Biomaterials for Cell-Surface Engineering and Their Efficacy
Abstract
:1. Introduction
2. Methods of Cell-Surface Engineering and the Type of Biomaterials
2.1. Self-Assembly
2.1.1. Self-Assembly of Single Components
2.1.2. LbL Assembly
2.2. Cross-Linking
2.3. Polymerization
3. Therapeutic Cells Subjected to Surface Engineering
3.1. BM-MSCs
3.2. Islet Beta-Cells
3.3. Endothelial Cells
3.4. Hepatocyte
3.5. Neuronal Progenitor Cells
4. Functional Aspect of Cell Encapsulation
4.1. Protection from Apoptosis
4.1.1. Protection from Cell Death Caused by Mechanical Stress
4.1.2. Anoikis-Preventive Effect
4.1.3. Cryopreservation
4.2. Protection from Immune Rejection
4.3. Modulation of Cell Growth and Hatching
5. Future Perspectives
5.1. Conrol of Cell Activity
5.2. Tissue Engineering from Microscale
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaspro, A.; Silvano, D.; Krol, S.; Cavalleri, O.; Gliozzi, A. Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir 2002, 18, 5047. [Google Scholar] [CrossRef]
- Hillberg, A.L.; Tabrizian, M. Biorecognition through layer-by-layer polyelctrolyte assembly: In-situ hybridization on living cells. Biomacromolecules 2006, 7, 2742. [Google Scholar] [CrossRef]
- Nassif, N.; Bounet, O.; Rager, M.N.; Roux, C.; Coradin, T.; Livage, J. Living bacteria in silica gels. Nat. Mater. 2002, 1, 42. [Google Scholar] [CrossRef]
- Franz, B.; Balkundi, S.S.; Dahl, C.; Lvov, Y.M.; Prange, A. Layer-by-layer nano-encapsulation of microbes: Controlled cell surface modification and investigation of substrate uptake in bacteria. Macromol. Biosci. 2010, 10, 164. [Google Scholar] [CrossRef]
- Drachuk, I.; Shchepalina, O.; Harbaugh, S.; Kelley-Loughnane, N.; Stone, M.; Tsukruk, V.V. Cell surface engineering with edible protein nanoshells. Small 2013, 9, 3128. [Google Scholar] [CrossRef]
- Lee, J.K.; Choi, I.S.; Oh, T.I.; Lee, E. Cell-Surface Engineering for Advanced Cell Therapy. Chemistry 2018, 24, 15725–15743. [Google Scholar] [CrossRef]
- Choi, D.; Lee, H.; Kim, H.; Yang, M.; Heo, J.; Won, Y.; Jang, S.S.; Park, J.K.; Son, Y.; Oh, T.I.; et al. Cytoprotective Self-assembled RGD Peptide Nanofilms for Surface Modification of Viable Mesenchymal Stem Cells. Chem. Mater. 2017, 29, 2055–2065. [Google Scholar] [CrossRef]
- Fujita, Y.; Kitagawa, M.; Nakamura, S.; Azuma, K.; Ishii, G.; Higashi, M.; Kishi, H.; Hiwasa, T.; Koda, K.; Nakajima, N.; et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 2002, 528, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Park, J.; Heo, J.; Oh, T.I.; Lee, E.; Hong, J. Multifunctional Collagen and Hyaluronic Acid Multilayer Films on Live Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2017, 9, 12264–12271. [Google Scholar] [CrossRef] [PubMed]
- Krol, S.; Guerra, S.; Guerra, M.; Grupillo, M.; Diaspro, A.; Gliozzi, A.; Marchetti, P. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 2006, 6, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Choi, D.; Choi, M.; Seo, Y.; Son, J.; Hong, J.; Choi, J. Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells. ACS Appl. Mater. Interfaces 2018, 10, 17685–17692. [Google Scholar] [CrossRef]
- Lee, D.Y.; Cha, B.H.; Jung, M.; Kim, A.S.; Bull, D.A.; Won, Y.W. Cell surface engineering and application in cell delivery to heart diseases. J. Biol. Eng. 2018, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Abbina, S.; Siren, E.M.J.; Moon, H.; Kizhakkedathu, J.N. Surface engineering for cell-based therapies: Techniques for manipulating mammalian cell surfaces. ACS Biomater. Sci. Eng. 2018, 4, 3658. [Google Scholar] [CrossRef]
