Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalities
2.2. Preparation of the Metal-Containing LTA Zeolites
2.3. AGAR Dilution Method
2.4. Optical Density Measurements (Microplate Reader)
3. Results and Discussion
3.1. Preparation of Metal-Exchanged Zeolites
3.2. Determination of the Metal Content
3.3. Metal Ion Distribution and Structural Content
3.4. Antibacterial Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gray, H.B. Biological inorganic chemistry at the beginning of the 21st century. Proc. Natl. Acad. Sci. USA 2003, 100, 3563–3568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crichton, R. Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, 3rd ed.; Elsevier: London, UK, 2019; pp. 1–644. [Google Scholar]
- Harrison, J.J.; Ceri, H.; Stremick, C.A.; Turner, R.J. Biofilm susceptibility to metal toxicity. Environ. Microbiol. 2004, 6, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borkow, G.; Gabbay, J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 2009, 3, 272–278. [Google Scholar]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Coll. Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Martin, O.; Montalvo, G. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci. Tech. 2021, 109, 230–244. [Google Scholar] [CrossRef]
- Lalueza, P.; Monzon, M.; Arruebo, M.; Santamaria, J. Bactericidal effects of different silver-containing materials. Mater. Res. Bull. 2011, 46, 2070–2076. [Google Scholar] [CrossRef]
- Li, L.; Zhao, C.; Zhang, Y.; Yao, J.; Yang, W.; Hu, Q.; Wang, C.; Cao, C. Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem. 2017, 215, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Saengmee-Anupharb, S.; Srikhirin, T.; Thaweboon, B.; Thaweboon, S.; Amornsakchai, T.; Dechkunakorn, S.; Suddhasthira, T. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms. Asian Pac. J. Trop. Biomed. 2013, 3, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Yasuyuki, M.; Kunihiro, K.; Kurissery, S.; Kanavillil, N.; Sao, Y.; Kikuchi, Y. Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 2010, 26, 851–858. [Google Scholar] [CrossRef]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Bi, Y.; Westerband, E.I.; Alum, A.; Brown, F.C.; Abbaszadegan, M.; Hristovski, K.D.; Hicks, A.L.; Westerhoff, P.K. Antimicrobial efficacy and life cycle impact of silver-containing food containers. ACS Sustain. Chem. Eng. 2018, 6, 13086–13095. [Google Scholar] [CrossRef]
- Echegoyan, Y.; Nerin, C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 2013, 62, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, K.; Tsuruda, K.; Morishita, M.; Ushida, M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000, 16, 452–455. [Google Scholar] [CrossRef]
- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. [Google Scholar] [CrossRef] [Green Version]
- Krishnani, K.K.; Zhang, Y.; Xiong, L.; Yan, Y.; Boopathy, R.; Mulchandani, A. Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresour. Technol. 2012, 117, 86–91. [Google Scholar] [CrossRef]
- Jiraroj, D.; Tungasmita, S.; Tungasmita, D.N. Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol. 2014, 264, 418–422. [Google Scholar] [CrossRef]
