A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites
Abstract
:1. Introduction
2. Methods
2.1. Research Question
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Searching
3. Results
3.1. The Physicochemical Properties of BAG-Loaded Dental Resin Composites
3.1.1. Curing Potentials (DC, DoC, Light Transmittance, Polymerization Shrinkage)
3.1.2. Water Sorption, Water Solubility, and Colour Stability
3.2. The Mechanical Properties of BAG-Loaded Dental Resin Composites
3.3. Mineralization Ability of BAG-Loaded Dental Resin Composites
3.3.1. The Release of Remineralizing Ions, pH Elevation, and Apatite Formation
3.3.2. Anti-Demineralization and Remineralization of Enamel and Dentin
3.4. In Vitro Biological Responses of BAG-Loaded Dental Resin Composites
3.4.1. In Vitro Biocompatibility of BAG-Loaded Resin Composites
3.4.2. In Vitro Antibacterial Effects of BAG-Loaded Resin Composites
4. Discussion
4.1. The Effects of BAG Fillers on Physicochemical and Mechanical Properties of Resin Composites
4.2. The Effects of BAG Fillers on the Mineralization Ability of Dental Resin Composites
4.3. The Effects of BAG Fillers on In Vitro Biological Responses of Dental Resin Composite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chesterman, J.; Jowett, A.; Gallacher, A.; Nixon, P. Bulk-fill resin-based composite restorative materials: A review. Br. Dent. J. 2017, 222, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Deliperi, S.; Bardwell, D.N. An alternative method to reduce polymerization shrinkage in direct posterior composite restorations. J. Am. Dent. Assoc. 2002, 133, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Forss, H.; Widström, E. From amalgam to composite: Selection of restorative materials and restoration longevity in Finland. Acta Odontol. Scand. 2001, 59, 57–62. [Google Scholar] [CrossRef]
- Soares, C.J.; Faria, E.S.A.L.; Rodrigues, M.P.; Vilela, A.B.F.; Pfeifer, C.S.; Tantbirojn, D.; Versluis, A. Polymerization shrinkage stress of composite resins and resin cements—What do we need to know? Braz. Oral. Res. 2017, 31, e62. [Google Scholar] [CrossRef] [Green Version]
- Konishi, N.; Torii, Y.; Kurosaki, A.; Takatsuka, T.; Itota, T.; Yoshiyama, M. Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J. Oral Rehabil. 2003, 30, 790–795. [Google Scholar] [CrossRef]
- Svanberg, M.; Mjör, I.; Ørstavik, D. Mutans Streptococci in Plaque from Margins of Amalgam, Composite, and Glass-ionomer Restorations. J. Dent. Res. 1990, 69, 861–864. [Google Scholar] [CrossRef]
- Wolff, M.S.; Larson, C. The cariogenic dental biofilm: Good, bad or just something to control? Braz. Oral. Res. 2009, 23, 31–38. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [Google Scholar] [CrossRef]
- Huang, W.; Day, D.E.; Kittiratanapiboon, K.; Rahaman, M.N. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 2006, 17, 583–596. [Google Scholar] [CrossRef]
- Allan, I.; Newman, H.; Wilson, M. Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials 2001, 22, 1683–1687. [Google Scholar] [CrossRef]
- Begum, S.; Johnson, W.E.; Worthington, T.; Martin, R.A. The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass. Biomed. Mater. 2016, 11, 015006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Chang, J.; Liu, M.; Ning, C. Study on antibacterial effect of 45S5 Bioglass®. J. Mater. Sci. Mater. Med. 2009, 20, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Lee, M.G.; Ferracane, J.L.; Davis, H.; Bae, H.E.; Choi, D.; Kim, D.-S. Effect of bioactive glass-containing resin composite on dentin remineralization. J. Dent. 2018, 75, 58–64. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.; Cama, G.; Brauer, D.; Sauro, S. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin. J. Dent. Res. 2017, 96, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, V.; Nahrkhalaji, M.M.; Fathi, M.H.; Mousavi, S.B.; Esfahani, B.N. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. J. Biomed. Mater. Res. Part A 2010, 94, 160–168. [Google Scholar] [CrossRef]
