The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Parameters and Material Properties
2.2. Finite Element Modelling
2.3. Gait Cycle
2.4. Wear Model
2.5. Wear and Geometry Update
3. Results and Discussion
3.1. Contact Pressure Validation
3.2. Contact Pressure Analysis
3.3. Wear Validation
3.4. Wear Evaluation
3.5. Change in Contact Pressure due to Wear
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, C.Y.; Yoon, T.R. Recent Updates for Biomaterials Used in Total Hip Arthroplasty. Biomater. Res. 2018, 22, 1–12. [Google Scholar] [CrossRef]
- Harun, M.N.; Wang, F.C.; Jin, Z.M.; Fisher, J. Long-Term Contact-Coupled Wear Prediction for Metal-on-Metal Total Hip Joint Replacement. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 993–1001. [Google Scholar] [CrossRef]
- Australian Orthopaedic Association; National Joint Replacement Registry. Annu. Report 2020, 2020th ed.; Australian Orthopaedic Association: Unley, Australia, 2020. [Google Scholar]
- Mahyudin, F.; Hermawan, H. Biomaterials and Medical Devices—A Perspective from an Emerging Country; Springer: Berlin/Heidelberg, Germany, 2016; Volume 58. [Google Scholar]
- Firkins, P.J.; Tipper, J.L.; Ingham, E.; Stone, M.H.; Farrar, R.; Fisher, J. A Novel Low Wearing Differential Hardness, Ceramic-on-Metal Hip Joint Prosthesis. J. Biomech. 2001, 34, 1291–1298. [Google Scholar] [CrossRef]
- Meng, Q.; Gao, L.; Liu, F.; Yang, P.; Fisher, J.; Jin, Z. Contact Mechanics and Elastohydrodynamic Lubrication in a Novel Metal-on-Metal Hip Implant with an Aspherical Bearing Surface. J. Biomech. 2010, 43, 849–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, J.; Tran, P.; Fary, C. Metal-on-Metal Hip Arthroplasty: A Review of Adverse Reactions and Patient Management. J. Funct. Biomater. 2015, 6, 486–499. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Lackner, J.; Fleming, R.A.; Goss, J.; Chen, J.; Zou, M. Diamond-like Carbon Coatings with Zirconium-Containing Interlayers for Orthopedic Implants. J. Mech. Behav. Biomed. Mater. 2017, 68, 51–61. [Google Scholar] [CrossRef]
- Basri, H.; Syahrom, A.; Ramadhoni, T.S.; Prakoso, A.T.; Ammarullah, M.I. The Analysis of the Dimple Arrangement of the Artificial Hip Joint to the Performance of Lubrication. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Basri, H.; Syahrom, A.; Prakoso, A.T.; Wicaksono, D.; Amarullah, M.I.; Ramadhoni, T.S.; Nugraha, R.D. The Analysis of Dimple Geometry on Artificial Hip Joint to the Performance of Lubrication. J. Phys. Conf. Ser. 2019, 1198, 1–10. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Saad, A.P.; Syahrom, A. Contact Pressure Analysis of Acetabular Cup Surface with Dimple Addition on Total Hip Arthroplasty Using Finite Element Method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.; Li, Y.; Wei, B.; Hu, Y.; Luo, J. Investigation on Inner Flow Field Characteristics of Groove Textures in Fully Lubricated Thrust Bearings. Ind. Lubr. Tribol. 2018, 70, 754–763. [Google Scholar] [CrossRef]
- Pratap, T.; Patra, K. Mechanical Micro-Texturing of Ti-6Al-4V Surfaces for Improved Wettability and Bio-Tribological Performances. Surf. Coat. Technol. 2018, 349, 71–81. [Google Scholar] [CrossRef]
- Choudhury, D.; Vrbka, M.; Bin Mamat, A.; Stavness, I.; Roy, C.K.; Mootanah, R.; Krupka, I. The impact of surface and geometry on coefficient of friction of artificial hip joints. J. Mech. Behav. Biomed. Mater. 2017, 72, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Cosmi, F.; Hoglievina, M.; Fancellu, G.; Martinelli, B. A Finite Element Method Comparison of Wear in Two Metal-on-Metal Total Hip Prostheses. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006, 220, 871–879. [Google Scholar] [CrossRef]
- Liu, F.; Leslie, I.; Williams, S.; Fisher, J.; Jin, Z. Development of Computational Wear Simulation of Metal-on-Metal Hip Resurfacing Replacements. J. Biomech. 2008, 41, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Saputra, E.; Anwar, I.B.; Van Der Heide, E. Study of an Additional Layer of Cement Mantle Hip Joints for Reducing Cracks. J. Funct. Biomater. 2019, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.S.; Zhang, L.C. Predicting the Wear of Hard-on-Hard Hip Joint Prostheses. Wear 2013, 301, 192–200. [Google Scholar] [CrossRef]
