordinal relations regarding weights. Knowl. Based Syst. 2014, 70, 26–32. [Google Scholar] [CrossRef]
- Lahdelma, R.; Salminen, P. SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Oper. Res. 2001, 49, 444–454. [Google Scholar] [CrossRef]
- Arbel, A. Approximate articulation of preference and priority derivation. Eur. J. Oper. Res. 1989, 43, 317–326. [Google Scholar] [CrossRef]
- Von Winterfeldt, D.; Edwards, W. Decision Analysis and Behavioral Research; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Simos, J. Évaluer L’impact sur L’environnement: Une Approche Originale par L’analyse Multicritere et la Négociation; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 1990. [Google Scholar]
- Simos, J. L’évaluation Environnementale: Un Processus Cognitif Négocié. Ph.D. Thesis, DGF-EPFL, Lausanne, Switzerland, 1990. [Google Scholar]
- Figueira, J.; Roy, B. Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. Eur. J. Oper. Res. 2002, 139, 317–326. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L.; Larsson, A.; Riabacke, M. Weighting under ambiguos preferences and imprecise differences in a cardinal rank ordering process. Int. J. Comput. Intell. Syst. 2014, 7, 105–112. [Google Scholar] [CrossRef]
- Riabacke, M.; Danielson, M.; Ekenberg, L.; Larsson, A. A Prescriptive Approach for Eliciting Imprecise Weights Statements in an MCDA Process; Rossi, F., Tsoukis, A., Eds.; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5783, pp. 168–179. [Google Scholar]
- Larsson, A.; Riabacke, M.; Danielson, M.; Ekenberg, L. Cardinal and rank ordering of criteria-Addressing prescription within weight elicitation. Int. J. Inf. Technol. Decis. Mak. 2015, 14, 1299–1330. [Google Scholar] [CrossRef]
- Kersuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Pearman, A.D. Establishing dominance in multiattribute decision making using an ordered metric method. J. Oper. Res. Soc. 1993, 44, 461–469. [Google Scholar] [CrossRef]
- Malakooti, B. Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preference. IEEE Trans. Syst. Man Cybern. 2002, 30, 355–368. [Google Scholar] [CrossRef]
- Ahn, B.S. Approximate weighting method for multiattribute decision problems with imprecise parameters. Omega Int. J. Manag. Sci. 2017, 72, 87–95. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L. The CAR method for using preference strength in multicriteria decision making. Group Decis. Negot. 2016, 25, 775–797. [Google Scholar] [CrossRef]
- de Almeida, A.T.; de Almeida, J.A.; Costa, A.P.; de Almeida Filho, A.T. A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. Eur. J. Oper. Res. 2016, 250, 179–191. [Google Scholar] [CrossRef]
- Bottomley, P.; Doyle, J.R. A comparison of three weight elicitation methods: Good, better, and best. Omega Int. J. Manag. Sci. 2001, 29, 553–560. [Google Scholar] [CrossRef]
- Alfares, H.K.; Duffuaa, S.O. Assigning cardinal weights in multi-criteria decision making based on ordinal ranking. J. Multi-Criteria Decis. Anal. 2008, 15, 125–133. [Google Scholar] [CrossRef]
- O’Hagan, M. Using Maximum Entropy-Based Weighted Averaging to Construct a Fuzzy Neuron. In Proceedings of the 24th Annual IEEE Asilomar Conference on Signals, Systems, and Computers, Lecture Notes in Computer Science, Pacific Grove, CA, USA, 5 October–7 November 1990; Volume 521, pp. 618–623. [Google Scholar]
- Fullér, R.; Majlender, P. An Analytic Approach for Obtaining Maximal Entropy Owa Operator Weights. Fuzzy Sets Syst. 2001, 124, 53–57. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man, Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Liu, D.; Li, T.; Liang, D. An integrated approach towards modelling ranked weights. Comput. Ind. Eng. 2020, 147, 106629. [Google Scholar] [CrossRef]
