Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip
Abstract
:1. Introduction
2. Material and Methods
2.1. Vascular Clip Design
2.2. Finite Element Simulation Analysis of Magnesium Alloy Vascular Clip
2.3. Magnesium Alloy Preparation
2.4. Preparation of Mg Alloy Vascular Clip
2.5. Microstructure Characterization
2.6. Mechanical Properties Test
2.7. In Vitro Degradation Analysis
3. Results
3.1. Microstructure Characterization
3.2. Mechanical Properties
3.3. Finite Element Analysis of Mg Alloy Clip
3.4. Corrosion Degradation
4. Discussion
4.1. The Influence of Structure on the Application of Vascular Clips
4.2. The Effect of Magnesium Alloy Composition on the Performance of Vascular Clips
5. Conclusions
- The common V-type vascular clip has problems of force release and rebound, high loading pressure, and uneven force distribution during the clamping process. The improved P-type vascular clip solves these problems, and the P-type is more reliable and safer.
- The tensile strength of Mg-Zn-Nd-Zr alloy is 305.95 MPa, and that of Mg-Zn-Nd alloy is 224.98 MPa. The tensile strength of Mg-Zn-Nd alloy increased by 36% with the addition of 0.59% Zr. The strength of magnesium alloy can improve the stability and safety of vascular clips.
- The long-term corrosion resistance of Mg-Zn-Nd-Zr alloy is better than that of Mg-Zn-Nd alloy. The Mg-Zn-Nd alloy clip broke and failed on the seventh day, but the Mg-Zn-Nd-Zr alloy remained closed on the seventh day.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikeo, N.; Nakamura, R.; Naka, K.; Hashimoto, T.; Yoshida, T.; Urade, T.; Fukushima, K.; Yabuuchi, H.; Fukumoto, T.; Ku, Y.; et al. Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. Acta Biomater. 2016, 29, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Jaschinski, T.; Mosch, C.G.; Eikermann, M.; Neugebauer, E.A.; Sauerland, S. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev. 2018, 28, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Filli, L.; Luechinger, R.; Frauenfelder, T.; Beck, S.; Guggenberger, R. Metal-induced artifacts in computed tomography and magnetic resonance imaging: Comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls. Skelet. Radiol. 2015, 44, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Valentine, T.E. Hypersensitivity to titanium: Clinical and laboratoryevidence. Neuroendocrinol. Lett. 2006, 27, 31–35. [Google Scholar]
- He, M.F.; Chen, L.X.; Yin, M.; Xu, S.X.; Liang, Z.Y. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. J. Mater. Res. Technol. 2023, 23, 10–16. [Google Scholar] [CrossRef]
- Yu, X.; Li, D.Y.; Liu, Y.C.; Ding, P.F.; He, X.H.; Zhao, Y.; Chen, M.F.; Liu, D.B. In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with the carotid artery of SD rat model. Mater. Sci. Eng. C 2020, 115, 93–111. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zhao, Y.; Liu, J.H.; Xu, J.L.; Guo, D.; Li, C.X.; Zhou, X.H.; Yang, P.X.; Zhang, S.J. Impact of rare earth elements on micro-galvanic corrosion in magnesium alloys: A comparative study of Mg-Nd and Mg-Y binary alloys. Int. J. Electrochem. Sci. 2023, 6, 100–110. [Google Scholar] [CrossRef]
- Hsu, T.C. Comparison of holding power of metal and absorbable hemostatic clips. Am. J. Surg. 2006, 191, 10–16. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, C.; Ni, J.; Zhang, S.; Liu, J.; Yan, J.; Chen, Y.; Zhang, X. Research of a novel biodegradable surgical staple made of high purity magnesium. Bioact. Mater. 2016, 1, 122–126. [Google Scholar] [CrossRef]