- Munukka, E.; Leppäranta, O.; Korkeamäki, M.; Vaahtio, M.; Peltola, T.; Zhang, D.; Hupa, L.; Ylänen, H.; Salonen, J.I.; Viljanen, M.K.; et al. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J. Biomed. Mater. Res. 2008, 19, 27–32. [Google Scholar] [CrossRef]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Wilson, J.; Pigott, G.H.; Schoen, F.J.; Hench, L.L. Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 1981, 15, 805–817. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Boccaccini, A.R.; Hupa, L.; Watts, D.C. Bioactive dental materials-Do they exist and what does bioactivity mean? Dent. Mater. 2018, 34, 693–694. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive Glass Applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiskaya, M.; Shahid, S.; Gillam, D.; Hill, R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent. Mater. 2021, 37, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Tuncdemir, M.T.; Gulbahce, N. Addition of antibacterial agent effect on color stability of composites after immersion of different beverages. J. Esthet. Restor. Dent. 2019, 31, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Oral, O.; Lassila, L.V.; Kumbuloglu, O.; Vallittu, P.K. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties. Dent. Mater. 2014, 30, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, R.; Par, M.; Mohn, D.; Wiedemeier, D.B.; Attin, T.; Taubock, T.T. Bioactivity and physico-chemical properties of dental composites functionalized with nano- vs. micro-sized bioactive flass. J. Clin. Med. 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Par, M.; Spanovic, N.; Mohn, D.; Attin, T.; Tauböck, T.T.; Tarle, Z. Curing potential of experimental resin composites filled with bioactive glass: A comparison between Bis-EMA and UDMA based resin systems. Dent. Mater. 2020, 36, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Spanovic, N.; Bjelovucic, R.; Skenderovic, H.; Gamulin, O.; Tarle, Z. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure. J. Dent. 2018, 75, 113–120. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Tauböck, T.T.; Attin, T.; Tarle, Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci. Rep. 2019, 9, 17245. [Google Scholar] [CrossRef] [Green Version]
- Assad, J.M.C.L.; Batista, R.; Anami, L.C.; Almeida, A.; Muniz, I.A.F.; Marinho, R.M.M.; Batista, A.U.; Castellano, L.R.C.; Bonan, P.R.F. Effect of hydroxyapatite and 45S5 bioactive glass addition on a dental adhesive resin cement. Int. J. Appl. Glas. Sci. 2020, 12, 78–88. [Google Scholar] [CrossRef]
- Nicolae, L.C.; Shelton, R.M.; Cooper, P.R.; Martin, R.A.; Palin, W.M. The Effect of UDMA/TEGDMA Mixtures and Bioglass Incorporation on the Mechanical and Physical Properties of Resin and Resin-Based Composite Materials. Conf. Pap. Sci. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Zehnder, M.; Schweizer, T.; Stark, W.J.; Attin, T.; Mohn, D. Functionalizing a dentin bonding resin to become bioactive. Dent. Mater. 2014, 30, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Marovic, D.; Haugen, H.; Mandic, V.N.; Par, M.; Zheng, K.; Tarle, Z.; Boccaccini, A. Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization. Materials 2021, 14, 2611. [Google Scholar] [CrossRef] [PubMed]
- Elalmis, Y.B.; Ikizler, B.K.; Depren, S.K.; Yucel, S.; Aydin, I. Investigation of alumina doped 45S5 glass as a bioactive filler for experimental dental composites. Int. J. Appl. Glas. Sci. 2021, 12, 313–327. [Google Scholar] [CrossRef]
- Dieckmann, P.; Mohn, D.; Zehnder, M.; Attin, T.; Tauböck, T.T. Light Transmittance and Polymerization of Bulk-Fill Composite Materials Doped with Bioactive Micro-Fillers. Materials 2019, 12, 4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Clin. Oral Investig. 2019, 23, 2733–2741. [Google Scholar] [CrossRef]
- Par, M.; Attin, T.; Tarle, Z.; Tauböck, T.T. A New Customized Bioactive Glass Filler to Functionalize Resin Composites: Acid-Neutralizing Capability, Degree of Conversion, and Apatite Precipitation. J. Clin. Med. 2020, 9, 1173. [Google Scholar] [CrossRef]
- Balbinot, G.D.S.; Collares, F.M.; Herpich, T.L.; Visioli, F.; Samuel, S.M.W.; Leitune, V.C.B. Niobium containing bioactive glasses as remineralizing filler for adhesive resins. Dent. Mater. 2020, 36, 221–228. [Google Scholar] [CrossRef]
- Kattan, H.; Chatzistavrou, X.; Boynton, J.; Dennison, J.; Yaman, P.; Papagerakis, P. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin. Materials 2015, 8, 4668–4678. [Google Scholar] [CrossRef] [Green Version]
- Jäger, F.; Mohn, D.; Attin, T.; Tauböck, T.T. Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses. Dent. Mater. J. 2021, 40, 110–115. [Google Scholar] [CrossRef]
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Polymerization kinetics of experimental bioactive composites containing bioactive glass. J. Dent. 2018, 76, 83–88. [Google Scholar] [CrossRef]
