Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tobramycin Formulation
2.2. In Vitro Tobramycin Release Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Fluorescent Tobramycin Derivative and Its Use for Visualisation of Bilayer Extraction Experiments
3.2.1. Synthesis of 4-(2-hydroxyethoxy)benzaldehyde
3.2.2. Synthesis of (3, 5-dimethyl-1H-pyrrol-2-yl)-(tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-indacene) methyl] phenoxy] ethanol
3.2.3. Synthesis of tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]phenoxy]ethyl (4-nitrophenyl) carbonate
3.2.4. Synthesis of the Fluorescent Tobramycin Derivative (B) Used for Visualizing Bilayer Extraction
3.2.5. Visualization of the Extraction of the Fluorescent Tobramycin Derivative
3.3. Calculating the Main Physical Descriptors of Tobramycin Derivatives and AOT Complexes Thereof
3.4. Analytical Methodology for the Detection of Tobramycin
3.5. W/O/W and S/O/W Preparation of PLGA Nanoparticles Entrapping Tobramycin
3.6. Extraction of Tobramycin into Organic Solvents by AOT
3.7. Preparation of PLGA Nanoparticles Loaded with Tobramycin-AOT Complexes
3.8. Dynamic Light Scattering (DLS) and Zeta Potential Measurements
3.9. Release of Tobramycin from PLGA Nanoparticles Loaded with Tobramycin-AOT Complexes
3.10. Antimicrobial Activity against P. aeruginosa
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janam, R.; Gulati, A.K.; Nath, G. Antibiogram and genotyping of Pseudomonas aeruginosa isolated from human, animal, plant, water and soil sources in north India. Southeast Asian J. Trop. Med. Public Health 2011, 42, 1477–1488. [Google Scholar] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef] [PubMed]
- Kassavin, D.S.; Pascarella, L.; Goldfarb, M.A. Surgical site infections: incidence and trends at a community teaching hospital. Am. J. Surg. 2011, 201, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.H.; Gurtman, A.; Szabo, S.; Neibart, E.; Meyers, B.R.; Policar, M.; Reddy, S. Pseudomonas aeruginosa bacteremia in patients with AIDS. Clin. Infect. Dis. 1994, 18, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Govan, J.R.; Deretic, V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 1996, 60, 539–574. [Google Scholar]
- Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 1998, 4, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Corvaisier, S.; Maire, P.H.; Bouvier d’Yvoire, M.Y.; Barbaut, X.; Bleyzac, N.; Jelliffe, R.W. Comparisons between antimicrobial pharmacodynamic indices and bacterial killing as described by using the Zhi model. Antimicrob. Agents Chemother. 1998, 42, 1731–1737. [Google Scholar] [CrossRef]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2009, 172, 1487–1490. [Google Scholar] [CrossRef]
- Sanchez, G.; Cuellar, D.; Zulantay, I.; Gajardo, M.; González-Martin, G. Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethylcyanoacrylate nanoparticles. Biol. Res. 2002, 35, 39–45. [Google Scholar] [CrossRef]
- Youssef, M.; Fattal, E.; Alonso, M.J.; Roblot-Treupel, L.; Sauzières, J.; Tancrède, C.; Andremont, A. Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrob. Agents Chemother. 1988, 32, 1204–1207. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, J.; Lu, X.; He, X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 2016, 11, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. AJPS 2014, 9, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109. [Google Scholar] [CrossRef] [PubMed]
- Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol. 2010, 197, 55–86. [Google Scholar]
- Vij, N. Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases. Methods Mol. Biol. 2010, 906, 303–310. [Google Scholar]
- Minyahil, A.; Woldu, J.L.L. Nanoparticles and the new era in diabetes management. Int. J. Basic Clin. Pharmacol. 2014, 3, 277–284. [Google Scholar] [Green Version]
- Pinto-Alphandary, H.; Andremont, A.; Couvreur, P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents 2000, 13, 155–168. [Google Scholar] [CrossRef]
- Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release 1999, 59, 299–307. [Google Scholar] [CrossRef]
- Hanberger, H.; Edlund, C.; Furebring, M.; Giske, C.G.; Melhus, A.; Nilsson, L.E.; Eliasson, E.; Scand, J. Rational use of aminoglycosides—Review and recommendations by the Swedish Reference Group for Antibiotics (SRGA). Infect. Dis. 2013, 45, 161–175. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [Green Version]
- Schassan, H.H. Antimicrobial effectiveness of sisomicin. I: In vitro activity of sisomicin compared with gentamicin, tobramycin, amikacin and kanamycin. Infection 1976, 4, 35–41. [Google Scholar] [CrossRef]
- Le Goffic, F.; Capmau, M.L.; Tangy, F.; Baillarge, M. Mechanism of action of aminoglycoside antibiotics. Binding studies of tobramycin and its 6’-N-acetyl derivative to the bacterial ribosome and its subunits. Eur. J. Biochem. 1979, 102, 73–81. [Google Scholar] [CrossRef]
- Shi, K.; Caldwell, S.J.; Fong, D.H.; Berghuis, A.M. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Front. Cell Infect. Microbiol. 2013, 23, 22. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef] [Green Version]
- Mingeot-Leclercq, M.-P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 1999, 43, 727–737. [Google Scholar] [CrossRef]
- Lecaroz, C.; Gamazo, C.; Blanco-Prieto, M.J. Nanocarriers with gentamicin to treat intracellular pathogens. J. Nanosci. Nanotechnol. 2006, 6, 3296–3302. [Google Scholar] [CrossRef]
- Prior, S.; Gamazo, C.; Irache, J.M.; Merkle, H.P.; Gander, B. Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int. J. Pharm. 2000, 196, 115–125. [Google Scholar] [CrossRef]
- Thote, A.J.; Gupta, R.B. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomed. NBM 2005, 1, 85–90. [Google Scholar] [CrossRef]
- Türk, M.; Upper, G.; Hils, P. Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids. J. Supercrit. Fluid. 2006, 39, 253–263. [Google Scholar] [CrossRef]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Hines, D.J.; Kaplan, D.L. Poly(lactic-co-glycolic) acid-controlled-release systems: Experimental and modeling insights. Crit. Rev. Ther. Drug Carrier Syst. 2013, 30, 257–276. [Google Scholar] [CrossRef]
- Lecaroz, M.C.; Blanco-Prieto, M.J.; Campanero, M.A.; Salman, H.; Gamazo, C. Poly(D,L-lactide-coglycolide) particles containing gentamicin: pharmacokinetics and pharmacodynamics in Brucella melitensis-infected mice. Antimicrob. Agents Chemother. 2007, 51, 1185–1190. [Google Scholar] [CrossRef]
- Abdelghany, S.M.; Quinn, D.J.; Ingram, R.J.; Gilmore, B.F.; Donnelly, R.F.; Taggart, C.C.; Scott, C. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomed. 2012, 7, 4053–4063. [Google Scholar] [Green Version]
- Namazi, H.; Adeli, M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials 2005, 26, 1175–1183. [Google Scholar] [CrossRef]
