3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of NPR and PPR Scaffolds
2.3. Electrospinning
2.4. 3D Printing
2.5. Simulation
2.6. Formability Test
2.7. Calculation of the Poisson’s Ratio
2.8. Cell Culture
2.9. Cell Viability
2.10. Statistical Analysis
3. Results
3.1. Fabrication of a Flexible Skin Scaffold
3.2. Comparison of the Poisson’s Ratios
3.3. Simulation of the Deformation of Skin Grafts
3.4. Comparison of the Deformation and Bending Force of Skin Grafts
3.5. Cytotoxicity and Proliferation of Fibroblasts on Skin Scaffold
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Burns. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/burns (accessed on 1 April 2020).
- Wolfram, D.; Tzankov, A.; Pülzl, P.; Piza-Katzer, H. Hypertrophic scars and keloids—A review of their pathophysiology, risk factors, and therapeutic management. Dermatol. Surg. 2009, 35, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Sakallıoğlu, A.E.; Başaran, Ö.; Özdemir, B.H.; Arat, Z.; Yücel, M.; Haberal, M. Local and systemic interactions related to serum transforming growth factor-β levels in burn wounds of various depths. Burns 2006, 32, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Wilgus, T.A.; Ferreira, A.M.; Oberyszyn, T.M.; Bergdall, V.K.; DiPietro, L.A. Regulation of scar formation by vascular endothelial growth factor. Lab. Investig. 2008, 88, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A.C.; Parungao, R.; Lajevardi, S.S.; Li, Z.; Maitz, P.K. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018, 123, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Rubis, B.A.; Danikas, D.; Neumeister, M.; Williams, W.G.; Suchy, H.; Milner, S.M. The use of split-thickness dermal grafts to resurface full thickness skin defects. Burns 2002, 28, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Noda, Y.; Kuwahara, H.; Morimoto, M.; Ogawa, R. Reconstruction of anterior neck scar contracture using a perforator-supercharged transposition flap. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1485. [Google Scholar] [CrossRef] [PubMed]
- Madiedo, R.; Gaviria-Castellanos, J.L.; Zapata-Ospina, A. Applying skin graft sheets transversely to manage burn patients. System 2018, 8, 9. [Google Scholar] [CrossRef]
- Han, H.H.; Jun, D.; Moon, S.-H.; Kang, I.S.; Kim, M.C. Fixation of split-thickness skin graft using fast-clotting fibrin glue containing undiluted high-concentration thrombin or sutures: A comparison study. Springerplus 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Janis, J.E.; Kwon, R.K.; Attinger, C.E. The new reconstructive ladder: Modifications to the traditional model. Plast. Reconstr. Surg. 2011, 127, 205S–212S. [Google Scholar] [CrossRef]
- Venkatramani, H.; Varadharajan, V. Adipofascial, transposition, and rotation flaps. Hand Clin. 2020, 36, 9–18. [Google Scholar] [CrossRef]
- Teh, B.T. Why do skin grafts fail? Plast. Reconstr. Surg. 1979, 63, 323–332. [Google Scholar] [CrossRef]
- Adams, D.C.; Ramsey, M.L. Grafts in dermatologic surgery: Review and update on full-and split-thickness skin grafts, free cartilage grafts, and composite grafts. Dermatol. Surg. 2005, 31, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Paw, E.; Vangaveti, V.; Zonta, M.; Heal, C.; Gunnarsson, R. Effectiveness of fibrin glue in skin graft survival: A systematic review and meta-analysis. Ann. Med. Surg. 2020, 56, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Achora, S.; Muliira, J.K.; Thanka, A.N. Strategies to promote healing of split thickness skin grafts: An integrative review. J. Wound Ostomy Cont. Nurs. 2014, 41, 335–339. [Google Scholar] [CrossRef]
- Sarovath, A.; Chartdokmaiprai, C.; Kruavit, A. Vacuum-assisted closure: A reliable method to secure skin graft. Thai J. Surg. 2005, 26, 32–38. [Google Scholar]
- Harn, H.I.C.; Ogawa, R.; Hsu, C.K.; Hughes, M.W.; Tang, M.J.; Chuong, C.M. The tension biology of wound healing. Exp. Dermatol. 2019, 28, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Woods, E.L.; Dally, J.; Kong, D.; Steadman, R.; Moseley, R.; Midgley, A.C. Myofibroblasts: Function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules 2021, 11, 1095. [Google Scholar] [CrossRef]