- Teramura, Y.; Ekdahl, K.N.; Fromell, K.; Nilsson, B.; Ishihara, K. Potential of cell surface engineering with biocompatible polymers for biomedical applications. Langmuir 2020, 36, 12088. [Google Scholar] [CrossRef]
- Silva, G.A.; Czeisler, C.; Niece, K.L.; Beniash, E.; Harrington, D.A.; Kessler, J.A.; Stupp, S.I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004, 303, 1352–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, W.A.; Papantoniou, I.; Mendes, L.F.; Hall, G.N.; Bosmans, K.; Tam, W.L.; Teixeira, L.M.; Moos, M., Jr.; Geris, L.; Luyten, F.P. Limb derived cells as a paradigm for engineering self-assembling skeletal tissues. J. Tissue Eng. Regen. Med. 2018, 12, 794–807. [Google Scholar] [CrossRef]
- Matsuzawa, A.; Matsusaki, M.; Akashi, M. Effectiveness of nanometer-sized extracellular matrix layer-by-layer assembled films for a cell membrane coating protecting cells from physical stress. Langmuir 2013, 29, 7362–7368. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Kawazoe, N.; Chen, G. Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials 2019, 197, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Jitraruch, S.; Dhawan, A.; Hughes, R.D.; Filippi, C.; Soong, D.; Philippeos, C.; Lehec, S.C.; Heaton, N.D.; Longhi, M.S.; Mitry, R.R. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS ONE 2014, 9, e113609. [Google Scholar] [CrossRef]
- Sgroi, A.; Mai, G.; Morel, P.; Baertschiger, R.M.; Gonelle-Gispert, C.; Serre-Beinier, V.; Buhler, L.H. Transplantation of encapsulated hepatocytes during acute liver failure improves survival without stimulating native liver regeneration. Cell Transplant. 2011, 20, 1791–1893. [Google Scholar] [CrossRef]
- Mitry, R.R.; Jitraruch, S.; Iansante, V.; Dhawan, A. Alginate Encapsulation of Human Hepatocytes and Assessment of Microbeads. Method Mol. Biol. 2017, 1506, 273–281. [Google Scholar] [CrossRef]
- Mei, J.; Sgroi, A.; Mai, G.; Baertschiger, R.; Gonelle-Gispert, C.; Serre-Beinier, V.; Morel, P.; Bühler, L.H. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant. 2009, 18, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jitraruch, S.; Dhawan, A.; Hughes, R.D.; Filippi, C.; Lehec, S.C.; Glover, L.; Mitry, R.R. Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation. Cell Transplant. 2017, 26, 1341–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, H.; Shi, X.; Gu, G.X.; Wu, Y.; Gu, J.; Ding, Y. In vitro analysis of cryopreserved alginate-poly-L-lysine-alginate-microencapsulated human hepatocytes. Liver Int. 2010, 30, 611–622. [Google Scholar] [CrossRef]
- Durkut, S.; Elçin, A.E.; Elçin, Y.M. In vitro evaluation of encapsulated primary rat hepatocytes pre- and post-cryopreservation at −80 °C and in liquid nitrogen. Artif. Cells Nanomed. Biotechnol. 2015, 43, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Lim, F.; Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210, 908–910. [Google Scholar] [CrossRef]
- Duvivier-Kali, V.F.; Omer, A.; Parent, R.J.; O’Neil, J.J.; Weir, G.C. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001, 50, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Duvivier-Kali, V.F.; Omer, A.; Lopez-Avalos, M.D.; O’Neil, J.J.; Weir, G.C. Survival of microencapsulated adult pig islets in mice in spite of an antibody response. Am. J. Transplant. 2004, 4, 1991–2000. [Google Scholar] [CrossRef]