- Par, M.; Prskalo, K.; Tauböck, T.T.; Skenderovic, H.; Attin, T.; Tarle, Z. Polymerization kinetics of experimental resin composites functionalized with conventional (45S5) and a customized low-sodium fluoride-containing bioactive glass. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Par, M.; Mohn, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Polymerization shrinkage behaviour of resin composites functionalized with unsilanized bioactive glass fillers. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- ISO 4049:2019(E); Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- Choi, A.; Yoo, K.-H.; Yoon, S.-Y.; Park, B.-S.; Kim, I.-R.; Kim, Y.-I. Anti-Microbial and Remineralizing Properties of Self-Adhesive Orthodontic Resin Containing Mesoporous Bioactive Glass. Materials 2021, 14, 3550. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Kim, D.-H.; Song, C.W.; Yoon, S.-Y.; Kim, S.-Y.; Na, H.S.; Chung, J.; Kim, Y.-I.; Kwon, Y.H. Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass. Korean J. Orthod. 2018, 48, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Korkut, E.; Torlak, E.; Altunsoy, M. Antimicrobial and Mechanical Properties of Dental Resin Composite Containing Bioactive Glass. J. Appl. Biomater. Funct. Mater. 2016, 14, e296–e301. [Google Scholar] [CrossRef]
- Chatzistavrou, X.; Lefkelidou, A.; Papadopoulou, L.; Pavlidou, E.; Paraskevopoulos, K.M.; Fenno, J.C.; Flannagan, S.; González-Cabezas, C.; Kotsanos, N.; Papagerakis, P. Bactericidal and Bioactive Dental Composites. Front. Physiol. 2018, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-J.; Seo, Y.-B.; Seo, J.-Y.; Ryu, J.-H.; Ahn, H.-J.; Kim, K.-M.; Kwon, J.-S.; Choi, S.-H. Development of a Bioactive Flowable Resin Composite Containing a Zinc-Doped Phosphate-Based Glass. Nanomaterials 2020, 10, 2311. [Google Scholar] [CrossRef]
- Lee, S.-M.; Yoo, K.-H.; Yoon, S.-Y.; Kim, I.-R.; Park, B.-S.; Son, W.-S.; Ko, C.-C.; Son, S.-A.; Kim, Y.-I. Enamel Anti-Demineralization Effect of Orthodontic Adhesive Containing Bioactive Glass and Graphene Oxide: An In-Vitro Study. Materials 2018, 11, 1728. [Google Scholar] [CrossRef] [Green Version]
- Khvostenko, D.; Mitchell, J.; Hilton, T.; Ferracane, J.; Kruzic, J. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent. Mater. 2013, 29, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Hanif, A.; Ghani, F. Mechanical properties of an experimental resin based composite containing silver nanoparticles and bioactive glass. Pak. J. Med. Sci. 2020, 36, 776–781. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Jiang, Q.; Liu, X.; Chen, Y. Novel Bioactive Glass-Modified Hybrid Composite Resin: Mechanical Properties, Biocompatibility, and Antibacterial and Remineralizing Activity. Front. Bioeng. Biotechnol. 2021, 9, 661734. [Google Scholar] [CrossRef]
- Proença, M.A.M.; Carvalho, E.M.; e Silva, A.S.; Ribeiro, G.A.C.; Ferreira, P.V.C.; Carvalho, C.N.; Bauer, J. Orthodontic resin containing bioactive glass: Preparation, physicochemical characterization, antimicrobial activity, bioactivity and bonding to enamel. Int. J. Adhes. Adhes. 2020, 99, 102575. [Google Scholar] [CrossRef]
- Al-Eesa, N.; Fernandes, S.D.; Hill, R.; Wong, F.; Jargalsaikhan, U.; Shahid, S. Remineralising fluorine containing bioactive glass composites. Dent. Mater. 2021, 37, 672–681. [Google Scholar] [CrossRef]
- Freris, I.; Cristofori, D.; Riello, P.; Benedetti, A. Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate). J. Colloid Interface Sci. 2009, 331, 351–355. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tauböck, T.T. Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers. Sci. Rep. 2021, 11, 11806. [Google Scholar] [CrossRef]
- Al-Eesa, N.; Karpukhina, N.; Hill, R.; Johal, A.; Wong, F. Bioactive glass composite for orthodontic adhesives—Formation and characterisation of apatites using MAS-NMR and SEM. Dent. Mater. 2019, 35, 597–605. [Google Scholar] [CrossRef]
- Kulkova, J.; Abdulmajeed, A.A.; Könönen, E.; Närhi, T.O. Biofilm Medium Leads to Apatite Formation on Bioactive Surfaces. J. Appl. Biomater. Funct. Mater. 2013, 11, 95–98. [Google Scholar] [CrossRef]
- Aponso, S.; Ummadi, J.; Davis, H.; Ferracane, J.; Koley, D. A Chemical Approach to Optimizing Bioactive Glass Dental Composites. J. Dent. Res. 2019, 98, 194–199. [Google Scholar] [CrossRef]
- Chatzistavrou, X.; Velamakanni, S.; DiRenzo, K.; Lefkelidou, A.; Fenno, J.C.; Kasuga, T.; Boccaccini, A.R.; Papagerakis, P. Designing dental composites with bioactive and bactericidal properties. Mater. Sci. Eng. C 2015, 52, 267–272. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Tauböck, T.T. Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin. Biomedicines 2021, 9, 1616. [Google Scholar] [CrossRef]
- Al-Eesa, N.; Johal, A.; Hill, R.; Wong, F. Fluoride containing bioactive glass composite for orthodontic adhesives—Apatite formation properties. Dent. Mater. 2018, 34, 1127–1133. [Google Scholar] [CrossRef]