- Clark, J.; Cheng, J.; Leung, K. Mechanical properties of normal skin and hypertrophic scars. Burns 1996, 22, 443–446. [Google Scholar] [CrossRef]
- Ogawa, R.; Hsu, C.K. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell. Mol. Med. 2013, 17, 817–822. [Google Scholar] [CrossRef]
- Akaishi, S.; Akimoto, M.; Hyakusoku, H.; Ogawa, R. The tensile reduction effects of silicone gel sheeting. Plast. Reconstr. Surg. 2010, 126, 109e–111e. [Google Scholar] [CrossRef]
- Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in skin regeneration using tissue engineering. Int. J. Mol. Sci. 2017, 18, 789. [Google Scholar] [CrossRef]
- Dixit, S.; Baganizi, D.R.; Sahu, R.; Dosunmu, E.; Chaudhari, A.; Vig, K.; Pillai, S.R.; Singh, S.R.; Dennis, V.A. Immunological challenges associated with artificial skin grafts: Available solutions and stem cells in future design of synthetic skin. J. Biol. Eng. 2017, 11, 1–23. [Google Scholar] [CrossRef]
- Varkey, M.; Ding, J.; Tredget, E.E. Advances in skin substitutes—Potential of tissue engineered skin for facilitating anti-fibrotic healing. J. Funct. Biomater. 2015, 6, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Nathoo, R.; Howe, N.; Cohen, G. Skin substitutes: An overview of the key players in wound management. J. Clin. Aesthetic Dermatol. 2014, 7, 44. [Google Scholar]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.E.; Nkansah, M.; Hutchinson, I.; Rogers, S. Molecular network design. Nature 1991, 353, 124. [Google Scholar] [CrossRef]
- Wessendorf, A.M.; Newman, D.J. Dynamic understanding of human-skin movement and strain-field analysis. IEEE Trans. Biomed. Eng. 2012, 59, 3432–3438. [Google Scholar] [CrossRef]
- Alderson, A.; Alderson, K.; Chirima, G.; Ravirala, N.; Zied, K. The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos. Sci. Technol. 2010, 70, 1034–1041. [Google Scholar] [CrossRef]
- Sanami, M.; Ravirala, N.; Alderson, K.; Alderson, A. Auxetic materials for sports applications. Procedia Eng. 2014, 72, 453–458. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H. 3 D auxetic warp-knitted spacer fabrics. Phys. Status Solidi (b) 2014, 251, 281–288. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; d’Ayala, G.G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym. 2020, 233, 115839. [Google Scholar] [CrossRef] [PubMed]
- Dvir, T.; Timko, B.P.; Kohane, D.S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat.-Nanotechnol. 2011, 6, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Korting, H.C.; Pavicic, T.; Ruzicka, T.; Jeschke, M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011, 17, 113–125. [Google Scholar] [CrossRef]
- Goverman, J.; Mathews, K.; Goldstein, R.; Holavanahalli, R.; Kowalske, K.; Esselman, P.; Gibran, N.; Suman, O.; Herndon, D.; Ryan, C.M. Adult contractures in burn injury: A burn model system national database study. J. Burn Care Res. 2017, 38, e328–e336. [Google Scholar] [CrossRef]
- Merchant, N.; Boudana, D.; Willoughby, L.; Lin, J.; Rehou, S.; Shahrokhi, S.; Jeschke, M.G. Management of adult patients with buttock and perineal burns: The Ross Tilley Burn Centre experience. J. Trauma Acute Care Surg. 2014, 77, 640. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. 3D bioprinting applications for the printing of skin: A brief study. Sens. Int. 2021, 2, 100123. [Google Scholar] [CrossRef]
- Hassan, W.; Dong, Y.; Wang, W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res. Ther. 2013, 4, 1–11. [Google Scholar] [CrossRef]
- He, P.; Zhao, J.; Zhang, J.; Li, B.; Gou, Z.; Gou, M.; Li, X. Bioprinting of skin constructs for wound healing. Burn. Trauma 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, A.; Lindhorst, D.; Schumann, P.; Zimmerer, R.; Kokemüller, H.; Rücker, M.; Gellrich, N.-C.; Tavassol, F. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc. Res. 2013, 90, 71–79. [Google Scholar] [CrossRef]