- Kim, P.H.; Yim, H.G.; Choi, Y.J.; Kang, B.J.; Kim, J.; Kwon, S.M.; Kim, B.S.; Hwang, N.S.; Cho, J.Y. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Control. Release 2014, 187, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemati, S.; Rezabakhsh, A.; Khoshfetrat, A.B.; Nourazarian, A.; Biray Avci, Ç.; Goker Bagca, B.; Alizadeh Sardroud, H.; Khaksar, M.; Ahmadi, M.; Delkhosh, A.; et al. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol. Bioeng. 2017, 114, 2920–2930. [Google Scholar] [CrossRef]
- Liaudanskaya, V.; Migliaresi, C.; Motta, A. Homeostasis maintenance of encapsulated cells. J. Tissue Eng. Regen. Med. 2018, 12, 830–839. [Google Scholar] [CrossRef]
- Leijs, M.J.; Villafuertes, E.; Haeck, J.C.; Koevoet, W.J.; Fernandez-Gutierrez, B.; Hoogduijn, M.J.; Verhaar, J.A.; Bernsen, M.R.; van Buul, G.M.; van Osch, G.J. Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function. Eur. Cell Mater. 2017, 33, 43–58. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, X.; Zhu, K.; He, X. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs. Adv. Healthc. Mater. 2017, 6, 1700988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blocki, A.; Beyer, S.; Dewavrin, J.Y.; Goralczyk, A.; Wang, Y.; Peh, P.; Ng, M.; Moonshi, S.S.; Vuddagiri, S.; Raghunath, M.; et al. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials 2015, 53, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Amirian, J.; Van, T.T.T.; Bae, S.H.; Jung, H.I.; Choi, H.J.; Cho, H.D.; Lee, B.T. Examination of In vitro and In vivo biocompatibility of alginate-hyaluronic acid microbeads as a promising method in cell delivery for kidney regeneration. Int. J. Biol. Macromol. 2017, 105, 143–153. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wei, Z.; Zhu, X.L.; Huang, G.Y.; Xu, F.; Yang, J.H.; Osada, Y.; Zrínyi, M.; Li, J.H.; Chen, Y.M. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf. B Biointerfaces 2015, 128, 140–148. [Google Scholar] [CrossRef]
- Madl, C.M.; LeSavage, B.L.; Dewi, R.E.; Dinh, C.B.; Stowers, R.S.; Khariton, M.; Lampe, K.J.; Nguyen, D.; Chaudhuri, O.; Enejder, A.; et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 2017, 16, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wang, G.; Zhao, B.; Chen, J.; Zhang, X.; Tang, R. Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering. Chem. Sci. 2014, 5, 3463–3468. [Google Scholar] [CrossRef]
- Wu, S.; Xu, R.; Duan, B.; Jiang, P. Three-Dimensional Hyaluronic Acid Hydrogel-Based Models for In Vitro Human iPSC-Derived NPC Culture and Differentiation. J. Mater. Chem. B 2017, 5, 3870–3878. [Google Scholar] [CrossRef]
- Cha, C.; Oh, J.; Kim, K.; Qiu, Y.; Joh, M.; Shin, S.R.; Wang, X.; Camci-Unal, G.; Wan, K.T.; Liao, R.; et al. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.X.; Hoffman, M.D.; Chen, C.S.; Shubin, A.D.; Reynolds, D.S.; Benoit, D.S. Disruption of cell-cell contact-mediated notch signaling via hydrogel encapsulation reduces mesenchymal stem cell chondrogenic potential: Winner of the Society for Biomaterials Student Award in the Undergraduate Category, Charlotte, NC, April 15 to 18, 2015. J. Biomed. Mater. Res. A 2015, 103, 1291–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, W.C.; Magne, B.; Cheung, K.Y.; Atanasova, D.; Griffith, M. Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells. Biomater. Sci. 2017, 5, 2241–2250. [Google Scholar] [CrossRef]