- Wang, J.; Zionts, S. Using ordinal data to estimate cardinal values. J. Multi-Criteria Decis. Anal. 2015, 22, 185–196. [Google Scholar] [CrossRef]
- Hatefi, M.A. An improved rank order centroid method (IROC) for criteria weight estimation: An application in the engine/vehicle selection problem. Informatica 2023, 34, 1–22. [Google Scholar] [CrossRef]
- Hatefi, M.A.; Balilehvand, H.R. Risk assessment of oil and gas drilling operation: An empirical case using a hybrid GROC-VIMUN-modified FMEA method. Process Saf. Environ. Prot. 2023, 170, 392–402. [Google Scholar] [CrossRef]
- Hatefi, M.A. A new method for weighting decision making attributes: An application in high-tech selection in oil and gas industry. Soft Comput. 2024, 28, 281–303. [Google Scholar] [CrossRef]
- Athanassopoulos, A.D.; Podinovski, V.V. Dominance and potential optimality in multiple criteria decision analysis with imprecise information. J. Oper. Res. Soc. 1997, 48, 142–150. [Google Scholar] [CrossRef]
- Mateos, A.; Ríos-Insua, S.; Jiménez, A. Dominance, potential optimality and alternative ranking in imprecise decision making. J. Oper. Res. Soc. 2007, 58, 326–336. [Google Scholar] [CrossRef]
- Lee, K.; Park, K.; Kim, S. Dominance, potential optimality, imprecise information and hierarchical structure in multi-criteria analysis. Comput. Oper. Res. 2002, 29, 1267–1281. [Google Scholar] [CrossRef]
- Salo, A.; Punkka, A. Rank inclusion in criteria hierarchies. Eur. J. Oper. Res. 2005, 163, 338–356. [Google Scholar] [CrossRef]
- Liesiö, J. RICH Decisions—A Decision Support Software. Systems Analysis Laboratory, Helsinki University of Technology. Available online: http://www.sal.tkk.fi/Opinnot/Mat-2.108/pdf-files/elie02.pdf (accessed on 26 August 2024).
- Ahn, B.S.; Park, K.S. Comparing methods for multi-attribute decision making with ordinal weights. Comput. Oper. Res. 2008, 35, 1660–1670. [Google Scholar] [CrossRef]
- Jiménez, A.; Mateos, A.; Sabio, P. Dominance intensity measure within fuzzy weight oriented MAUT: An application. Omega Int. J. Manag. Sci. 2013, 41, 397–405. [Google Scholar] [CrossRef]
- Lahdelma, R.; Hokkanen, J.; Salminen, P. SMAA-stochastic multiobjective acceptability analysis. Eur. J. Oper. Res. 1998, 106, 137–143. [Google Scholar] [CrossRef]
- Sivageerthi, T.; Bathrinath, S.; Uthayakumar, M.; Bhalaji, R.K. A SWARA method to analyze the risks in coal supply chain management. Mater. Today Proc. 2022, 50, 935–940. [Google Scholar] [CrossRef]
- Edwards, W. How to use multiattribute utility measurement for social decisionmaking. IEEE Trans. Syst. Man Cybern. 1977, 7, 326–340. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Ahn, B.S. Extending Malakooti’s model for ranking multicriteria alternatives with preference strength and partial information. IEEE Trans. Syst. Man, Cybern. 2003, 33, 281–287. [Google Scholar]
- Sarabando, P.; Dias, L.C. Simple procedures of choice in multicriteria problems without precise information about the alternatives’ values. Comput. Oper. Res. 2010, 37, 2239–2247. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L. A robustness study of state-of-the-art surrogate weights for MCDM. Group Decis. Negot. 2017, 26, 677–691. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L.; He, Y. Augmenting ordinal methods of attribute weight approximation. Decis. Anal. 2014, 11, 21–26. [Google Scholar] [CrossRef]
- Lakmayer, S.; Danielson, M.; Ekenberg, L. Aspects of Ranking Algorithms in Multi-Criteria Decision Support Systems. In New Trends in Intelligent Software Methodologies, Tools and Techniques; Fujita, H., Guizzi, G., Eds.; IOS Press: Clifton, VA, USA, 2023; pp. 63–75. [Google Scholar]
