Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Protein Loaded Alginate Nanospheres
2.3. Experimental Design
2.4. Characterization of Alginate Nanospheres
2.4.1. Morphology and Size of Nanospheres
2.4.2. Protein Release from the BSA Loaded Nanospheres In Vitro
2.4.3. Determination of Initial Burst Release
2.4.4. Determination of Encapsulation Efficiency or Total Release
2.5. Statistical Analysis
3. Results
3.1. Effect of Alginate Concentration
3.1.1. Morphology and Size of Nanospheres
3.1.2. Protein Release Kinetics and Initial Burst Release
3.1.3. Encapsulation Efficiency
3.2. Effect of Cross-Linking Time
3.2.1. Morphology and Size of Nanospheres
3.2.2. Protein Release Kinetics and Initial Burst Release
3.2.3. Encapsulation Efficiency
3.3. Effect of Drying Time
3.3.1. Morphology and Size of Nanospheres
3.3.2. Protein Release Kinetics and Initial Burst Release
3.3.3. Total Release
4. Discussion
4.1. Effect of Alginate Concentration
4.2. Effect of Cross-Linking Time
4.3. Effect of Drying Time
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Podust, V.N.; Balan, S.; Sim, B.C.; Coyle, M.P.; Ernst, U.; Peters, R.T.; Schellenberger, V. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Contr. Release 2016, 240, 52–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, P.; Chen, X.B.; Schreyer, D.J. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater. Sci. Eng. C 2015, 56, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, M.; Haddadi, A.; Chen, X.; Kelly, M.E. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. Nanotechnology 2014, 26, 012001. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Park, J.H.; Cho, Y.W.; Chung, H.; Jeong, S.Y.; Lee, E.B.; Kwon, I.C. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: implications for cartilage tissue engineering. J. Control. Release 2003, 91, 365–374. [Google Scholar] [CrossRef]
- Lim, H.J.; Yi, S.W.; Kang, A.Y.; Park, J.S.; Park, K.H. Microsphere-Based Protein Delivery: The Cartilage-Specific Aggrecan and COMP Protein Loaded Microspheres for Cartilage Tissue Engineering Using hMSCs. J. Biomater. Tissue Eng. 2015, 5, 173–186. [Google Scholar] [CrossRef]
- Izadifar, M.; Kelly, M.E.; Haddadi, A.; Chen, X. Optimization of nanoparticles for cardiovascular tissue engineering. Nanotechnology 2015, 26, 235301. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen. Ther. 2015, 1, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varde, N.K.; Pack, D.W. Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 2004, 4, 35–51. [Google Scholar] [CrossRef]
- Gupta, V.; Khan, Y.; Berkland, C.J.; Laurencin, C.T.; Detamore, M.S. Microsphere-based scaffolds in regenerative engineering. Ann. Rev. Biomed. Eng. 2017, 19, 135–161. [Google Scholar] [CrossRef]
- Chan, J.M.; Zhang, L.; Tong, R.; Ghosh, D.; Gao, W.; Liao, G.; Yuet, K.P.; Gray, D.; Rhee, J.; Cheng, J.; et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Nat. Acad. Sci. USA 2010, 107, 2213–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, L.; Zhai, D.Y.; Tous, E.; Rai, R.; Mauck, R.L.; Burdick, J.A. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011, 32, 6425–6434. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Ferreira, D.C.; Jorgensen, L.; Van De Weert, M. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur. J. Pharm. Biopharm. 2007, 65, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.; Sarmento, B.; Souto, E.B.; Ferreira, D.C. Insulin-loaded alginate microspheres for oral delivery–Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr. Polym. 2007, 69, 725–731. [Google Scholar] [CrossRef]
- Goswami, S. Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. J. Exp. Nanosci. 2014, 9, 337–356. [Google Scholar] [CrossRef]
- Liu, L.S.; Liu, S.Q.; Ng, S.Y.; Froix, M.; Ohno, T.; Heller, J. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. J. Control. Release 1997, 43, 65–74. [Google Scholar] [CrossRef]
- Lopes, M.; Abrahim, B.; Veiga, F.; Seiça, R.; Cabral, L.M.; Arnaud, P.; Andrade, J.C.; Ribeiro, A.J. Preparation methods and applications behind alginate-based particles. Expert Opin. Drug Deliv. 2017, 14, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release 2006, 114, 1–14. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Li, X.; Deng, X.; Huang, Z. In vitro protein release and degradation of poly-dl-lactide-poly (ethylene glycol) microspheres with entrapped human serum albumin: Quantitative evaluation of the factors involved in protein release phases. Pharm. Res. 2001, 18, 117–124. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Coll. Surf. B Biointerf. 2007, 59, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Chung, T.S.; Bai, X.L.; Chan, W.K. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem. Eng. Sci. 2000, 55, 2223–2236. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, A.J.; Silva, C.; Ferreira, D.; Veiga, F. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur. J. Pharm. Sci. 2005, 25, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Cheng, G.; Ying, X. Emulsion and macromolecules templated alginate based polymer microspheres. React. Funct. Polym. 2006, 66, 712–719. [Google Scholar] [CrossRef]