- Mansouri, S.; Merhi, Y.; Winnik, F.M.; Tabrizian, M. Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 2011, 12, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Han, U.; Yang, M.; Choi, Y.; Choi, J.; Lee, J.M.; Jung, H.S.; Hong, J.; Hong, J.H. Artificial cellular nano-environment composed of collagen-based nanofilm promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2019, 86, 247–256. [Google Scholar] [CrossRef]
- Chang, R.; Faleo, G.; Russ, H.A.; Parent, A.V.; Elledge, S.K.; Bernards, D.A.; Allen, J.L.; Villanueva, K.; Hebrok, M.; Tang, Q.; et al. Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS Nano 2017, 11, 7747–7757. [Google Scholar] [CrossRef]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Davies, L.C.; Heldring, N.; Kadri, N.; Le Blanc, K. Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression. Stem Cells 2017, 5, 766–776. [Google Scholar] [CrossRef]
- Moutuou, M.M.; Pagé, G.; Zaid, I.; Lesage, S.; Guimond, M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front. Immunol. 2018, 9, 1237. [Google Scholar] [CrossRef]
- Le Blanc, K.; Rasmusson, I.; Sundbert, B.; Goetherstroem, C.; Hassan, M.; Uzunel, M.; Ringden, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363, 9419. [Google Scholar] [CrossRef]
- Selim, S.A.; El-Baset, S.; Kattaia, A.; Askar, E.M.; Elkader, E.A. Bone marrow-derived mesenchymal stem cells ameliorate liver injury in a rat model of sepsis by activating Nrf2 signaling. Histochem. Cell Biol. 2019, 151, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Pati, S.; Lee, J.W. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells 2017, 35, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhou, Z.; Li, H.; Liu, Z.; Pan, X.; Wang, F.; Huang, Y.; Li, X.; Xiao, Y.; Pan, J.; et al. BMSCs ameliorate septic coagulopathy by suppressing inflammation in cecal ligation and puncture-induced sepsis. J. Cell Sci. 2018, 131, jcs211151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, A.; Martín-Ferrero, M.A.; Del Canto, F.; Alberca, M.; García, V.; Munar, A.; Orozco, L.; Soler, R.; Fuertes, J.J.; Huguet, M.; et al. Treatment of Knee Osteoarthritis with Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 2015, 99, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hong, J.M.; Moon, G.J.; Lee, P.H.; Ahn, Y.H.; Bang, O.Y.; STARTING Collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28, 1099–1106. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ding, Z.Q.; Zhang, F.; Ye, W.B. Recent development in cell encapsulations and their therapeutic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1247–1260. [Google Scholar] [CrossRef]
- Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of functional human pancreatic β cells in vitro. Cell 2014, 159, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Rezania, A.; Bruin, J.E.; Arora, P.; Rubin, A.; Batushansky, I.; Asadi, A.; O’Dwyer, S.; Quiskamp, N.; Mojibian, M.; Albrecht, T.; et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 2014, 32, 1121–1133. [Google Scholar] [CrossRef]
- Aghazadeh, Y.; Nostro, M.C. Cell Therapy for Type 1 Diabetes: Current and Future Strategies. Curr. Diab. Rep. 2017, 17, 37. [Google Scholar] [CrossRef]