- Shankar, S.; Nithyaprakash, R.; Sugunesh, P.; Uddin, M.; Pramanik, A. Contact Stress and Wear Analysis of Zirconia Against Alumina for Normal and Physically Demanding Loads in Hip Prosthesis. J. Bionic Eng. 2020, 17, 1045–1058. [Google Scholar] [CrossRef]
- Nithyaprakash, R.; Shankar, S.; Uddin, M.S. Computational Wear Assessment of Hard on Hard Hip Implants Subject to Physically Demanding Tasks. Med. Biol. Eng. Comput. 2018, 56, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, D.R.; Brown, T.D.; Maxian, T.A.; Callaghan, J.J. Temporal and Spatial Distributions of Directional Counterface Motion at the Acetabular Bearing Surface in Total Hip Arthroplasty. Iowa Orthop. J. 1998, 18, 43–53. [Google Scholar] [PubMed]
- Mak, M.M.; Besong, A.A.; Jin, Z.M.; Fisher, J. Effect of Microseparation on Contact Mechanics in Ceramic-on-Ceramic Hip Joint Replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2002, 218–220, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Chan, F.W.; Bobyn, J.D.; Medley, J.B.; Krygier, J.J.; Tanzer, M. Wear and Lubrication of Metal-on-Metal Hip Implants. Clin. Orthop. Relat. Res. 1999, 369, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Medley, J.B.; Chan, F.W.; Krygier, J.J.; Bobyn, D. Comparison of Alloys and Designs in a Hip Simulator Study of Metal on Metal Implants. Clin. Orthop. Relat. Res. 1996, 329, 148–159. [Google Scholar] [CrossRef]
- Reinisch, G.; Judmann, K.P.; Lhotka, C.; Lintner, F.; Zweymüller, K.A. Retrieval Study of Uncemented Metal-Metal Hip Prostheses Revised for Early Loosening. Biomaterials 2003, 24, 1081–1091. [Google Scholar] [CrossRef]
- Essner, A.; Sutton, K.; Wang, A. Hip Simulator Wear Comparison of Metal-on-Metal, Ceramic-on-Ceramic and Crosslinked UHMWPE Bearings. Wear 2005, 259, 992–995. [Google Scholar] [CrossRef]
- Ebramzadeh, E.; Sangiorgio, S.N.; Lattuada, F.; Kang, J.-S.; Chiesa, R.; McKellop, H.A.; Dorr, L.D. Accuracy of Measurement of Polyethylene Wear with Use of Radiographs of Total Hip Replacements. J. Bone Jt. Surg. Am. Vol. 2003, 85, 2378–2384. [Google Scholar] [CrossRef]
- Gao, L.; Dowson, D.; Hewson, R.W. Predictive Wear Modeling of the Articulating Metal-on-Metal Hip Replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 497–506. [Google Scholar] [CrossRef]
Parameter | Size |
---|---|
Femoral head diameter | 28 mm |
Radial clearance | 50 μm |
Acetabular cup thickness | 5 mm |
Parameter | Size |
---|---|
Diameter | 0.26 mm |
Depth | 0.03 mm |
Shape | Circle |
Pattern | Circular |
Pattern number | 6 |
Dimple number | 91 |
Pitch | 0.489 mm |
Addition area | Femoral head surface |
Variation | Bottom profile (flat, drill, and ball) |
Parameter | Size |
---|---|
Young modulus (E) | 210 GPA |
Poisson ratio (υ) | 0.3 |
Density (ρ) | 8300 kg/m3 |
Condition | Wear coefficient (mm3/Nmm) |
---|---|
Running-in | 5 × 10−12 |
Steady-state | 1.5 × 10−12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. https://doi.org/10.3390/jfb12020038
Jamari J, Ammarullah MI, Saad APM, Syahrom A, Uddin M, van der Heide E, Basri H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. Journal of Functional Biomaterials. 2021; 12(2):38. https://doi.org/10.3390/jfb12020038
Chicago/Turabian StyleJamari, J., Muhammad Imam Ammarullah, Amir Putra Md Saad, Ardiyansyah Syahrom, Mohammad Uddin, Emile van der Heide, and Hasan Basri. 2021. "The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty" Journal of Functional Biomaterials 12, no. 2: 38. https://doi.org/10.3390/jfb12020038
APA StyleJamari, J., Ammarullah, M. I., Saad, A. P. M., Syahrom, A., Uddin, M., van der Heide, E., & Basri, H. (2021). The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. Journal of Functional Biomaterials, 12(2), 38. https://doi.org/10.3390/jfb12020038