Effect of Gamma Irradiation on the Osteoinductivity of Demineralized Dentin Matrix for Allografts: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Demineralized Dentin Matrix (DDM, Control Group) Powder
2.2. Radiation Sterilization (Experimental Groups)
2.3. Experimental Animals
2.4. Experimental Procedures
2.5. Bone Mineral Density Analysis
2.6. Histological Analysis
2.7. Number of Osteoblasts and Osteoclast-Like Cells on the Surface of the DDM
2.8. Quantitative Measurement of the New Bone Formation on the Surface of the DDM (%, µm2)
2.9. Statistical Analysis
3. Results
3.1. Representative Histological Images of DDM, 15DDM, and 25DDM
3.2. ALP and TRAP Staining at 4 Weeks
3.3. Number of Osteoblasts and Osteoclast-Like Cells on the Surface of the DDM
3.4. Measurement of New Bone Formation
3.5. Radiographic Evaluation of the Bone Mineral Density (g/cm3)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDM | Non-irradiated demineralized dentin matrix |
15DDM | Gamma irradiated demineralized dentin matrix with a 15 kGy dosage |
25DDM | Gamma irradiated demineralized dentin matrix with a 25 kGy dosage |
GR | Gamma irradiation |
References
- Murata, M.; Sato, D.; Hino, J.; Akazawa, T.; Tazaki, J.; Ito, K.; Arisue, M. Acid-insoluble human dentin as carrier material for recombinant human BMP-2. J. Biomed. Mater. Res. A 2012, 100, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Bang, G.; Urist, M.R. Bone induction in excavation chambers in matrix of decalcified dentin. Arch. Surg. 1967, 94, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Okubo, N.; Shakya, M.; Kabir, A.; Yokozeki, K.; Zhu, B.; Ishikawa, M.; Kitamura, R.; Akazawa, T. Dentin Materials as Biological Scaffolds for Tissue Engineering. In Biomaterial-Supported Tissue Reconstruction or Regeneration; IntechOpen: London, UK, 2019; pp. 1–12. [Google Scholar]
- Kim, K.-W. Bone induction by demineralized dentin matrix in nude mouse muscles. Maxillofac. Plast. Reconstr. Surg. 2014, 36, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Kim, S.-G.; Byeon, J.-H.; Lee, H.-J.; Um, I.-U.; Lim, S.-C.; Kim, S.-Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2010, 109, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.P.; D’Lima, C.B.; Samat, U.C.; Karde, P.A.; Patil, A.G.; Dani, N.H. Comparative alveolar ridge preservation using allogenous tooth graft versus free-dried bone allograft: A randomized, controlled, prospective, clinical pilot study. Contemp. Clin. Dent. 2017, 8, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Fernandez De Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.-M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef] [Green Version]
- Murata, M. Collagen biology for bone regenerative surgery. J. Korean Assoc. Oral Maxillofac. Surg. 2012, 38, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Urist, M.R. Bone: Formation by autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized bone matrix in bone repair: History and use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Lu, S. The effects of microwave heating on osteoinduction of demineralized bone matrix in rabbits. Zhonghua Wai Ke Za Zhi 1997, 35, 564–567. [Google Scholar]
- Hallfeldt, K.K.; Kessler, S.; Puhlmann, M.; Mandelkow, H.; Schweiberer, L. The effect of various sterilization procedures on the osteoinductive properties of demineralized bone matrix. Unfallchirurg 1992, 95, 313–318. [Google Scholar] [PubMed]