- Danielson, M.; Ekenberg, L. An improvement to swing techniques for elicitation in MCDM methods. Knowl. Based Syst. 2019, 168, 70–79. [Google Scholar] [CrossRef]
- Frej, E.A.; de Almeida, A.T.; Costa, A.P.C.S. Using data visualization for ranking alternatives with partial information and interactive tradeoff elicitation. Oper. Res. Int. J. 2019, 19, 909–931. [Google Scholar] [CrossRef]
- de Almeida, A.T.; Frej, E.A.; Roselli, L.R.P. DSS for Multicriteria Preference Modeling with Partial Information and Its Modulation with Behavioral Studies. In EURO Working Group on DSS; Integrated Series in Information Systems; Papathanasiou, J., Zaraté, P., de Sousa, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 213–238. [Google Scholar]
- Barron, F.H.; Barrett, B.E. The efficacy of SMARTER-Simple multi-attribute rating technique extended to ranking. Acta Psychol. 1996, 93, 23–36. [Google Scholar] [CrossRef]
- Jia, J.; Fischer, G.W.; Dyer, J.S. Attribute weighting methods and decision quality in the presence of response error: A simulation study. J. Behav. Decis. Mak. 1998, 11, 85–105. [Google Scholar] [CrossRef]
- Pöyhönen, M.; Hämäläinen, R.P. On the convergence of multiattribute weighting methods. Eur. J. Oper. Res. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Noh, J.; Lee, M.L. Application of multiattribute decision-making methods for the determination of relative significance factor of impact categories. Environ. Manag. 2003, 31, 633–641. [Google Scholar] [CrossRef]
- Ahn, B.S. Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach. Eur. J. Oper. Res. 2011, 212, 552–559. [Google Scholar] [CrossRef]
- Roszkowska, E. Rank ordering criteria weighting methods - A comparative overview. Optim. Stud. Ekon. 2013, 5, 14–33. [Google Scholar] [CrossRef]
- Alfares, H.K.; Duffuaa, S. Simulation-based evaluation of criteria rank-weighting methods in multi-criteria decision-making. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 43–61. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L. Trade-offs for Ordinal Ranking Methods in Multi-Criteria Decisions. In Group Decision and Negotiation. Theory, Empirical Evidence, and Application; Bajwa, D., Koeszegi, S., Vetschera, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–12. [Google Scholar]
- de Almeida Filho, A.T.; Clemente, T.R.N.; Morais, D.C.; de Almeida, A.T. Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. Eur. J. Oper. Res. 2018, 264, 453–461. [Google Scholar] [CrossRef]
- Kunsch, P.L.; Ishizaka, A. A note on using centroid weights in additive multi-criteria decision analysis. Eur. J. Oper. Res. 2019, 277, 391–393. [Google Scholar] [CrossRef]
- Németh, B.; Molnár, A.; Bozóki, S.; Wijaya, K.; Inotai, A.; Campbell, J.D.; Kaló, Z. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low- and middle-income countries. J. Comp. Eff. Res. 2019, 8, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Lakmayer, S.; Danielson, M.; Ekenberg, L. Human-Centric Decision and Negotiation Support for Societal Transitions. In Proceedings of the 24th International Conference on Group Decision and Negotiation, GDN 2024, Porto, Portugal, 3–5 June 2024. [Google Scholar]
- Winkler, R.L.; Hays, W.L. Statistics: Probability, Inference and Decision; Holt, Rinehart & Winston: New York, NY, USA, 1985. [Google Scholar]
- Hatefi, M.A.; Razavi, S.A.; Abiri, V. A novel multi-attribute model to select appropriate weighting method in decision making, an empirical application in petroleum industry. Group Decis. Negot. 2023, 32, 1351–1390. [Google Scholar] [CrossRef]
