Bioactivity of an Experimental Dental Implant with Anodized Surface
Abstract
:1. Background
2. Materials and Methods
2.1. Anodic Oxidation and Implants
2.2. Surgical Procedures
2.3. Removal Torque Testing
2.4. Computed Microtomography (μCT)
2.5. Cytotoxicity Evaluation by MTT
2.6. Statistical Analysis
3. Results
3.1. Implants Characterization
3.2. Removal Torque Testing
3.3. Micro-Computed Tomography
3.4. Cytotoxicity Evaluation by MTT Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.-H.; Park, K.; Choi, K.-H.; Kim, S.-H.; Kim, S.E.; Jeong, C.-M. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants. Int. J. Mol. Sci. 2015, 16, 10324–10336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieger, E.; Dupret-Bories, A.; Salou, L.; Metz-Boutigue, M.-H.; Layrolle, P.; Debry, C. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale 2015, 7, 9908–9918. [Google Scholar] [CrossRef]
- Vandeweghe, S.; Coelho, P.G.; Vanhove, C.; Wennerberg, A.; Jimbo, R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vasconcellos, L.M.; Oliveira, F.N.; de Oliveira Leite, D.; de Vasconcellos, L.G.; do Prado, R.F.; Ramos, C.J.; de Alencastro Graça, M.L.; Cairo, C.A.; Carvalho, Y.R. Novel production method of porous surface Ti samples for biomedical application. J. Mater. Sci. Mater. Med. 2012, 23, 357–364. [Google Scholar] [CrossRef]
- Zuo, J.; Huang, X.; Zhong, X.; Zhu, B.; Sun, Q.; Jin, C.; Quan, H.; Tang, Z.; Chen, W. A comparative study of the influence of three pure titanium plates with different micro- and nanotopographic surfaces on preosteoblast behaviors. J. Biomed. Mater. Res. A 2013, 101, 3278–3284. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Slamovich, E.B.; Webster, T.J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res. A 2008, 85, 157–166. [Google Scholar] [CrossRef]
- Shokuhfar, T.; Hamlekhan, A.; Chang, J.-Y.; Choi, C.K.; Sukotjo, C.; Friedrich, C. Biophysical evaluation of cells on nanotubular surfaces: The effects of atomic ordering and chemistry. Int. J. Nanomed. 2014, 9, 3737–3748. [Google Scholar] [CrossRef] [Green Version]
- Yamagami, A.; Nagaoka, N.; Yoshihara, K.; Nakamura, M.; Shirai, H.; Matsumoto, T.; Suzuki, K.; Yoshida, Y. Ultra-structural evaluation of an anodic oxidated titanium dental implant. Dent. Mater. J. 2014, 33, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Sul, Y.T.; Johansson, C.B.; Petronis, S.; Krozer, A.; Jeong, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002, 23, 491–501. [Google Scholar] [CrossRef]
- Williamson, R.S.; Disegi, J.; Griggs, J.A.; Roach, M.D. Nanopore formation on the surface oxide of commercially pure titanium grade 4 using a pulsed anodization method in sulfuric acid. J. Mater. Sci. Mater. Med. 2013, 24, 2327–2335. [Google Scholar] [CrossRef]
- Kim, K.; Lee, B.-A.; Piao, X.-H.; Chung, H.-J.; Kim, Y.-J. Surface characteristics and bioactivity of an anodized titanium surface. J. Periodontal Implant Sci. 2013, 43, 198. [Google Scholar] [CrossRef]
- Hao, J.; Li, Y.; Li, B.; Wang, X.; Li, H.; Liu, S.; Liang, C.; Wang, H. Biological and Mechanical Effects of Micro Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo. Appl. Biochem. Biotechnol. 2017, 183, 280–292. [Google Scholar] [CrossRef]
- De Andrade, D.P.; de Vasconcellos, L.M.; Carvalho, I.C.; Forte, L.F.; de Souza Santos, E.L.; do Prado, R.F.; Dos Santos, D.R.; Cairo, C.A.; Carvalho, Y.R. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 538–544. [Google Scholar] [CrossRef]
- Simka, W.; Sadkowski, A.; Warczak, M.; Iwaniak, A.; Dercz, G.; Michalska, J.; Maciej, A. Characterization of passive films formed on titanium during anodic oxidation. Electrochim. Acta 2011, 56, 8962–8968. [Google Scholar] [CrossRef]
- Baryshnikova, M.V.; Filatov, L.A.; Kasatkin, I.A.; Aleksandrov, S.E. Selective formation of hydroxyapatite layers on titanium dioxide. Russ. J. Appl. Chem. 2014, 87, 1591–1598. [Google Scholar] [CrossRef]
- Lugero, G.G.; de Falco Caparbo, V.; Guzzo, M.L.; König, B.; Jorgetti, V. Histomorphometric evaluation of titanium implants in osteoporotic rabbits. Implant Dent. 2000, 9, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Dedavid, B.A.; Aramburú, J.S.; Pérez-Díaz, L.; Guirado, J.L.; Canales, P.M.; De Aza, P.N. Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. Biomed. Res. Int. 2018, 4265474. [Google Scholar] [CrossRef] [Green Version]