- Gaudana, R.; Parenky, A.; Vaishya, R.; Samanta, S.K.; Mitra, A.K. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation. J. Microencapsul. 2011, 28, 10–20. [Google Scholar] [CrossRef]
- Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomed. Lond. 2010, 5, 485–505. [Google Scholar] [CrossRef]
- Marier, J.F.; Brazier, J.L.; Lavigne, J.; Ducharme, M.P. Liposomal tobramycin against pulmonary infections of Pseudomonas aeruginosa: A pharmacokinetic and efficacy study following single and multiple intratracheal administrations in rats. Antimicrob. Chemother. 2003, 52, 247–252. [Google Scholar] [CrossRef]
- Assil, K.K.; Frucht-Perry, J.; Ziegler, E.; Schanzlin, D.J.; Schneiderman, T.; Weinreb, R.N. Tobramycin liposomes. Single subconjunctival therapy of pseudomonal keratitis. Invest. Ophthalmol. Vis. Sci. 1991, 32, 3216–3220. [Google Scholar]
- Beaulac, C.; Clement-Major, S.; Hawari, J.; Lagace, J. Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob. Agents Chemother. 1996, 40, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Johnsson, M.; Edwards, K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys. J. 2003, 85, 3839–3847. [Google Scholar] [CrossRef]
- Halwani, M.; Mugabe, C.; Azghani, A.O.; Lafrenie, R.M.; Kumar, A.; Omri, A. Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. Antimicrob. Chemother. 2007, 60, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Holmkvist, A.D.; Friberg, A.; Nilsson, U.J.; Schouenborg, J. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. Int. J. Pharmaceut. 2016, 499, 351–357. [Google Scholar] [CrossRef]
- Osakai, T.; Shinohara, A. Electrochemical aspects of the reverse micelle extraction of proteins. Anal. Sci. 2008, 24, 901–906. [Google Scholar] [CrossRef]
- Lye, G.J.; Asenjo, J.A.; Pyle, D.L. Extraction of lysozyme and ribonuclease-a using reverse micelles: Limits to protein solubilization. Biotechnol. Bioeng. 1995, 47, 509–519. [Google Scholar] [CrossRef]
- Mohd-Setapar, S.H.; Mohamad-Aziz, S.N. Backward Extraction of Penicillin G Using AOT Reverse Micelles. Adv. Sci. Lett. 2013, 19, 3688–3694. [Google Scholar] [CrossRef]
- Nucci, N.V.; Pometun, M.S.; Wand, A.J. Site-resolved measurement of water-protein interactions by solution NMR. Nat. Struct. Mol. Biol. 2011, 18, 245–249. [Google Scholar] [CrossRef]
- Hathout, R.M.; Metwally, A.A. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning. Eur. J. Pharm. Biopharm. 2016, 108, 262–268. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Firlak, M.; Berrow, S.R.; Halcovitch, N.R.; Baldock, S.J.; Yousafzai, B.M.; Hathout, R.M.; Hardy, J.G. Electrochemically Enhanced Drug Delivery Using Polypyrrole Films. Materials 2018, 11, 1123. [Google Scholar] [CrossRef]
- Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front. Pharmacol. 2016, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Brzeziński, M.; Socka, M.; Kost, B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. Polym. Int. 2018. [Google Scholar] [CrossRef]
- Hong, X.; Wei, L.; Ma, L.; Chen, Y.; Liu, Z.; Yuan, W. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion. Int. J. Nanomed. 2013, 8, 2433–2441. [Google Scholar] [Green Version]
- Toorisaka, E.; Watanabe, K.; Hirata, M. Development of Fine Poly(D,L-Lactic-Co-Glycolic Acid) Particles for Hydrophilic Drug Using a Solid-in-Oil-in-Water Emulsion. J. Encaps. Ads. Sci. 2018, 8, 58–66. [Google Scholar] [CrossRef]