- Zhai, P. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication 2013, 5, 015009. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Chung, T.S.; Ng, N.P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001, 22, 231–241. [Google Scholar] [CrossRef]
- Das, M.K.; Senapati, P.C. Furosemide-loaded alginate microspheres prepared by ionic cross-linking technique: Morphology and release characteristics. Indian J. Pharm. Sci. 2008, 70, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Dinarvand, R.; Mahmoodi, S.; Farboud, E.; Salehi, M.; Atyabi, F. Preparation of gelatin microspheres containing lactic acid—Effect of cross-linking on drug release. Acta Pharm. 2005, 55, 57–67. [Google Scholar]
- Mennini, N.; Furlanetto, S.; Cirri, M.; Mura, P. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-β-cyclodextrin-PVP complex. Eur. J. Pharm. Biopharm. 2012, 80, 67–75. [Google Scholar] [CrossRef]
- Kulkarni, A.R.; Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Mehta, M.H. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release 2000, 63, 97–105. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, E.J. The controlled release of blue dextran from alginate beads. Int. J. Pharm. 1992, 79, 11–19. [Google Scholar] [CrossRef]
- Murata, Y.; Nakada, K.; Miyamoto, E.; Kawashima, S.; Seo, S.H. Influence of erosion of calcium-induced alginate gel matrix on the release of Brilliant Blue. J. Control. Release 1993, 23, 21–26. [Google Scholar] [CrossRef]
- Chan, A.W.; Mazeaud, I.; Becker, T.; Neufeld, R.J. Granulation of subtilisin by internal gelation of alginate microspheres for application in detergent formulation. Enzyme Microb. Technol. 2006, 38, 265–272. [Google Scholar] [CrossRef]
- Rastogi, R.; Sultana, Y.; Aqil, M.; Ali, A.; Kumar, S.; Chuttani, K.; Mishra, A.K. Alginate microspheres of isoniazid for oral sustained drug delivery. Int. J. Pharm. 2007, 334, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Chen, X.B.; Schreyer, D.J. An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth. Biomed. Mater. 2015, 10, 045016. [Google Scholar] [CrossRef]
- Lee, J.H. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015, 125, 75–84. [Google Scholar] [CrossRef]
- Wang, L.Y.; Ma, G.H.; Su, Z.G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J. Control. Release 2005, 106, 62–75. [Google Scholar] [CrossRef]
- Roger, S.; Talbot, D.; Bee, A. Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. J. Magn. Magn. Mater. 2006, 305, 221–227. [Google Scholar] [CrossRef]
- Silva, C.M.; Ribeiro, A.J.; Figueiredo, M.; Ferreira, D.; Veiga, F. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 2005, 7, E903–E913. [Google Scholar] [CrossRef] [Green Version]
- Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012, 31, 194–205. [Google Scholar] [CrossRef]
Factors Tested | Alginate Concentration (%) | Cross-Linking Time (min) | Drying Time (h) |
---|---|---|---|
1st Step: Concentration Effect | 3 | 10 | 0 |
5 | 10 | 0 | |
2nd Step: Cross-linking Time Effect | 5 | 1 | 0 |
5 | 10 | 0 | |
5 | 30 | 0 | |
3rd Step: Drying Time Effect | 5 | 10 | 0 |
5 | 10 | 0.5 | |
5 | 10 | 1.5 | |
5 | 10 | 4.5 | |
5 | 10 | 24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, F.; Chen, X.; Eames, B.F. Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres. J. Funct. Biomater. 2019, 10, 42. https://doi.org/10.3390/jfb10030042
Yasmin F, Chen X, Eames BF. Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres. Journal of Functional Biomaterials. 2019; 10(3):42. https://doi.org/10.3390/jfb10030042
Chicago/Turabian StyleYasmin, Farhana, Xiongbiao Chen, and B. Frank Eames. 2019. "Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres" Journal of Functional Biomaterials 10, no. 3: 42. https://doi.org/10.3390/jfb10030042
APA StyleYasmin, F., Chen, X., & Eames, B. F. (2019). Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres. Journal of Functional Biomaterials, 10(3), 42. https://doi.org/10.3390/jfb10030042