- Al-Eesa, N.; Wong, F.; Johal, A.; Hill, R. Fluoride containing bioactive glass composite for orthodontic adhesivesion release properties. Dent. Mater. 2017, 33, 1324–1329. [Google Scholar] [CrossRef]
- Song, H.-K.; Yoo, K.-H.; Yoon, S.-Y.; Na, H.S.; Chung, J.; Son, W.-S.; Lee, S.-M.; Kim, Y.-I. In Vitro Effect of Gallium-Doped Bioactive Glass on Enamel Anti-Demineralization and Bond Strength of Orthodontic Resins. Appl. Sci. 2019, 9, 4918. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.L.; Davis, H.B.; Tufekci, E.; Crowe, J.J.; Covell, D.A.; Mitchell, J.C. Ion release from a novel orthodontic resin bonding agent for the reduction and/or prevention of white spot lesions: An in vitro study. Angle Orthod. 2011, 81, 1014–1020. [Google Scholar] [CrossRef]
- Davis, H.B.; Gwinner, F.; Mitchell, J.C.; Ferracane, J.L. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent. Mater. 2014, 30, 1187–1194. [Google Scholar] [CrossRef] [Green Version]
- Fuss, M.; Wicht, M.J.; Attin, T.; Derman, S.H.M.; Noack, M.J. Protective Buffering Capacity of Restorative Dental Materials In Vitro. J. Adhes. Dent. 2017, 19, 177–183. [Google Scholar] [CrossRef]
- El-Kheshen, A.; Khaliafa, F.; Saad, E.; Elwan, R. Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram. Int. 2008, 34, 1667–1673. [Google Scholar] [CrossRef]
- Brauer, D.S.; Karpukhina, N.; O’Donnell, M.D.; Law, R.V.; Hill, R.G. Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 2010, 6, 3275–3282. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Laforge, F.O.; Mirkin, M.V. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 2007, 9, 802–823. [Google Scholar] [CrossRef]
- Khvostenko, D.; Hilton, T.; Ferracane, J.; Mitchell, J.; Kruzic, J. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016, 32, 73–81. [Google Scholar] [CrossRef]
- Salehi, S.; Gwinner, F.; Mitchell, J.C.; Pfeifer, C.; Ferracane, J.L. Cytotoxicity of resin composites containing bioactive glass fillers. Dent. Mater. 2015, 31, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Losasso, C.; Belluco, S.; Cibin, V.; Zavagnin, P.; Micetic, I.; Gallocchio, F.; Zanella, M.; Bregoli, L.; Biancotto, G.; Ricci, A. Antibacterial activity of silver nanoparticles: Sensitivity of different Salmonella serovars. Front. Microbiol. 2014, 5, 227. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.G.; Campbell, P.M.; Buschang, P.H.; Cai, J.; Honeyman, A.L. Antimicrobial Effects of Zinc Oxide in an Orthodontic Bonding Agent. Angle Orthod. 2009, 79, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Osorio, R.; Cabello, I.; Toledano, M. Bioactivity of zinc-doped dental adhesives. J. Dent. 2014, 42, 403–412. [Google Scholar] [CrossRef]
- Kim, D.-A.; Lee, J.-H.; Jun, S.-K.; Kim, H.-W.; Eltohamy, M.; Lee, H.-H. Sol–gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. Dent. Mater. 2017, 33, 805–817. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Lovell, L.G.; Stansbury, J.W.; Syrpes, D.C.; Bowman, C.N. Effects of Composition and Reactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate Copolymerizations. Macromolecules 1999, 32, 3913–3921. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Resin-Based Dental Composite Materials. In Handbook of Bioceramics and Biocomposites; Springer: Cham, Switzerland, 2015; pp. 357–405. [Google Scholar]
- Hosseinalipour, M.; Javadpour, J.; Rezaie, H.R.; Dadras, T.; Hayati, A.N. Investigation of Mechanical Properties of Experimental Bis-GMA/TEGDMA Dental Composite Resins Containing Various Mass Fractions of Silica Nanoparticles. J. Prosthodont. 2010, 19, 112–117. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Bjelovucic, R.; Marovic, D.; Schmalz, G.; Gamulin, O.; Tarle, Z. Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dent. Mater. J. 2019, 38, 555–564. [Google Scholar] [CrossRef]
- Braden, M.; Causton, E.; Clarke, R. Diffusion of Water in Composite Filling Materials. J. Dent. Res. 1976, 55, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Shirai, K.; Nakayama, Y.; Itoh, M.; Okazaki, M.; Shintani, H.; Inoue, S.; Lambrechts, P.; Vanherle, G.; Van Meerbeek, B. Improved Filler-Matrix Coupling in Resin Composites. J. Dent. Res. 2002, 81, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Marovic, D.; Tarle, Z.; Hiller, K.A.; Müller, R.; Ristic, M.; Rosentritt, M.; Skrtic, A.; Schmalz, G.; Mueller, R. Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate. Clin. Oral Investig. 2014, 18, 783–792. [Google Scholar] [CrossRef]
- Brézulier, D.; Chaigneau, L.; Jeanne, S.; Lebullenger, R. The Challenge of 3D Bioprinting of Composite Natural Polymers PLA/Bioglass: Trends and Benefits in Cleft Palate Surgery. Biomedicines 2021, 9, 1553. [Google Scholar] [CrossRef] [PubMed]