- Demirci, S.; Ustaoglu, Z.; Yilmazer, G.A.; Sahin, F.; Bac, N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.; Neves, I.C. Study of silver species stabilized in different microporous zeolites. Micropor. Mesopor. Mat. 2013, 181, 83–87. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 2017, 33, 889–896. [Google Scholar] [CrossRef]
- Cardoso, W.A.; Savi, G.D.; Feltrin, A.C.; Marques, C.R.M.; Angioletto, E.; Pich, C.T.; Geremias, R.; Mendes, E.; Angioletto, E. Antimicrobial materials propoerties based on ion-exchanged 4A zeolite derivatives. Pol. J. Chem. Technol. 2019, 21, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Popovich, J.; Iannuzo, N.; Haydel, S.E.; Seo, D.-K. Silver-ion-exchanged nanostructured zeolite X as antibacterial agent with superior ion release kinetics and efficacy against methcillin-resistant Staphylococcus aureus. ACS Appl. Mater. Inter. 2017, 9, 39271–39282. [Google Scholar] [CrossRef]
- Chen, S.; Popovich, J.; Zhang, W.; Ganser, C.; Haydel, S.E.; Seo, D.-K. Superior ion release properties and antibacterial efficacy of nanostructured zeolites ion-exchanged with zinc, copper and iron. RSC Adv. 2018, 8, 37949–37957. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Belkhair, S.; Zaarour, M.; Fisher, L.; Verran, J.; Tosheva, L.; Retoux, R.; Gilson, J.-P.; Mintova, S. Silver confined within zeolite EMT nanoparticles: Preparation and antibacterial properties. Nanoscale 2014, 6, 10859–10864. [Google Scholar] [CrossRef] [Green Version]
- Lalueza, P.; Monzon, M.; Arruebo, M.; Santamaria, J. Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem. Commun. 2011, 47, 680–682. [Google Scholar] [CrossRef]
- Milan, Z.; de Las Pozas, C.; Cruz, M.; Borja, R.; Sanchez, E.; Ilangovan, K.; Espinosa, Y.; Luna, B. The removal of bacteria by modified natural zeolites. J. Environ. Sci. Health 2001, A36, 1073–1087. [Google Scholar] [CrossRef]
- Milenkovic, J.; Hrenovic, J.; Matijasevic, D.; Niksic, M.; Rajic, N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 2017, 24, 20273–20281. [Google Scholar] [CrossRef]
- Rivera-Garza, M.; Olguin, M.T.; Garcia-Sosa, I.; Alcantara, D.; Rodriguez-Fuentes, G. Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mater. 2000, 39, 431–444. [Google Scholar] [CrossRef]
- Tekin, R.; Bac, N. Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Micropor. Mesopor. Mater. 2016, 234, 55–60. [Google Scholar] [CrossRef]
- Top, A.; Ulku, S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 2004, 27, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Lei, J.; Zhang, W.; Yu, C.; Sun, Z.; Zheng, S.; Komarneni, S. Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environ. Sci. Pollut. Res. 2019, 26, 2782–2793. [Google Scholar] [CrossRef]
- Kwakye-Awuah, B.; Williams, C.; Kenward, M.A.; Radecka, I. Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 2007, 104, 1516–1524. [Google Scholar] [CrossRef]
- Inoue, Y.; Kogure, M.; Matsumoto, K.; Hamashima, H.; Tsukada, M.; Endo, K.; Tanaka, T. Light irradiation is a factor in the bactericidal activity of silver-loaded zeolite. Chem. Pharm. Bull. 2008, 56, 692–694. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Hamashima, H. Electrochemical analysis of the redox state of silver contained in antibacterial material. J. Biomater. Nanobiotechnol. 2012, 3, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Fonseca, A.M.; Botelho, G.; Almeida-Aguiar, C.; Neves, I.C. Antimicrobial activity of faujasite zeolites doped with silver. Micropor. Mesopor. Mater. 2012, 160, 126–132. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, Y.; He, P.; Dong, F.; Xia, Y.; He, Y. Antibacterial zeolite with a high silver-loading content and excellent antibacterial performance. RSC Adv. 2014, 4, 5283–5288. [Google Scholar] [CrossRef]