- Chung, H.-J.; Kim, J.-T.; Kim, H.-J.; Kyung, H.-W.; Katila, P.; Lee, J.-H.; Yang, T.-H.; Yang, Y.-I.; Lee, S.-J. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J. Control. Release 2015, 205, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Bannasch, H.; Föhn, M.; Unterberg, T.; Bach, A.; Weyand, B.; Stark, G. Skin tissue engineering. Clin. Plast. Surg. 2003, 30, 573–579. [Google Scholar] [CrossRef]
- Rasal, R.M.; Hirt, D.E. Poly (lactic acid) toughening with a better balance of properties. Macromol. Mater. Eng. 2010, 295, 204–209. [Google Scholar] [CrossRef]
- Ayran, M.; Dirican, A.Y.; Saatcioglu, E.; Ulag, S.; Sahin, A.; Aksu, B.; Croitoru, A.-M.; Ficai, D.; Gunduz, O.; Ficai, A. 3D-Printed PCL Scaffolds Combined with Juglone for Skin Tissue Engineering. Bioengineering 2022, 9, 427. [Google Scholar] [CrossRef]
- Corduas, F.; Mathew, E.; McGlynn, R.; Mariotti, D.; Lamprou, D.A.; Mancuso, E. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. Mater. Sci. Eng. C 2021, 131, 112523. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.B.; Kim, J.H.; Lee, J.-H.; Park, K.Y.; Son, K.H.; Lee, J.W. Development of multi-layer tubular vascular scaffold to enhance compliance by exhibiting a negative Poisson’s ratio. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 841–853. [Google Scholar] [CrossRef]
- Meyer, M.; McGrouther, D. A study relating wound tension to scar morphology in the pre-sternal scar using Langers technique. Br. J. Plast. Surg. 1991, 44, 291–294. [Google Scholar] [CrossRef]
- Wray, R.C. Force required for wound closure and scar appearance. Plast. Reconstr. Surg. 1983, 72, 380–382. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Dauskardt, R.H.; Wong, V.W.; Bhatt, K.A.; Wu, K.; Vial, I.N.; Padois, K.; Korman, J.M.; Longaker, M.T. Improving cutaneous scar formation by controlling the mechanical environment: Large animal and phase I studies. Ann. Surg. 2011, 254, 217–225. [Google Scholar] [CrossRef]
- Wilson, A.M. Use of botulinum toxin type A to prevent widening of facial scars. Plast. Reconstr. Surg. 2006, 117, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.; Yick, K.L.; Wong, K.H.; Leung, M.S.H.; Sun, Y.; Kwan, M.Y.; Ning, K.; Yu, A.; Yip, J.; Chan, Y.F. 3D printing auxetic architectures for hypertrophic scar therapy. Macromol. Mater. Eng. 2022, 307, 2100866. [Google Scholar] [CrossRef]
- Ward, R.S. Pressure therapy for the control of hypertrophic scar formation after burn injury: A history and review. J. Burn Care Rehabil. 1991, 12, 257–262. [Google Scholar] [CrossRef]
- Bousfield, C.B. Burn Trauma: Management and Nursing Care. 2002. Available online: https://cir.nii.ac.jp/crid/1130282269632118656 (accessed on 1 July 2023).
- Cheng, J.; Evans, J.; Leung, K.; Clark, J.; Choy, T.; Leung, P. Pressure therapy in the treatment of post-burn hypertrophic scar—A critical look into its usefulness and fallacies by pressure monitoring. Burns 1984, 10, 154–163. [Google Scholar] [CrossRef] [PubMed]
Cut-missing rib pattern (NPR) | ||
Rhombus pattern (PPR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-K.; Kim, K.W.; Kim, H.J.; Choi, S.Y.; Son, K.H.; Lee, J.W. 3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints. J. Funct. Biomater. 2023, 14, 516. https://doi.org/10.3390/jfb14100516
Park J-K, Kim KW, Kim HJ, Choi SY, Son KH, Lee JW. 3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints. Journal of Functional Biomaterials. 2023; 14(10):516. https://doi.org/10.3390/jfb14100516
Chicago/Turabian StylePark, Jung-Kyu, Kun Woo Kim, Hyun Joo Kim, Seon Young Choi, Kuk Hui Son, and Jin Woo Lee. 2023. "3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints" Journal of Functional Biomaterials 14, no. 10: 516. https://doi.org/10.3390/jfb14100516
APA StylePark, J. -K., Kim, K. W., Kim, H. J., Choi, S. Y., Son, K. H., & Lee, J. W. (2023). 3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints. Journal of Functional Biomaterials, 14(10), 516. https://doi.org/10.3390/jfb14100516