- Howard, B.K.; Brown, K.R.; Leach, J.L.; Chang, C.-H.; Rosenthal, D.I. Osteoinduction using bone morphogenic protein in irradiated tissue. Arch. Otolaryngol-Head Neck Surg. 1998, 124, 985–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glowacki, J. A review of osteoinductive testing methods and sterilization processes for demineralized bone. Cell Tissue Bank 2005, 6, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Xie, H.; Worthington, H.; Furness, S.; Zhang, Q.; Li, C. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2016, 10, CD008367. [Google Scholar] [CrossRef]
- Chacko, R.; Rajan, A.; Lionel, P.; Thilagavathi, M.; Yadav, B.; Premkumar, J. Oral decontamination techniques and ventilator-associated pneumonia. Br. J. Nurs. 2017, 26, 594–599. [Google Scholar] [CrossRef]
- Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H. Inactivation of viruses in labile blood derivatives. II. Physical methods. Transfusion 1985, 25, 523–527. [Google Scholar] [CrossRef]
- Lupton, H.W. Inactivation of Ebola virus with 60Co irradiation. J. Infect. Dis. 1981, 143, 291. [Google Scholar] [CrossRef]
- House, C.; A House, J.; Yedloutschnig, R.J. Inactivation of viral agents in bovine serum by gamma irradiation. Can. J. Microbiol. 1990, 36, 737–740. [Google Scholar] [CrossRef]
- Cook, S.D.; Salkeld, S.L.; Prewett, A.B. Simian immunodeficiency virus (human HIV-II) transmission in allograft bone procedures. Spine 1995, 20, 1338–1342. [Google Scholar] [CrossRef]
- Conrad, E.U.; Gretch, D.R.; Obermeyer, K.R.; Moogk, M.S.; Sayers, M.; Wilson, J.J.; Strong, D.M. Transmission of the hepatitis-C virus by tissue transplantation. J. Bone Jt. Surg. 1995, 77, 214–224. [Google Scholar] [CrossRef]
- Ku, J.-K.; Kim, B.-J.; Park, J.-Y.; Lee, J.-H.; Yun, P.-Y.; Kim, Y.-M.; Um, I.-W. Effects of gamma irradiation on the measurement of hepatitis B virus DNA in dentin harvested from chronically infected patients. Ann. Transl. Med. 2020, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R.; Hernandez, A. Excitation transfer in bone. Deleterious effects of cobalt 60 radiation-sterilization of bank bone. Arch. Surg. 1974, 109, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic-Goclawska, A.; Ostrowski, K.; Stachowicz, W.; Michalik, J.; Grzesik, W. Effect of radiation sterilization on the osteoinductive properties and the rate of remodeling of bone implants preserved by lyophilization and deep-freezing. Clin. Orthop. Relat. Res. 1991, 272, 30–37. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.; Singh, A. Radiation sterilization of tissue allografts: A review. World J. Radiol. 2016, 8, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Honsawek, S.; Powers, R.M.; Wolfinbarger, L. Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank 2005, 6, 13–23. [Google Scholar] [CrossRef]
- Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control, A Code of Practice, International Atomic Energy Agency. Available online: http://www.iaea.org (accessed on 28 January 2014).
- Gargallo-Albiol, J.; Barootchi, S.; Salomó-Coll, O.; Wang, H.-L. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann. Anat-Anat. Anz. 2019, 225, 1–10. [Google Scholar] [CrossRef]
- American Association of Tissue Banks (AATB). Standards for Tissue Banking. Available online: http://aatb.org (accessed on 28 January 2014).