- Imbuluzqueta, E.; Elizondo, E.; Gamazo, C.; Moreno-Calvo, E.; Veciana, J.; Ventosa, N.; Blanco-Prieto, M.J. Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections. Acta Biomater. 2011, 7, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Ter Boo, G.A.; Grijpma, D.W.; Richards, R.G.; Moriarty, T.F.; Eglin, D. Preparation of gentamicin dioctyl sulfosuccinate loaded poly(trimethylene carbonate) matrices intended for the treatment of orthopaedic infections. Clin. Hemorheol. Microcirc. 2015, 60, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Elizondo, E.; Sala, S.; Imbuluzqueta, E.; González, D.; Blanco-Prieto, M.J.; Gamazo, C.; Veciana, J. High loading of gentamicin in bioadhesive PVM/MA nanostructured microparticles using compressed carbon-dioxide. Pharm. Res. 2011, 28, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.R.; Hare, P.E. O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc. Natl. Acad. Sci. USA 1975, 72, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Vineeth, P.; Rao Vadaparthi, P.R.; Kumar, K.; Babu, B.D.J.; Rao, A.V.; Babu, K.S. Stability Indicating Chiral HPLC method for the estimation of Zaltoprofen enatiomers in pharmaceutical formulations. Int. J. Pharm. Pharm. Sci. 2014, 6, 638–645. [Google Scholar]
- Metwally, A.A.; Hathout, R.M. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery. Mol. Pharm. 2015, 12, 2800–2810. [Google Scholar] [CrossRef] [PubMed]
- Metwally, A.A.; El-Ahmady, S.H.; Hathout, R.M. Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. Phytomedicine 2016, 23, 1764–1770. [Google Scholar] [CrossRef]
- Mehanny, M.; Hathout, R.M.; Geneidi, A.S.; Mansour, S. Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles. J. Biomed. Mater. Res. A 2017, 105, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Kemme, M.; Heinzel-Wieland, R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol. J. Funct. Biomater. 2018, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Quiram, G.; Montagner, F.; Palmer, K.L.; Stefan, M.C.; Washington, K.E.; Rodrigues, D.C. Novel Chlorhexidine-Loaded Polymeric Nanoparticles for Root Canal Treatment. J. Funct. Biomater. 2018, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Ahmed, H.; Pace, L.; Minter, J.; Neel, M.; Jennings, J. Evaluation of Antibiotic-Releasing Triphasic Bone Void Filler In-Vitro. J. Funct. Biomater. 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, E.-R.; Abdel-Hay, F.; El-Newehy, M.; Ottenbrite, R.M. Effect of pH on the drug release rate from a new polymer–drug conjugate system. Polym. Int. 2008, 57, 85–91. [Google Scholar]
- Neumann, K.; Lilienkampf, A.; Bradley, M. Responsive polymeric nanoparticles for controlled drug delivery. Polym. Int. 2017, 66, 1756–1764. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Soria, A.; Yang, X.; Grosso, M.J.; Reinhart, J.; Ricciardi, B.F.; Bostrom, M. In vitro elution characteristics of antibiotic laden BoneSource™, hydroxyapatite bone cement. J. Biomater. Sci. Polym. Ed. 2013, 24, 797–806. [Google Scholar] [CrossRef]
- Hafeman, A.E.; Zienkiewicz, K.J.; Carney, E.; Litzner, B.; Stratton, C.; Wenke, J.C.; Guelcher, S.A. Local delivery of tobramycin from injectable biodegradable polyurethane scaffolds. J. Biomater. Sci. Polym. Ed. 2010, 21, 95–112. [Google Scholar] [CrossRef]
- Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A.; Mashru, R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int. J. Pharm. 2018, 536, 95–107. [Google Scholar] [CrossRef]
- Patel, J.; Amrutiya, J.; Bhatt, P.; Javia, A.; Jain, M.; Misra, A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul. 2018, 35, 204–217. [Google Scholar] [CrossRef]
PLGA Derivative | Formulation | DLS Particle Size (nm) | PDI | Zeta Potential (mV) | Tobramycin Loading in PLGA Nanoparticles (µg/mg) | % Loading |
---|---|---|---|---|---|---|
RG503 | w/o/w | 267.4 ± 5.3 | 0.14 ± 0.02 | −7.8 ± 2.2 | 2.7 ± 0.4 | 4.5 ± 0.7 |
RG502H | w/o/w | 259.8 ± 6.8 | 0.18 ± 0.04 | −9.6 ± 3.2 | 3.9 ± 0.3 | 6.5 ± 0.5 |
RG503 | s/o/w | 345.8 ± 17.2 | 0.16 ± 0.08 | −8.2 ± 2.8 | 3.4 ± 0.7 | 5.7 ± 1.2 |
RG502H | s/o/w | 364.8 ± 22.4 | 0.22 ± 0.11 | −9.4 ± 3.3 | 4.4 ± 0.6 | 7.3 ± 1.0 |
Species | Molecular Weight (g/mol) | Total Polar SA | No. H Bond Acceptors | No. H Bond Donors | Molecular Globularity | Molecular Flexibility | LogP (O/W) |
---|---|---|---|---|---|---|---|
Tobramycin derivative | 467.520 | 420.078 | 14 | 10 | 0.123 | 9.277 | −6.412 |
Fluorescent tobramycin derivative | 878.756 | 694.379 | 15 | 10 | 0.163 | 12.913 | −1.894 |
AOT-Tobramycin complex | 912.085 | 694.379 | 16 | 10 | 0.252 | 29.588 | −1.342 |
AOT-Fluorescent tobramycin complex | 1323.321 | 852.276 | 17 | 10 | 0.218 | 29.376 | −3.176 |
Solvent | Dielectric Constant | % Extraction in the Absence of AOT | % Extraction in the Presence of AOT |
---|---|---|---|
2-butanol | 17.26 | 0 ± 0 | 90.3 ± 5.7 |
Chloroform | 4.81 | 0 ± 0 | 100 ± 0 |
Dichloromethane | 8.93 | 0 ± 0 | 100 ± 0 |
Ethyl acetate | 6.02 | 0 ± 0 | 100 ± 0 |
Toluene | 2.38 | 0 ± 0 | 100 ± 0 |
PLGA Derivative | Mass of PLGA (mg) | Particle Size (nm) | PDI | Zeta Potential (mV) | Tobramycin Loading in PLGA Nanoparticles (µg/mg) | % Loading |
---|---|---|---|---|---|---|
RG502H | 10 | 229.4 ± 21.6 | 0.23 ± 0.09 | −11.2 ± 3.1 | 274.2 ± 9.6 | 91.4 ± 3.2 |
RG502H | 20 | 434.5 ± 52.5 | 0.42 ± 0.11 | −11.8 ± 3.2 | 96.4 ± 2.9 | 96.4 ± 2.9 |
RG502H | 30 | 469.2 ± 57.2 | 0.39 ± 0.06 | −12.2 ± 2.8 | 57.5 ± 1.3 | 95.8 ± 2.2 |
RG503 | 10 | 295.6 ± 46.4 | 0.26 ± 0.10 | −8.5 ± 3.3 | 269.4 ± 7.2 | 89.8 ± 2.4 |
RG503 | 20 | 437.2 ± 49.6 | 0.39 ± 0.07 | −9.1 ± 2.3 | 96.8 ± 3.4 | 96.8 ± 3.4 |
RG503 | 30 | 474.2 ± 57.2 | 0.46 ± 0.14 | −9.4 ± 2.7 | 57.9 ± 1.9 | 96.5 ± 3.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, M.; Cunningham, R.N.; Hathout, R.M.; Johnston, C.; Hardy, J.G.; Migaud, M.E. Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. J. Funct. Biomater. 2019, 10, 26. https://doi.org/10.3390/jfb10020026
Hill M, Cunningham RN, Hathout RM, Johnston C, Hardy JG, Migaud ME. Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. Journal of Functional Biomaterials. 2019; 10(2):26. https://doi.org/10.3390/jfb10020026
Chicago/Turabian StyleHill, Marcus, Richard N. Cunningham, Rania M. Hathout, Christopher Johnston, John G. Hardy, and Marie E. Migaud. 2019. "Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT" Journal of Functional Biomaterials 10, no. 2: 26. https://doi.org/10.3390/jfb10020026
APA StyleHill, M., Cunningham, R. N., Hathout, R. M., Johnston, C., Hardy, J. G., & Migaud, M. E. (2019). Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. Journal of Functional Biomaterials, 10(2), 26. https://doi.org/10.3390/jfb10020026