- Yoshida, T.; Fukumoto, T.; Urade, T.; Kido, M.; Toyama, H.; Asari, S.; Ajiki, T.; Ikeo, N.; Mukai, T.; Ku, Y. Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy. Surgery 2017, 6, 1553–1560. [Google Scholar] [CrossRef]
- Jiang, J.H.; Geng, X.; Zhang, X.B. Stress corrosion cracking of magnesium alloys: A review. J. Magnes. Alloys 2023, 6, 1906–1930. [Google Scholar] [CrossRef]
- Gao, M.; Yang, K.; Tan, L.L.; Ma, Z. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing. J. Mater. Sci. Technol. 2021, 81, 88–96. [Google Scholar] [CrossRef]
- Gao, M.; Na, D.; Ni, X.Q.; Song, L.H.; Etim, I.P.; Yang, K.; Tan, L.L.; Ma, Z. The mechanical property and corrosion resistance of Mg-Zn-Nd alloy fine wires in vitro and in vivo. Bioact. Mater. 2021, 1, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Azzeddine, I.; Hanna, A.; Dakhouche, A.; Rabahi, L.; Scharnagl, N.; Dopita, M.; Brisset, F.; Helbert, A.L.; Baudin, T. Impact of rare-earth elements on the corrosion performance of binary magnesium alloys. J. Alloys Compd. 2020, 829, 154–169. [Google Scholar] [CrossRef]
- Shi, L.Q.; Chen, S.S.; Shahzad, M.B.; Wei, Z.Y.; Leng, B. Enhanced corrosion resistance and biocompatibility of an elastic poly (butylene adipate-co-terephthalate) composite coating for AZ31 magnesium alloy vascular stents. Prog. Org. Coat. 2022, 172, 107–138. [Google Scholar]
- Mao, L.; Zheng, X.; Tian, Y.; Shi, Y.; Zhang, X.; Song, C. Structural Optimization Fabrication and Corrosion Behaviors of Biodegradable Mg-Nd-Zn-Zr Alloy Hemostatic Clip. Metals 2022, 12, 1979. [Google Scholar] [CrossRef]
- Hu, W.C. Study on Arterial Mechanics Model and Injury Mechanism. Master’s Thesis, Chongqing University, Chongqing, China, 2017. Volume 2. pp. 11–12. [Google Scholar]
- Holzapfel, G.A. Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, 2048–2058. [Google Scholar] [CrossRef]
- Zhang, H.L. Study on Properties and Application of Biodegradable Mg-Zn-Nd Alloy. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. Volume 2. pp. 12–13. [Google Scholar]
- GB/T 16865-2013; Test Specimens and Methods for Tensile Test of Wrought Aluminum, Magnesium and Their Alloy Processed Products. Standardization Administration:: Beijing, China, 2013.
- Gao, M.; Yang, k.; Tan, L.L.; Ma, Z. Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy. J. Magnes. Alloys 2022, 8, 2147–2157. [Google Scholar] [CrossRef]
- Chen, J.X. Properties and Surface Modification of Biodegradable Mg-2Zn-xRE (Gd, Nd, Y)-0.5Zr Alloy. Ph.D Thesis, University of Science and Technology of China, Hefei, China, 2019. Volume 2. pp. 19–20. [Google Scholar]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef]
- Brar, H.S.; Wong, J.; Manuel, M.V. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. J. Mech. Behav. Biomed. 2012, 7, 87–95. [Google Scholar] [CrossRef]
- Cai, S.; Lei, T.; Li, N.; Feng, F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mat. Sci. Eng. C-Mater. 2012, 32, 2570–2577. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Ying, T.; Yang, Y.; Wang, J.Y.; Zeng, X.Q. Regulating corrosion resistance of Mg alloys via promoting precipitation with trace Zr alloying. Corros. Sci. 2023, 216, 106–111. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Hou, R.Q.; Yang, J.J.; Sheng, Y.Y.; Li, Z.B.; Chen, L.X.; Li, W.; Wang, X.J. Influence of Zirconium (Zr) on the microstructure mechanical properties and corrosion behavior of biodegradable zinc-magnesium alloys. J. Alloys Compd. 2020, 840, 155–792. [Google Scholar] [CrossRef]