- Gutta, R.; Baker, R.A.; Bartolucci, A.A.; Louis, P.J. Barrier membranes used for ridge augmentation: Is there an optimal pore size? J. Oral. Maxillofac. Surg. 2009, 67, 1218–1225. [Google Scholar] [CrossRef]
- Um, I.; Choi, S.; Kim, Y.; Pang, K.; Lee, J.; Lee, M.; Kim, B. Measurement of hepatitis B virus DNA in fresh versus processed dentin from chronically infected patients. J. Transl. Med. 2018, 16, 351. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Kim, H.; Jang, H.L.; Ahn, H.-Y.; Lee, H.K.; Park, J.; Lee, E.-S.; Lee, E.A.; Jeong, Y.-H.; Kim, D.-G.; Nam, K.T.; et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31–43. [Google Scholar] [CrossRef]
- Kim, H.-K.; Han, H.-S.; Lee, K.-S.; Lee, D.-H.; Lee, J.W.; Jeon, H.; Cho, S.-Y.; Roh, H.-J.; Kim, Y.-C.; Seok, H.-K. Comprehensive study on the roles of released ions from biodegradable Mg–5 wt% Ca–1 wt% Zn alloy in bone regeneration. J. Tissue Eng. Regen. Med. 2017, 11, 2710–2724. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yang, Z.; Nimni, M. Effects of gamma irradiation on osteoinduction associated with demineralized bone matrix. J. Orthop. Res. 2007, 26, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Wientroub, S.; Reddi, A.H. Influence of irradiation on the osteoinductive potential of demineralized bone matrix. Calcif. Tissue Res. 1988, 42, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Borciani, G.; Montalbano, G.; Baldini, N.; Cerqueni, G.; Vitale-Brovarone, C.; Ciapetti, G. Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020, 108, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Rumpler, M.; Würger, T.; Roschger, P.; Zwettler, E.; Sturmlechner, I.; Altmann, P.; Fratzl, P.; Rogers, M.J.; Klaushofer, K. Osteoclasts on bone and dentin in vitro: Mechanism of trail formation and comparison of resorption behavior. Calcif. Tissue Res. 2013, 93, 526–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teitelbaum, S.L. Bone Resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Wong, M.Y.W.; Yu, Y.; Yang, J.-L.; Woolford, T.; Morgan, D.A.F.; Walsh, W.R. 11 kGy gamma irradiated demineralized bone matrix enhances osteoclast activity. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 655–661. [Google Scholar] [CrossRef]
- Sawajiri, M.; Mizoe, J.; Tanimoto, K. Changes in osteoclasts after irradiation with carbon ion particles. Radiat. Environ. Biophys. 2003, 42, 219–223. [Google Scholar] [CrossRef]
- Turonis, J.W.; McPherson, J.C., 3rd; Cuenin, M.F.; Hokett, S.D.; Peacock, M.E.; Sharawy, M. The effect of residual calcium in decalcified freeze-dried bone allograft in a critical-sized defect in the Rattus Norvegicus Calvarium. J. Oral. Implantol. 2006, 32, 55–62. [Google Scholar] [CrossRef]
- Chen, J.B.; Yu, Y.; Yang, J.L.; Morgan, D.A.; Walsh, W.R. BMP-7 and CBFA1 in allograft bone in vivo bone formation and the influence of gamma-irradiation. J. Biomed. Mater. Res. A 2007, 80, 435–443. [Google Scholar] [CrossRef]
- Nguyen, H.; Morgan, D.A.F.; Forwood, M.R. Sterilization of allograft bone: Effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank. 2007, 8, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Morgan, D.A.; Forwood, M.R. Validation of 11 kGy as a Radiation Sterilization Dose for Frozen Bone Allografts. J. Arthroplast. 2011, 26, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijiri, S.; Yamamuro, T.; Nakamura, T.; Kotani, S.; Notoya, K. Effect of sterilization on bone morphogenetic protein. J. Orthop. Res. 1994, 12, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Cheung, D.T.; Perelman, N.; Tong, D.; Nimni, M.E. The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J. Biomed. Mater. Res. 1990, 24, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Katz, R.W.; Felthousen, G.C.; Reddi, A.H. Radiation-sterilized insoluble collagenous bone matrix is a functional carrier of osteogenin for bone induction. Calcif. Tissue Res. 1990, 47, 183–185. [Google Scholar] [CrossRef]