- Akhigbe, L.; Ouki, S.; Saroj, D.; Lim, X.M. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2014, 21, 10940–10948. [Google Scholar] [CrossRef]
- Ferreira, L.; Guedes, J.F.; Almeida-Aguiar, C.; Fonseca, A.M.; Neves, I.C. Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Coll. Surf. B Biointerfaces 2016, 142, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.J.; Mauricio, J.E.; Paredes, A.R.; Gamero, P.; Cortes, D. Antimicrobial properties of ZSM-5 type zeolite functionnalized with silver. Mater. Lett. 2017, 191, 65–68. [Google Scholar] [CrossRef]
- Peixoto, P.; Guedes, J.F.; Rombi, E.; Fonseca, A.M.; Aguiar, C.A. Metal ion-zeolite materials against resistant bacteria, MRSA. Ind. Eng. Chem. Res. 2021, 60, 12883–12892. [Google Scholar] [CrossRef]
- Fernandez, A.; Soriano, E.; Hernandez-Munoz, P.; Gavara, R. Migration of antimicrobial silver from composites of polylactide with silver zeolites. J. Food Sci. 2010, 75, E186–E193. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari-Moghaddam, M.; Eslahi, H. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab. J. Chem. 2014, 7, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Hotta, M.; Nakajima, H.; Yamamoto, K.; Aono, M.J. Antibacterial temporary filling materials: The effect of adding various ratios of Ag-Zn-Zeolite. Oral Rehabil. 1998, 25, 485–489. [Google Scholar] [CrossRef]
- Ustaoglu Iyigundogdu, Z.; Demirci, S.; Bac, N.; Sahin, F. Development of durable antimicrobial surfaces containing silver- and zinc-ion-exchanged zeolites. Turk. J. Chem. 2014, 38, 420–427. [Google Scholar]
- Kaali, P.; Perez-Madrigal, M.M.; Stromberg, E.; Aune, R.E.; Czél, G.; Karlsson, S. The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. Express Polym. Lett. 2011, 5, 1028–1040. [Google Scholar] [CrossRef]
- Kamisoglu, K.; Aksoy, E.A.; Akata, B.; Hasirci, N.; Bac, N.J. Preparation and characterization of antibacterial zeolite-polyurethane composites. Appl. Polym. Sci. 2008, 110, 2854–2861. [Google Scholar] [CrossRef]
- Lei, J.; Yao, G.; Sun, Z.; Wang, B.; Yu, C.; Zheng, S. Microwave-assisted synthesis a,d simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. J. Mater. Sci. 2019, 54, 11682–11693. [Google Scholar] [CrossRef]
- Pehlivan, H.; Balkose, D.; Ulku, S.; Tihminlioglu, F. Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos. Sci. Technol. 2005, 65, 2049–2058. [Google Scholar] [CrossRef] [Green Version]
- Zampino, D.; Ferreri, T.; Puglisi, C.; Mancuso, M.; Zaccone, R.; Scaffaro, R.; Bennardo, D.J. PVC silver zeolite composites with antimicrobial properties. Mater. Sci. 2011, 46, 6734–6743. [Google Scholar] [CrossRef]
- Blel, W.; Limousy, L.; Dutournié, P.; Ponche, A.; Boucher, A.; Le Fellic, M. Study of the antimicrobial and antifouling properties of different oxide surfaces. Environ. Sci. Pollut. Res. 2017, 24, 9847–9858. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M.; Abshire, K.Z.; Houk, S.L.; Evans, S.M. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 2003, 30, 102–106. [Google Scholar] [CrossRef]