- Sen, S.; McDonald, S.P.; Coates, P.T.; Bonder, C.S. Endothelial progenitor cells: Novel biomarker and promising cell therapy for cardiovascular disease. Clin. Sci. 2011, 120, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.; Yoon, C.H.; Kim, H.S.; Choi, J.H.; Kang, H.J.; Hwang, K.K.; Oh, B.H.; Lee, M.M.; Park, Y.B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 288–293. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, F.R.; Shang, Y.P.; Zhu, J.H.; Xie, X.D.; Tao, Q.M.; Zhu, J.H.; Chen, J.Z. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2007, 49, 1566–1571. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.C.; Liao, W.Y.; Tang, A.C.; Tsai, S.J.; Hsieh, P.C. The enhancement of endothelial cell therapy for angiogenesis in hindlimb ischemia using hyaluronan. Biomaterials 2011, 32, 75–86. [Google Scholar] [CrossRef]
- Orive, G.; Santos, E.; Poncelet, D.; Hernández, R.M.; Pedraz, J.L.; Wahlberg, L.U.; De Vos, P.; Emerich, D. Cell encapsulation: Technical and clinical advances. Trends Pharmacol. Sci. 2015, 36, 537–546. [Google Scholar] [CrossRef]
- Forbes, S.J.; Gupta, S.; Dhawan, A. From liver transplantation to cell factory. J. Hepatol. 2015, 62, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.A.; Sinha, S.; Fitzpatrick, E.; Dhawan, A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J. Mol. Med. 2018, 96, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Rennier, K.; Ji, J.Y. Shear stress attenuates apoptosis due to TNFα, oxidative stress, and serum depletion via death-associated protein kinase (DAPK) expression. BMC Res. Notes 2015, 8, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Tibbitt, M.W.; Basta, L.; Anseth, K.S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 2014, 13, 645–652. [Google Scholar] [CrossRef]
- Shimony, N.; Avrahami, I.; Gorodetsky, R.; Elkin, G.; Tzukert, K.; Zangi, L.; Levdansky, L.; Krasny, L.; Haviv, Y.S. A 3D rotary renal and mesenchymal stem cell culture model unveils cell death mechanisms induced by matrix deficiency and low shear stress. Nephrol. Dial. Transplant. 2008, 23, 2071–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.C.; Zhang, X.F.; Peng, J.; Li, X.F.; Wang, A.L.; Bie, Y.Q.; Shi, L.H.; Lin, M.B.; Zhang, X.F. Survival Mechanisms and Influence Factors of Circulating Tumor Cells. BioMed Res. Int. 2018, 2018, 6304701. [Google Scholar] [CrossRef]
- Costa, A.V.; Oliveira, M.; Pinto, R.T.; Moreira, L.C.; Gomes, E.; Alves, T.A.; Pinheiro, P.F.; Queiroz, V.T.; Vieira, L.; Teixeira, R.R.; et al. Synthesis of Novel Glycerol-Derived 1,2,3-Triazoles and Evaluation of Their Fungicide, Phytotoxic and Cytotoxic Activities. Molecules 2017, 22, 1666. [Google Scholar] [CrossRef] [Green Version]
- Benoit, D.S.; Schwartz, M.P.; Durney, A.R.; Anseth, K.S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 2008, 7, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677. [Google Scholar] [CrossRef] [Green Version]
- Laschke, M.W.; Menger, M.D. Life is 3D: Boosting Spheroid Function for Tissue Engineering. Trends Biotechnol. 2017, 35, 133–144. [Google Scholar] [CrossRef]
- Atala, A.; Kasper, F.K.; Mikos, A.G. Engineering complex tissues. Sci. Transl. Med. 2012, 4, 160rv12. [Google Scholar] [CrossRef] [Green Version]
Surface Engineering Methods | Materials | Cell Types | Proved Efficacy | Ref. | |
---|---|---|---|---|---|
Self-assembly | Single component | IKVAV 1 peptide amphiphile | NPCs 2 | Cyto-protective effect and better cell spreading/differentiation to more neuronal cells and fewer astrocytes | [15] |
Collagen/gelatin | Mouse fetal limb tissue | Single/clustered cell self-assembly observed during tissue development | [16] | ||
LbL assembly | HA 3, PLL 4 | BM-MSCs 5, PBMCs 6, Hepatocytes | Cyto-protective effect by anoikis prevention, no interruption on cell activity | [7,11] | |