- Al Kayal, T.; Panetta, D.; Canciani, B.; Losi, P.; Tripodi, M.; Burchielli, S.; Ottoni, P.; A Salvadori, P.; Soldani, G. Evaluation of the Effect of a Gamma Irradiated DBM-Pluronic F127 Composite on Bone Regeneration in Wistar Rat. PLoS ONE 2015, 10, e0125110. [Google Scholar] [CrossRef] [Green Version]
- Avery, S.; Sadaghiani, L.; Sloan, A.; Waddington, R. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair. Eur. Cells Mater. 2017, 34, 1–14. [Google Scholar] [CrossRef]
- Huggins, C.B.; Urist, M.R. Dentin Matrix Transformation: Rapid Induction of Alkaline Phosphatase and Cartilage. Science 1970, 167, 896–898. [Google Scholar] [CrossRef]
- Urist, M.R.; A Dowell, T.; Hay, P.H.; Strates, B.S. Inductive substrates for bone formation. Clin. Orthop. Relat. Res. 1968, 59, 59–96. [Google Scholar] [CrossRef]
- Urist, M.R.; Iwata, H.; Strates, B.S. Bone Morphogenetic Protein and Proteinase in the Guinea Pig. Clin. Orthop. Relat. Res. 1972, 85, 275–290. [Google Scholar] [CrossRef]
- White, E.; Rogers, T.E. Effects of Primary Allogeneic Tooth Transplants on Rejection of Skin Allografts in Rabbits. J. Dent. Res. 1967, 46, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Haley, E.W.; Costich, E.R. Immunological studies of teeth in inbred hamsters. Transplantation 1969, 8, 91–97. [Google Scholar] [CrossRef] [PubMed]
At Two Weeks | p * | At Four Weeks | p * | |||||
---|---|---|---|---|---|---|---|---|
DDM (n = 10) | 15DDM (n = 5) | 25DDM (n = 5) | DDM (n = 10) | 15DDM (n = 5) | 25DDM (n = 5) | |||
Osteoblast (N) | 5.3 ± 2.1 | 5.7 ± 5.5 | 8.1 ± 3.9 | 0.271 | 7.4 ± 5.4 | 6.3 ± 2.5 | 6.9 ± 3.2 | 0.821 |
Osteoclast-like cells (N) | 7.2 ± 3.3 | 6.6 ± 5.4 | 5.5 ± 3.7 | 0.666 | 8.5 ± 6.9 | 3.7 ± 4.3 | 10.2 ± 6.6 | 0.064 |
New bone (%) | 17.8 ± 13.4 | 16.8 ± 5.47 | 20.8 ± 10.4 | 0.840 | 26.1 ± 22.4 | 18.0 ± 9.3 | 23.0 ± 7.2 | 0.697 |
Bone Mineral Density (g/cm3) | p * | |||
---|---|---|---|---|
DDM | 15DDM | 25DDM | ||
2 weeks | 0.109 | 0.095 | 0.092 | >0.999 |
4 weeks | 0.128 | 0.102 | 0.095 | >0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, J.-K.; Kim, I.-h.; Um, I.-W.; Kim, B.-H.; Yun, P.-Y. Effect of Gamma Irradiation on the Osteoinductivity of Demineralized Dentin Matrix for Allografts: A Preliminary Study. J. Funct. Biomater. 2022, 13, 14. https://doi.org/10.3390/jfb13010014
Ku J-K, Kim I-h, Um I-W, Kim B-H, Yun P-Y. Effect of Gamma Irradiation on the Osteoinductivity of Demineralized Dentin Matrix for Allografts: A Preliminary Study. Journal of Functional Biomaterials. 2022; 13(1):14. https://doi.org/10.3390/jfb13010014
Chicago/Turabian StyleKu, Jeong-Kui, Il-hyung Kim, In-Woong Um, Bo-Hyun Kim, and Pil-Young Yun. 2022. "Effect of Gamma Irradiation on the Osteoinductivity of Demineralized Dentin Matrix for Allografts: A Preliminary Study" Journal of Functional Biomaterials 13, no. 1: 14. https://doi.org/10.3390/jfb13010014
APA StyleKu, J. -K., Kim, I. -h., Um, I. -W., Kim, B. -H., & Yun, P. -Y. (2022). Effect of Gamma Irradiation on the Osteoinductivity of Demineralized Dentin Matrix for Allografts: A Preliminary Study. Journal of Functional Biomaterials, 13(1), 14. https://doi.org/10.3390/jfb13010014