- McDonnel, A.M.P.; Beving, D.; Wang, A.; Chen, W.; Yan, Y. Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv. Funct. Mater. 2005, 15, 336–340. [Google Scholar] [CrossRef]
- O’Neill, C.; Beving, D.E.; Chen, W.; Yan, Y. Durability of hydrophilic and antimicrobial zeolite coatings under water immersion. AICHE J. 2006, 52, 1157–1161. [Google Scholar] [CrossRef]
- Otavio deAraujo, L.; Anaya, K.; Berenice, S.; Pergher, C. Synthesis of antimicrobial films based on low-density polyethylene (LDPE) and zeolite A containing silver. Coatings 2019, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Pereyra, A.M.; Gonzalez, M.R.; Rosato, V.G.; Basaldella, E.I. A-type zeolite containing Ag+/Zn2+ as inorganic antifungal forwaterborne coating formulations. Prog. Org. Coat. 2014, 77, 213–218. [Google Scholar] [CrossRef]
- Rieger, K.A.; Cho, H.J.; Yeung, H.F.; Fan, W.; Schiffman, J.D. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces 2016, 8, 3032–3040. [Google Scholar] [CrossRef]
- Bedi, R.S.; Cai, R.; O’Neill, C.; Beving, D.E.; Foster, S.; Guthrie, S.; Chen, W.; Yan, Y. Hydrophilic and antimicrobial Ag-exchanged zeolite as coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. Micropor. Mesopor. Mater. 2012, 151, 352–357. [Google Scholar] [CrossRef]
- Cui, J.; Yeasmin, R.; Shao, Y.; Zhang, H.; Zhang, H.; Zhu, J. Fabrication of Ag+, Cu2+, and Zn2+ ternary ion-exchanged zeolite as an antimicrobial agent in powder coating. Ind. Eng. Chem. Res. 2020, 59, 751–762. [Google Scholar] [CrossRef]
- Dutta, P.; Wang, B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 2019, 383, 1–29. [Google Scholar] [CrossRef]
- Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanparticles for antimicrobial applications. Front. Chem. 2020, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Almeida-Aguiar, C.; Parpot, P.; Fonseca, A.M.; Neves, I.C. Preparation and assessment of antimicrobial properties of bimetallic materials based on NaY zeolite. RSC Adv. 2015, 5, 37188–37195. [Google Scholar] [CrossRef]
- Garza-Cervantes, J.A.; Chavez-Reyes, A.; Castillo, E.C.; Garcia-Rivas, G.; Ortega-Rivera, O.A.; Salinas, E.; Ortiz-Martinez, M.; Gomez-Flores, S.L.; Pena-Martinez, J.A.; Pepi-Molina, A.; et al. Synergistic antimicrobial effects of silver/transition-metal combinatorial treatments. Sci. Rep. 2017, 7, 903. [Google Scholar] [CrossRef] [Green Version]
- Daou, T.J.; Dos Santos, T.; Nouali, H.; Josien, L.; Michelin, L.; Pieuchot, L.; Dutournie, P. Synthesis of FAU-type zeolite membranes with antimicrobial activity. Molecules 2020, 25, 3414. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B. Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 7 April 2022).
- Schoonheydt, R.A.; Vandamme, L.J.; Jacobs, P.A.; Uytterhoeven, J.B. Chemical, surface and catalytic properties of nonstoichiometrically exchanged zeolites. J. Catal. 1976, 43, 292–303. [Google Scholar] [CrossRef]
- Kyotani, T.; Ikeda, T.; Saito, J.; Nakane, T.; Hanaoka, T.; Mizukami, F. Crystal structure of tubular Na-LTA zeolite membrane used for a vapor permeation process: Unusual distribution of adsorbed water molecules. Ind. Eng. Chem. Res. 2009, 48, 10870–10876. [Google Scholar] [CrossRef]