- Faqhiri, H.; Hannula, M.; Kellomäki, M.; Calejo, M.T.; Massera, J. Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. J. Funct. Biomater. 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, B.A.; Reinsch, S.; Müller, R. Sintering and Foaming of Barium Silicate Glass Powder Compacts. Front. Mater. 2016, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Altmann, A.S.P.; Collares, F.M.; Balbinot, G.D.S.; Leitune, V.C.B.; Takimi, A.S.; Samuel, S.M.W. Niobium pentoxide phosphate invert glass as a mineralizing agent in an experimental orthodontic adhesive. Angle Orthod. 2017, 87, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, K.K.; Araujo, T.P.; Carvalho, E.M.; Meier, M.M.; Tanaka, A.; Carvalho, C.N.; Bauer, J. Bioactivity and properties of an adhesive system functionalized with an experimental niobium-based glass. J. Mech. Behav. Biomed. Mater. 2018, 78, 188–195. [Google Scholar] [CrossRef]
- Garcia, I.M.; Leitune, V.C.B.; Balbinot, G.D.S.; Samuel, S.M.W.; Collares, F.M. Influence of niobium pentoxide addition on the properties of glass ionomer cements. Acta Biomater. Odontol. Scand. 2016, 2, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef]
- Bakopoulou, A.; Papadopoulos, T.; Garefis, P. Molecular Toxicology of Substances Released from Resin–Based Dental Restorative Materials. Int. J. Mol. Sci. 2009, 10, 3861–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Saiz, E.; Rahaman, M.N.; Tomsia, A.P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater. Sci. Eng. C 2011, 31, 1245–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Rashidy, A.A.; Roether, J.A.; Harhaus, L.; Kneser, U.; Boccaccini, A.R. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017, 62, 1–28. [Google Scholar] [CrossRef] [PubMed]
- El-Ghannam, A.; Ducheyne, P.; Shapiro, I. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials 1997, 18, 295–303. [Google Scholar] [CrossRef]
- Foppiano, S.; Marshall, S.J.; Marshall, G.W.; Saiz, E.; Tomsia, A.P. Bioactive glass coatings affect the behavior of osteoblast-like cells. Acta Biomater. 2007, 3, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Vitale-Brovarone, C.; Verné, E.; Robiglio, L.; Martinasso, G.; Canuto, R.A.; Muzio, G. Biocompatible glass-ceramic materials for bone substitution. J. Mater. Sci. Mater. Med. 2008, 19, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Reilly, G.C.; Radin, S.; Chen, A.T.; Ducheyne, P. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 2007, 28, 4091–4097. [Google Scholar] [CrossRef] [Green Version]
- Verne’, E.; Bretcanu, O.A.; Balagna, C.; Bianchi, C.; Cannas, M.; Gatti, S.; Vitale-Brovarone, C. Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 2009, 20, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Boccardi, E.; Philippart, A.; Melli, V.; Altomare, L.; De Nardo, L.; Novajra, G.; Vitale-Brovarone, C.; Fey, T.; Boccaccini, A.R. Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges. Ann. Biomed. Eng. 2016, 44, 1881–1893. [Google Scholar] [CrossRef]
- Poologasundarampillai, G.; Wang, D.; Li, S.; Nakamura, J.; Bradley, R.; Lee, P.; Stevens, M.; McPhail, D.; Kasuga, T.; Jones, J. Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater. 2014, 10, 3733–3746. [Google Scholar] [CrossRef]
- Itälä, A.; Ylänen, H.O.; Yrjans, J.; Heino, T.; Hentunen, T.; Hupa, M.; Aro, H.T. Characterization of microrough bioactive glass surface: Surface reactions and osteoblast responses in vitro. J. Biomed. Mater. Res. 2003, 62, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Geurtsen, W.; Lehmann, F.; Spahl, W.; Leyhausen, G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 1998, 41, 474–480. [Google Scholar] [CrossRef]
- Imazato, S.; Horikawa, D.; Nishida, M.; Ebisu, S. Effects of monomers eluted from dental resin restoratives on osteoblast-like cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Horikawa, D.; Ogata, K.; Kinomoto, Y.; Ebisu, S. Responses of MC3T3-E1 cells to three dental resin-based restorative materials. J. Biomed. Mater. Res. Part A 2006, 76, 765–772. [Google Scholar] [CrossRef]
Research | Main Findings |
---|---|
[23] | S53P4 BAG led to a decrease in the colour stability of resin composites after immersion in staining solutions (tea, coffee, and water) for 1, 7, and 30 days. |
[24] | A higher WS was found in biostable glass-loaded resin composites rather than in the S53P4 BAG-loaded composites. |
[25] | Variations in the BAG particle size did not affect DC. |
[26] | The UDMA series presented better light transmittance and a higher DoC than the bis-GMA and bis-EMA resin systems. |