- Liu, L.; Dong, S.; Wang, F.H.; Chen, X.B.; Dong, J. Fabrication of uniform and anti-corrosion layered double hydroxides film on Mg-Gd-Y-Zn-Zr alloy through solution pH tailoring. Electrochim. Acta 2022, 411, 057–140. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Ying, T.; Cao, F.Y.; Zeng, X.Q. Wenjiang Ding, Designing strategy for corrosion-resistant Mg alloys based on film-free and film-covered models. J. Magnes. Alloy. 2021, 16, 11–38. [Google Scholar]
- Jing, C.; Dong, B.Q.; Raza, A.; Zhang, T.J.; Zhang, Y.X. Corrosion inhibition of layered double hydroxides for metal-based systems. Nano Mater. Sci. 2021, 3, 47–67. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, S.J.; Ying, T.; Cao, F.Y.; Wang, J.Y.; Zhu, Q.C.; Zeng, X.Q. Effects of corrosion products film on corrosion behavior of Mg-Al alloy with micro-alloying of yttrium in chloride solution. Corros. Commun. 2023, 2, 13–39. [Google Scholar] [CrossRef]
- Lavrentev, F.F.; Pokhil, Y.A. Relation of dislocation density in different slip systems to work hardening parameters for magnesium crystals. Mater. Sci. Eng. 1975, 18, 261–270. [Google Scholar] [CrossRef]
- Vinotha, D.; Raghukandan, K.; Pillai, U.T.S.; Pai, B.C. Grain refining mechanisms in magnesium alloys—An overview. Trans. Indian Inst. Met. 2009, 62, 521–532. [Google Scholar] [CrossRef]
- Song, C.J.; Han, Q.Y.; Zhai, Q.J. Review of grain refinement methods for as-cast microstructure of magnesium alloy. China Foundry 2009, 6, 93–103. [Google Scholar]
Arterial Layer | C10 (kPa) | K1 (kPa) | K2 (kPa) | φ |
---|---|---|---|---|
Inner layer | 55.80 | 263.66 | 170.88 | 60.30 |
Middle layer | 2.54 | 21.60 | 8.21 | 20.61 |
Outer layer | 15.12 | 38.57 | 85.03 | 67.00 |
Materials | Si | Fe | Ni | Cu | Zn | Nd | Zr |
---|---|---|---|---|---|---|---|
Mg-Zn-Nd-Zr | 0.004 | 0.004 | <0.005 | <0.005 | 1.98 | 0.54 | 0.59 |
Mg-Zn-Nd | 0.010 | 0.003 | <0.003 | <0.003 | 1.92 | 0.53 | 0.00 |
NaCl | NaHCO3 | KCl | K2HPO4·3H2O | MgCl2·6H2O | HCl | CaCl2 | Na2SO4 | Tris |
---|---|---|---|---|---|---|---|---|
8.035 g | 0.355 g | 0.255 g | 0.231 g | 0.311 g | 39 mL | 0.292 g | 0.072 g | 6.118 g |
Materials | Percentage | O | Mg | C | P | Ca | Total |
---|---|---|---|---|---|---|---|
Mg-Zn-Nd-Zr | Atomic% | 53.75 | 12.84 | 12.55 | 10.42 | 10.44 | 100 |
Mg-Zn-Nd | Atomic% | 54.31 | 8.91 | 16.85 | 10.61 | 9.32 | 100 |
Number of Days | 1 | 3 | 5 | 7 |
---|---|---|---|---|
Open-clip | 7.14 ± 0.98 | 2.74 ± 0.19 | 2.30 ± 0.33 | 2.03 ± 0.13 |
Closed-clip | 7.06 ± 0.81 | 2.87 ± 0.47 | 2.41 ± 0.07 | 2.02 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Gao, M.; Tian, X.; Cao, D.; Tan, L. Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip. J. Funct. Biomater. 2023, 14, 501. https://doi.org/10.3390/jfb14100501
Zhang H, Gao M, Tian X, Cao D, Tan L. Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip. Journal of Functional Biomaterials. 2023; 14(10):501. https://doi.org/10.3390/jfb14100501
Chicago/Turabian StyleZhang, Hongxu, Ming Gao, Xiaoying Tian, Dali Cao, and Lili Tan. 2023. "Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip" Journal of Functional Biomaterials 14, no. 10: 501. https://doi.org/10.3390/jfb14100501
APA StyleZhang, H., Gao, M., Tian, X., Cao, D., & Tan, L. (2023). Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip. Journal of Functional Biomaterials, 14(10), 501. https://doi.org/10.3390/jfb14100501