- Costa, D.; de Almeida, T.A.; Hazin, L.; Negreiros, T.R.; Barbosa, C.Z. PROMETHEE-ROC model for assessing the readiness of technology for generating energy. Math. Probl. Eng. 2015, 7, 530615. [Google Scholar]
- Barron, F.H. Selecting a best multiattribute alternative with partial information about attribute weights. Acta Psychol. 1992, 80, 91–103. [Google Scholar] [CrossRef]
- Mateos, A.; Jiménez, A.; Blanco, J.F. Ranking Methods Based on Dominance Measures Accounting for Imprecision; Rossi, F., Tsoukis, A., Eds.; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5783, pp. 328–339. [Google Scholar]
- Mateos, A.; Jiménez-Martín, A.; Blanco, J.F. Dominance measuring method performance under incomplete information about weights. J. Multicriteria Decis. Anal. 2012, 19, 129–142. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decision Making with Multiple Objectives, Preferences, and Value Tradeoffs; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Tayyar, N.; Durmu, M. Comparison of Max100, SWARA and pairwise weight elicitation methods. Int. J. Appl. Eng. Res. 2017, 7, 67–78. [Google Scholar] [CrossRef]
- De Bekker-Grob, E.W.; Ryan, M.; Gerard, K. Discrete choice experiments in health economics: A review of the literature. Health Econ. 2012, 21, 145–172. [Google Scholar] [CrossRef]
- Hansen, P.; Ombler, F. A new method for scoring additive multi-attribute value models using pairwise rankings of alternatives. J. Multi-Criteria Decis. Anal. 2008, 15, 87–107. [Google Scholar] [CrossRef]
- Green, P.E.; Krieger, A.M.; Wind, Y. Thirty years of conjoint analysis: Reflections and prospects. Interfaces 2001, 31, S56–S73. [Google Scholar] [CrossRef]
Equal weights (EW) | |
Rank sum (RS) | |
Rank exponent (RE) | |
Rank reciprocal (RR) | |
Rank-order centroid (ROC) | |
Equal ratio fixed (ERF) | |
Geometric weights (GW) | |
Variable-slope linear (VSL) | |
Maximum entropy ordered (MEO) | |
Weighted averaging (MEOWA) | w1, wn predetermined |
Least-squared ordered weighted | |
Averaging (LSOWA) | |
Sum reciprocal (SR) | |
Rank order total (ROT) | |
Geometric sum (GS) | |
Generalized rank sum (GRS) | |
Improved ROC (IROC) | |
Generalized ROC (GROC) | |
Rank order logarithm (ROL) | , |
Papers | Data | Compared Methods | Quality Measures |
---|---|---|---|
Stillwell et al. (1981) [17] | Empirical | EW, RS, RR, RE | Kendall’s |
Barron and Barret (1996) [77] | Simulations | EW, RS, RR, ROC | Hit ratio, proportion of |
maximum value range. | |||
Barron and Barret (1996) [18] | Simulations | EW, RS, RR, ROC | Average MAV, empirical |
ranks, average value loss. | |||
Jia et al. (1998) [78] | Simulations | EW, RS, ROC, Ratio weights | Hit ratio |
Pöyhönen and Hämäläinen (2001) [79] | Empirical | AHP, direct point allocation | Inconsistencies in preferences, |
SMART, SWING, tradeoff | use of numbers to describe | ||
preferences, spread of weights, | |||
similarity of weights, overall | |||
scores of alternatives. | |||
Bottomley and Doyle (2001) [48] | Both | Direct rating, Max100, Min10 | Kendall’s , internal consistency, |
convergent validity. | |||
Roberts and Goodwin (2002) [22] | Simulations | RR, RS, ROC, ROD | Hit ratio, average value loss |
Noh and Lee (2003) [80] | Empirical | ROC, AHP, a fuzzy method | Correlation, number of pairwise |
comparisons, ease of use. | |||
Ahn and Park (2008) [63] | Simulations | Decision rules (CENT) | Hit ratio, Kendall’s |
OUT I, OUT II | |||
EW, RS, RR, ROC | |||
Sarabando et al. (2009) [11] | Simulations | Decision rules, ROC | Hit ratio, mean position of |
the supposedly best alternative | |||
in each rule’s ranking, proportion | |||
of cases where the position was | |||
1, 2, 3, 4 or higher. | |||