[27] | The addition of 40 wt% of BAG led to the decrease in DC and DoC. Light transmittance was impaired by BAG fillers not in a dose-dependent manner. |
[28] | BAG incorporation in resin composites diminished 24-h DC. Post-cure reaction at 150 °C was unable to compensate for the initially decreased DC. |
[29] | The addition of 45S5 BAG fillers increased the wettability of the resin-based cement. |
[30] | BAG fillers reflected no detrimental effects on the DC of UDMA/TEGDMA-based resin composites. |
[31] | Bismuth-oxide-modified BAG showed no effect on the DC. |
[32] | The 10 wt% Cu-doped mesoporous bioactive glass contributed to the high DC. |
[33] | 45S5 BAG fillers led to the increase in WS and WL of BAG-loaded resin composites. |
[34] | A 20 wt% BAG incorporation had no influence on the DC for commercial composite Venus Bulk Fill and Filtek Bulk Fill, except for SDR, which showed a decreased DC. |
[35] | BAG filler could diminish the DC. |
[36] | F-containing BAG showed no negative effects on DC. |
[37] | Niobium-doped BAG showed no effect on the DC, and higher hardness and softening in the solvent than in the BAG group. |
[38] | The 10 wt% of silver-doped bioactive glass showed a significantly small DoC at 0.76 ± 0.02 mm. |
[39] | BAG particle sizes showed no significant effects in DC. |
[40] | BAG fillers diminished polymerization rate and the 5-min real-time DC. |
[41] | F-containing BAG showed no negative effects on DC and higher light transmittance than conventional BAG. |
[42] | F-containing BAG led to the increase in linear shrinkage and shrinkage stress of resin composites, contrary to conventional BAG. |
Compositions | Contents (wt%) in Different BAG | |
---|---|---|
45S5 BAG | CaF2-Containing BAG | |
SiO2 | 45.0 | 33.5 |
CaO | 24.5 | 33.0 |
Na2O | 24.5 | 10.5 |
P2O5 | 6.0 | 11.0 |
CaF2 | 0 | 12.0 |
Research | Main Findings |
---|---|
Oral et al. [24] | The silanization of BAG particles did not reveal a significant effect on the FS and toughness of the composite. |
Odermatt et al. [25] | Particle sizes of BAG fillers showed no influence on MH. |
Costa Lima Assad et al. [29] | A 10 and 20 wt% of 45S5 BAG showed a decrease in FS and an increase in MH. |
Nicolae et al. [30] | The 20 wt% BAG fillers showed higher FS and FM values in bis-GMA/TEGDMA resin composites. Twenty wt% BAG fillers showed no difference in FS and FM in UDMA/TEGDMA resin system. The addition of more than 20 wt% BAG fillers caused a marked decrease in FS and FM in both resin systems. |
Marovic et al. [32] | The 10 wt% Cu-MBGN-loaded resin composites showed lower FS and higher FM and MH than the BAG-containing composites and the BAG-free control group. |
Elamis et al. [33] | The silanization of BAG resulted in improved FS and FM while surface microhardness values decreased. The FS, FM, and MH of resin composites treated with alumina-doped 45S5 BAG were higher than those of the 45S5 BAG group. |
Dieckmann et al. [34] | Microhardness was increased in 20 wt% BAG-loaded Filtek Bulk Fill, while no changes were found in Venus Bulk Fill or SDR composite materials. |
Par et al. [35] | More than 10 wt% of BAG amount reduced the FS and MR, while 5 wt% BAG decreased FM. Higher amounts of BAG yielded a higher degradation of FS, FM, and MR after artificial aging in water. |
Kattan et al. [38] | A decrease of 30% in the biaxial strength was observed for Ag-containing BAG-loaded composites. |
Choi et al. [44] | Mesoporous BAG enhanced the microhardness and showed a slight decrease in the bond strength. |
Kim et al. [45] | Ag- or Zn-doped BAG enhanced the MH and showed no significant difference in shear bond strength. |
Korkut et al. [46] | The addition of S53P4 BAG fillers of less than 30 wt% did not affect FS and CS. |
Chatziatavrou et al. [47] | Resin adhesive modified with Ag-doped BAG showed no significant difference in shear bond strength. |
Lee et al. [48] | Zinc-doped phosphate-based glass (Zn-PBG) negatively affect the FS. |
Lee et al. [49] | Graphene oxide-doped bioactive glass (GO-BAG) enhanced the microhardness and decreased shear bond strength decrease. |
Khvostenko et al. [50] | FS, fracture toughness, and fatigue crack growth of 0–15 wt% Na-free BAG-loaded resin composites were superior to commercially available composite Heliomolar. |
Hanif et al. [51] | The 45S5 BAG particle doped with 5, 10, and 15 wt% nanosilver resulted in reduced mechanical characteristics. |
Han et al. [52] | Eight, 16, and 23 wt% BAG showed no adverse effects on FS and CS. |
Proenca et al. [53] | BAG reflected the negative impact on MH. |