- Gellens, L.R.; Smith, J.V.; Pluth, J.J. Crystal structure of vacuum-dehydrated silver hydrogen zeolite A. J. Am. Chem. Soc. 1983, 105, 51–55. [Google Scholar] [CrossRef]
- Tahraoui, Z.; Nouali, H.; Marichal, C.; Forler, P.; Klein, J.; Daou, T.J. Influence of the compensating cations nature on the water adsorption properties of zeolites. Molecules 2020, 25, 944. [Google Scholar] [CrossRef] [Green Version]
Name | [Mn+] 1 | wt.% M 2 | Chemical Formula | ER (%) |
---|---|---|---|---|
Na-LTA | 0 | 0 | Na13.1K0.2[Si12Al12O48](H2O)25.2 | 0 |
Ag-LTA-1 | 0.001 | 0.1 | Na12.1K0.2Ag0.03[Si12Al12O48](H2O)25.0 | 0.2 |
Ag-LTA-2 | 0.005 | 0.6 | Na12.5K0.2Ag0.1[Si12Al12O48](H2O)24.9 | 1.0 |
Ag-LTA-3 | 0.01 | 1.2 | Na12.6K0.2Ag0.2[Si12Al12O48](H2O)24.7 | 1.9 |
Ag-LTA-4 | 0.02 | 2.7 | Na12.2K0.2Ag0.6[Si12 Al12O48](H2O)25.0 | 4.3 |
Ag-LTA-5 | 0.037 | 5.3 | Na11.5K0.2Ag1.1[Si12Al12O48](H2O)23.8 | 8.7 |
Ag-LTA-6 | 0.05 | 6.1 | Na11.1K0.2Ag1.3[Si12Al12O48](H2O)24.8 | 10.3 |
Ag-LTA-7 | 0.1 | 11.9 | Na9.1K0.2Ag2.7[Si12Al12O48](H2O)23.7 | 21.9 |
Cu-LTA-1 | 0.005 | 0.4 | Na12.6K0.2Cu0.1[Si12Al12O48](H2O)25.0 | 2.3 |
Cu-LTA-2 | 0.01 | 0.8 | Na12.8K0.2Cu0.3[Si12Al12O48](H2O)25.8 | 4.2 |
Cu-LTA-3 | 0.025 | 2.5 | Na11.5K0.2Cu0.9[Si12Al12O48](H2O)26.1 | 12.9 |
Cu-LTA-4 | 0.05 | 4.7 | Na9.4K0.2Cu1.6[Si12Al12O48](H2O)27.2 | 25.5 |
Zn-LTA-1 | 0.005 | 0.5 | Na12.2K0.2Zn0.1[Si12Al12O48](H2O)24.5 | 2.4 |
Zn-LTA-2 | 0.01 | 0.9 | Na11.8K0.2Zn0.3[Si12Al12O48](H2O)24.9 | 4.6 |
Zn-LTA-3 | 0.025 | 2.5 | Na11.4K0.2Zn0.8[Si12Al12O48](H2O)24.4 | 12.4 |
Zn-LTA-4 | 0.05 | 4.6 | Na10.2K0.2Zn1.6[Si12Al12O48](H2O)25.2 | 23.1 |
Name | M | [Mn+] 1 | wt.% M 2 | Chemical Formula | ER (%) |
---|---|---|---|---|---|
CuAg-LTA-1 | Cu | 0.01 | 0.7 | Na11.6K0.2Ag0.2Cu0.3[Si12Al12O48](H2O)24.7 | 3.6 |
Ag | 0.01 | 1.2 | 1.9 | ||
AgCu-LTA-1 | Ag | 0.01 | 1.2 | Na11.7K0.2Ag0.2Cu0.3[Si12Al12O48](H2O)25.0 | 2.0 |
Cu | 0.01 | 0.9 | 4.8 | ||
ZnAg-LTA-1 | Zn | 0.01 | 0.9 | Na11.7K0.2Ag0.3Zn0.3[Si12Al12O48](H2O)24.5 | 4.6 |
Ag | 0.01 | 1.5 | 2.4 | ||
AgZn-LTA-1 | Ag | 0.01 | 1.4 | Na11.8K0.2Ag0.3Zn0.3[Si12Al12O48](H2O)24.3 | 2.3 |
Zn | 0.01 | 1.1 | 5.5 | ||
Zn0.05Ag-LTA-2 | Zn | 0.05 | 3.9 | Na10.3K0.2Ag0.2Zn1.3[Si12Al12O48](H2O)24.9 | 19.6 |
Ag | 0.01 | 1.3 | 2.0 | ||
AgZn0.05-LTA-2 | Ag | 0.01 | 1.2 | Na10.1K0.2Ag0.2Zn1.3[Si12Al12O48](H2O)24.5 | 1.9 |
Zn | 0.05 | 3.9 | 20.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oheix, E.; Reicher, C.; Nouali, H.; Michelin, L.; Josien, L.; Daou, T.J.; Pieuchot, L. Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials. J. Funct. Biomater. 2022, 13, 73. https://doi.org/10.3390/jfb13020073
Oheix E, Reicher C, Nouali H, Michelin L, Josien L, Daou TJ, Pieuchot L. Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials. Journal of Functional Biomaterials. 2022; 13(2):73. https://doi.org/10.3390/jfb13020073
Chicago/Turabian StyleOheix, Emmanuel, Chloé Reicher, Habiba Nouali, Laure Michelin, Ludovic Josien, T. Jean Daou, and Laurent Pieuchot. 2022. "Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials" Journal of Functional Biomaterials 13, no. 2: 73. https://doi.org/10.3390/jfb13020073
APA StyleOheix, E., Reicher, C., Nouali, H., Michelin, L., Josien, L., Daou, T. J., & Pieuchot, L. (2022). Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials. Journal of Functional Biomaterials, 13(2), 73. https://doi.org/10.3390/jfb13020073