Riabacke et al. (2009) [40] | Empirical | CROC, SMART, direct rating | cognitive effort, practical |
usefulness, consistency. | |||
Ahn (2011) [81] | Simulations | MEOWA, ROC, RR, RS, EW | Hit ratio, Kendall’s |
Roszkowska (2013) [82] | Empirical | EW, RS, RR, ROC | Theoretical rationale, |
choice accuracy. | |||
Mateos et al. (2014) [32] | Simulations | RS, RR, ROC, EW | Hit ratio, Kendall’s |
Decision rules | |||
OUT I, OUT II, DME1, DME2 | |||
Aguayo et al. (2014) [7] | Simulations | OUT I, DME1, DME2, DIM | Hit ratio, Kendall’s |
Danielson and Ekenberg (2014) [26] | Simulations | ROC, SR, RS, RR, GR | Hit ratio |
Papers | Data | Compared Methods | Quality Measures |
---|---|---|---|
Larsson et al. (2015) [41] | Empirical | CROC, SMART, direct rating | Ease, consistency |
Danielson et al. (2016) [46] | Both | SMART, CAR, AHP | Hit ratio, Kendall’s , |
efficiency, ease of use, ease | |||
of communication, time efficiency, | |||
cognitive correctness. | |||
Alfares and Duffuaa (2016) [83] | Simulations | RR, RS, ROC, GW, LVS | Mean absolute percentage error, |
least significance distance. | |||
Danielson et al. (2017) [71] | Simulations | ROC, RE, SR, RR, EW | Hit ratio, mean square spread, |
Simos’ methods | mean square variation | ||
Danielson and Ekenberg (2017) [84] | Simulations | ROC, SR | Hit ratio, standard deviation |
CRC, CRS, CRR, CSR | |||
Simos’ methods | |||
Ahn (2017) [45] | Simulations | MSD, Slack | Hit ratio, Kendall’s |
de Almeida et al. (2018) [85] | Simulations | EW, RS, RR, ROC | Hit ratio, frequency of cases |
with the perfect consistency. | |||
Kunsch and Ishizaka (2019) [86] | Simulations | ROC, RR, RS, EW | Hit ratio, Kendall’s , value loss |
Németh et al. (2019) [87] | Simulations | Direct rating, SMARTS, AHP, | Resource requirement, software |
discrete choice experiments | requirement, chance of bias, | ||
conjoint analysis | general complexity. | ||
Burk and Nering (2023) [23] | Empirical | RS, REF, RR, SR, ERF, | Euclidean distance, mean absolute |
ROC, LVS, ROD | deviation, maximum absolute | ||
deviation, Kullback-Leibler | |||
divergence. | |||
Lakmayer et al. (2023) [8] | Simulations | ROC, SR, RR, RS | Hit ratio, |
CRC, CRS, CRR, CSR | standard deviation, mean. | ||
DIM | |||
Hatefi et al. (2023) [55] | Simulations | EW, RS, RE, RR, ROC, | Steepness, nonlinearity, |
VSL, LSOWA, SR, GRS, ROT, | noncompensatoriness, paretoness, | ||
IROC, GROC | optimism, utilization, symmetry, | ||
consistency. | |||
Lakmayer et al. (2023) [73] | Simulations | ROC, SR, RR, RS, | Hit ratio, |
CRC, CRS, CRR, CSR, | standard deviation, mean. | ||
CGS, GS, LP | |||
Hatefi (2024) [57] | Simulations | ROC, EW, RS, RE | Hit ratio, |
and empirical | VSL, LSOWA, ROL, GRS | Kendall’s | |
RR, SR, ROT | Steepness, nonlinearity. | ||
Lakmayer et al. (2024) [88] | Simulations | ROC, SR, RR, RS, | Hit ratio, |
GS | Approximate Maximum Hit Ratio. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chergui, Z.; Jiménez-Martín, A. On Ordinal Information-Based Weighting Methods and Comparison Analyses. Information 2024, 15, 527. https://doi.org/10.3390/info15090527
Chergui Z, Jiménez-Martín A. On Ordinal Information-Based Weighting Methods and Comparison Analyses. Information. 2024; 15(9):527. https://doi.org/10.3390/info15090527
Chicago/Turabian StyleChergui, Zhor, and Antonio Jiménez-Martín. 2024. "On Ordinal Information-Based Weighting Methods and Comparison Analyses" Information 15, no. 9: 527. https://doi.org/10.3390/info15090527
APA StyleChergui, Z., & Jiménez-Martín, A. (2024). On Ordinal Information-Based Weighting Methods and Comparison Analyses. Information, 15(9), 527. https://doi.org/10.3390/info15090527