Al-Eesa et al. [54] | The silanized BAG-loaded composites exhibited significantly higher CS and FS than the non-silanized BAG composites. |
Research | Main Findings |
---|---|
Hu et al. [14] | The dentine surface was blocked by mineral components together with an increase in the microhardness of the dentin after 2 weeks of storage with resin composites incorporated with 65S BAG (65% Si, 31% Ca, and 4% P in mol%) in SBF and PBS. |
Tezergil-Mutluay et al. [15] | F-containing phosphate-rich BAG-doped resin composites demonstrated a stronger ability to remineralize the demineralized dentin after storage in artificial saliva for 30 days compared to the BAG-loaded group. |
Odermatt et al. [25] | Nano-BAG composite caused a final value of around 10.5 and produced numerous dispersed apatite. Micro-BAG composite raised the pH to a final value of 8.5 and created small and uniformly distributed crystals. |
Elalmis et al. [33] | The Al-doped 45S5 BAG-containing resin composite showed decreased apatite formation after 28 days of immersion in SBF compared with conventional 45S5 BAG. |
Par et al. [36] | CaF2-containing BAG composites showed final pH values in the range of 2.9–9.6 compared to 9.2–10.1 for LAS. |
Balbinot et al. [37] | Niobium-doped BAG-loaded adhesive resins produced higher mineral deposition than the control group and BAG-containing composites after 28 days in SBF. |
Choi et al. [44], Kim et al. [45], Lee et al. [49] | BAG fillers enhanced the remineralization and anti-demineralization length of enamel after submerging samples in demineralization solution for 6 h, followed by 18 h in remineralization solution for 14 days. |
Chatzistavrou et al. [47] | Ag-doped BAG composites showed apatite-like phase on resin composites after 14 days of storage in SBF. |
Lee et al. [48] | Resin composite containing Zn-doped phosphate-based bioactive glass increasingly released more Ca, P, Zn, and Na ions with a rise in Zn-BAG concentration. |
Han et al. [52] | 45S5 BAG-loaded resin composites demonstrated more mineralized layer occluding dentin tubules after immersion in SBF for 21 days. |
Proenca et al. [53] | Resins containing 45S5 BAG had a high ability to alkalize the medium to ultimate pH values of around 10, to release calcium and phosphate ions and to produce a considerable volume of precipitates. |
Al-Eesa et al. [54] | The silanized and non-silanized BAG modified composites had identical fluoride concentrations in artificial saliva until the 28-day time point. The non-silanized composite released higher fluoride from 28 days onwards. Silanization had no effect on the production of apatite |
Par et al. [56] | The 20 wt% of BAG-loaded resin composites maintained the initial enamel microhardness for up to 5 acid addition cycles (20 d) and could maintain a plateau at pH = 9–10. The 20 wt% F-containing BAG and 10 wt% BAG kept the original enamel microhardness for 3 acid cycles (12 d) and showed only transient alkalization. The 10 wt% F-containing BAG group could maintain original enamel microhardness for 2 acid addition cycles (8 d). |
Al-Eesa et al. [57] | The majority of the BAG particles in resin composites had reacted to create apatite in acidic artificial saliva at a pH of 4 (AS4). Faster degradation of the BAG disk was found in acidic media AS4. The formed fluorapatite signal was strongest for disks in the AS4 medium. |
Kulkova et al. [58] | Bacterial biofilm growing medium led to apatite formation on the surfaces of the BAG composites. |
Aponso et al. [59] | None of the BAG-containing composites showed more than a 0.2-unit pH shift using a scanning electrochemical microscopy (SECM) analytic approach. |
Chatzistavrou et al. [60] | Apatite-like phase was detected on resin composites containing Ag-doped BAG after 14 days of storage in SBF. |
Par et al. [61] | Dentine microhardness was maintained over different numbers of acid additions, as follows: 20 wt% BAG (up to 12 days), and 10 wt% BAG, and 20 wt% F-containing BAG (up to 4 days). The 20 wt% BAG group plateaued at pH = 9, other groups attained a stable pH at only 6–7. |
Al-Eesa et al. [62] | The apatite crystals produced on the disk surface in artificial saliva at a pH of 7 were strongly oriented and grew in orientation over time. |
Al-Eesa et al. [63] | The largest increase in pH (up to 3 pH levels) was found in the artificial saliva at a pH of 4 at the final time-point of 180 days. |
Song et al. [64] | Gallium-doped mesoporous bioactive glass-modified resin composites revealed the increased release of Ca, P, and Ga ions along with a decrease in pH with immersion time |
Brown et al. [65] | In the SBF at pH of 4, a final pH increase of 2 was seen. In the noncariogenic SBF at pH 7, a pH increase of 0.25 was observed. |