- Yeo, I.L. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials 2019, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, J.; Lv, K.; Zhang, W.; Ding, X.; Yang, G.; Liu, X.; Jiang, X. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci. Rep. 2016, 6, 31769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Gao, Y.; Shao, B.; Xiao, J.; Hu, K.; Kong, L. Effects of hydrofluoric acid and anodised micro and micro/nano surface implants on early osseointegration in rats. Br. J. Oral. Maxillofac. Surg. 2012, 50, 779–783. [Google Scholar] [CrossRef]
- Pinheiro, F.A.; Mourão, C.F.; Diniz, V.S.; Silva, P.C.; Meirelles, L.; Santos Junior, E.; Schanaider, A. In-vivo bone response to titanium screw implants anodized in sodium sulfate. Acta Cir. Bras. 2014, 29, 376–382. [Google Scholar] [CrossRef] [Green Version]
- El-wassefy, N.A.; Hammouda, I.M.; Habib, A.N.E.A.; El-awady, G.Y.; Marzook, H.A. Assessment of anodized titanium implants bioactivity. Clin. Oral. Implants Res. 2014, 25, e1–e9. [Google Scholar] [CrossRef]
- Alhomoudi, I.A.; Newaz, G. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 2009, 517, 4372–4378. [Google Scholar] [CrossRef]
- Alves, V.A.; Reis, R.Q.; Santos, I.C.; Souza, D.G.; Gonçalves, T.D.; Pereira-da-Silva, M.A.; Rossi, A.; Da Silva, L.A. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C. Corros. Sci. 2009, 51, 2473–2482. [Google Scholar] [CrossRef]
- Souza, M.E.P.; Ballester, M.; Freire, C.M.A. EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf. Coat. Technol. 2007, 201, 7775–7780. [Google Scholar] [CrossRef]
- Park, Y.-S.; Yi, K.-Y.; Lee, I.-S.; Jung, Y.-C. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin. Oral. Implants Res. 2005, 16, 156–160. [Google Scholar] [CrossRef]
- Kang, S.W.; Lee, W.J.; Choi, S.C.; Lee, S.S.; Heo, M.S.; Huh, K.H.; Kim, T.I.; Yi, W.J. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation. Imaging Sci. Dent. 2015, 45, 7. [Google Scholar] [CrossRef] [Green Version]
- Badr, N.A.; El Hadary, A.A. Hydroxyapatite-electroplated cp-titanium implant and its bone integration potentiality: An in vivo study. Implant Dent. 2007, 16, 297–308. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Li, J.; Fu, X.; Li, H.; Wang, H.; Xin, S.; Zhou, L.; Liang, C.; Li, C. Influence of nanostructures on the biological properties of Ti implants after anodic oxidation. J. Mater. Sci. Mater. Med. 2014, 25, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, C.S.; Kim, Y.-J.; Jang, J.-H.; Suh, J.-Y.; Park, J.-W. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Clin. Oral. Implants Res. 2011, 22, 735–742. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villaça-Carvalho, M.F.L.; de Araújo, J.C.R.; Beraldo, J.M.; Prado, R.F.d.; Moraes, M.E.L.d.; Manhães Junior, L.R.C.; Codaro, E.N.; Acciari, H.A.; Machado, J.P.B.; Regone, N.N.; et al. Bioactivity of an Experimental Dental Implant with Anodized Surface. J. Funct. Biomater. 2021, 12, 39. https://doi.org/10.3390/jfb12020039
Villaça-Carvalho MFL, de Araújo JCR, Beraldo JM, Prado RFd, Moraes MELd, Manhães Junior LRC, Codaro EN, Acciari HA, Machado JPB, Regone NN, et al. Bioactivity of an Experimental Dental Implant with Anodized Surface. Journal of Functional Biomaterials. 2021; 12(2):39. https://doi.org/10.3390/jfb12020039
Chicago/Turabian StyleVillaça-Carvalho, Maria Fernanda Lima, Juliani Caroline Ribeiro de Araújo, Juliana Mariano Beraldo, Renata Falchete do Prado, Mari Eli Leonelli de Moraes, Luiz Roberto Coutinho Manhães Junior, Eduardo Norberto Codaro, Heloisa Andrea Acciari, João Paulo Barros Machado, Natal Nerímio Regone, and et al. 2021. "Bioactivity of an Experimental Dental Implant with Anodized Surface" Journal of Functional Biomaterials 12, no. 2: 39. https://doi.org/10.3390/jfb12020039
APA StyleVillaça-Carvalho, M. F. L., de Araújo, J. C. R., Beraldo, J. M., Prado, R. F. d., Moraes, M. E. L. d., Manhães Junior, L. R. C., Codaro, E. N., Acciari, H. A., Machado, J. P. B., Regone, N. N., Lobo, A. O., Marciano, F. R., & Vasconcellos, L. M. R. d. (2021). Bioactivity of an Experimental Dental Implant with Anodized Surface. Journal of Functional Biomaterials, 12(2), 39. https://doi.org/10.3390/jfb12020039