PAH 7, PDADMAC 8, PSS 9 | Islet tissue | Protection from immune response | [10] | ||
Collagen, HA | BM-MSCs | Cyto-protective effect, no significant decrease of surface index | [9] | ||
FN 10/gelatin or Col IV 11/LN 12 | Hepatocytes (HepG2 cells) | Cyto-protective effect from mechanical stress | [17] | ||
PEG 13-gelatin | BM-MSCs, HeLa cells | Cytoprotective effect from enzymatic attack and mechanical stress | [18] | ||
Cross-linking | Ionic cross-linking | Alginate | Hepatocytes | Improved liver metabolic index in acute liver failure, increased survival, cyto-protective effect in cryo-preservation | [19,20,21,22,23,24,25,26] |
Islet tissue, islet beta-cells | Survival of islet cells, secured insulin activity on glucose metabolism, protection from immune response | [26,27,28] | |||
Endothelial cells | Cyto-protective effect, neovasculogenesis | [29,30] | |||
Neuroblastoma cell line | Cell proliferation inside the capsule | [31] | |||
MSCs (BM, AD) | Long-term in vivo cell survival and cytokine production, cyto-protective effect during rapid-cooling cryo-preservation, long-term integration to the transplanted site | [32,33,34,35] | |||
Thio-Michael addition | Dex-GMA 14, DTT 15 | BM-MSCs | Differentiation potential maintained | [36] | |
Amine-reactive cross-linking | Elastin-like protein with adhesion/degradation domain | NPCs | Matric characteristics modulate the maintenance of NPCs differentiation potential, degradable matrix showed increase in neuronal marker expression | [37] | |
Polymerization | Chemical polymerization | PDA 16 | RBC 17 | Protection from immune response | [38] |
Photo-polymerization | Me-HA 18 | iPSC 19-derived NPC | Stiffness of the matrix determines cells’ activity and survival, softer matrix produced better cell survival and tubule formation | [39] | |
Me-gelatin 20 | Cardiac side population cells | Protection from oxidative stress, mechanical stress, and immune response | [40] | ||
Me-PEG 21 | BM-MSCs | Disruption of cell–cell contact by encapsulation showed negative efficacy in terms of chondrogenic potential | [41] | ||
Etc | Combined method | Agarose/gelatin | BM-MSCs | Controlled release of encapsulated cells by gelatin% | [42] |
Alginate, Chitosan, PLL-PEG | RBCs | Protection from immune response | [43] | ||
Collagen, alginate, chondroitin sulfate, tannic acid, lignin | MSCs cell line | Potentiated osteogenic potential | [44] | ||
Macro-scale encapsulation | PCL 22 | ES-derived beta-cell | Cytoprotective effect on islet cells, secured insulin activity on glucose metabolism, protection from immune response | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Jeong, J.G.; Oh, T.I.; Lee, E. Biomaterials for Cell-Surface Engineering and Their Efficacy. J. Funct. Biomater. 2021, 12, 41. https://doi.org/10.3390/jfb12030041
Jang S, Jeong JG, Oh TI, Lee E. Biomaterials for Cell-Surface Engineering and Their Efficacy. Journal of Functional Biomaterials. 2021; 12(3):41. https://doi.org/10.3390/jfb12030041
Chicago/Turabian StyleJang, Seoyoung, Jin Gil Jeong, Tong In Oh, and EunAh Lee. 2021. "Biomaterials for Cell-Surface Engineering and Their Efficacy" Journal of Functional Biomaterials 12, no. 3: 41. https://doi.org/10.3390/jfb12030041
APA StyleJang, S., Jeong, J. G., Oh, T. I., & Lee, E. (2021). Biomaterials for Cell-Surface Engineering and Their Efficacy. Journal of Functional Biomaterials, 12(3), 41. https://doi.org/10.3390/jfb12030041