Davis et al. [66] | Resin composite containing BAG fillers (BAG 81 (81% Si; 11% Ca; 4% P; 3% F;1% B)) released more fluoride ions after 222 h compared with BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B)). BAG 61 composites revealed more release of calcium ions during each of the 2- and 22-h time periods. |
Fuss et al. [67] | The 10 wt% nano-sized (30–50 nm) bismuth (Bi)-modified 45S5 BAG-doped resin composites showed a final pH of 9.2 in hydrochloric acid (HAS). |
Research | Main Findings |
---|---|
Costa Lima Assad et al. [29] | No difference in human osteoblast (MG63) viability was found between the control group without composites and the experimental groups containing BAG-loaded resin composites using the direct-contact cell model. |
Balbinot et al. [37] | Experimental adhesives containing 2 wt% BAG or 2 wt% niobium-doped BAG (BAGNb) reached levels of 126.89% and 129.53% of cell viability, respectively, compared with the control resin adhesive. |
Kattan et al. [38] | The addition of 5, 10, and 15 wt% Ag-doped 58S BAG (Ag-BAG) in resin composites demonstrated improved antibacterial potentials against S. mutans and L. casei. |
Choi et al. [44] | The addition of 5 wt% mesoporous BAG nanoparticles showed a significant antibacterial effect on both S. mutans and P. gingivalis. |
Kim et al. [45], Lee et al. [48] | The resin composites incorporated with Zn-PBG revealed the antibacterial activity against S. mutans. |
Korkut et al. [46] | Resin composites containing 5, 10, and 30 wt% of microparticulate S53P4 BAG significantly decreased the viability of E. coli, S. aureus, and S. mutans. |
Chatzistavrou et al. [47] | The number of dead bacteria in the S. mutans biofilm significantly increased with the increase in Ag-doped BAG concentration in the resin composites. |
Lee et al. [49] | BAG and graphene oxide (GO)-combined BAG had no effects on the cell viability of human gingival fibroblasts (HGF-1) using the direct-contact cell model. Resin composites containing a mixture of 5 wt% GO combined with BAG had a considerably stronger antibacterial impact on S. mutans. |
Han et al. [52] | The 8 wt% 45S5 BAG-loaded resin composites were not cytotoxic to mouse fibroblast L929, while 16 wt% and 23 wt% BAG groups revealed cytotoxicity. The cell viability was returned to normal after adjusting the elevated pH value of the extracts to neutral. |
Proenca et al. [53] | The resins containing 5, 10, and 20 wt% 45S5 BAG demonstrated a significant decrease in S. mutans viability, regardless of BAG levels. |
Aponso et al. [59] | BAG composites demonstrated a reduced height and volume in S. mutans biofilm growth. |
Chatzistarou et al. [60] | The composite containing 15 wt% Ag-BAG significantly inhibited S. mutans and E. coli growth. |
Song et al. [64] | A 5 wt% gallium-doped mesoporous bioactive glass (GaMBN)-containing resin adhesive revealed significantly higher viability of human dental pulp stem cells (hDPSCs) than other groups after 24 h of cell culture. GaMBN-loaded resin adhesive showed no effects on the viability of S. mutans. |
Khostenko et al. [71] | BAG-loaded resin composites showed lower average depth of bacterial penetration (61%) into the marginal gap in comparison to the control group, which showed 100% penetration. |
Salehi et al. [72] | Resin composites containing 0, 5, 10, and 15 wt% of BAG impaired cell viability using composites extract with a dilution level of 1:8 or higher and under direct exposure to newly cured composites. Experimental composites after preincubation in a cell culture medium for 7 days showed similar cell metabolic activity to the control. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.; Burrow, M.F.; Matinlinna, J.P.; Wang, Y.; Tsoi, J.K.H. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. J. Funct. Biomater. 2022, 13, 208. https://doi.org/10.3390/jfb13040208
Yun J, Burrow MF, Matinlinna JP, Wang Y, Tsoi JKH. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. Journal of Functional Biomaterials. 2022; 13(4):208. https://doi.org/10.3390/jfb13040208
Chicago/Turabian StyleYun, Jiaojiao, Michael Francis Burrow, Jukka Pekka Matinlinna, Yan Wang, and James Kit Hon Tsoi. 2022. "A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites" Journal of Functional Biomaterials 13, no. 4: 208. https://doi.org/10.3390/jfb13040208
APA StyleYun, J., Burrow, M. F., Matinlinna, J. P., Wang, Y., & Tsoi, J. K. H. (2022). A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. Journal of Functional Biomaterials, 13(4), 208. https://doi.org/10.3390/jfb13040208