Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds
Abstract
:1. Introduction
2. Materials and methods
2.1. Materials
2.2. Synthesis of CS and CS-PHMB Hydrogel
2.3. Characterisation Studies
Injectability and Inversion Test of CS and CS-PHMB Hydrogel
2.4. Rheological Studies of CS and CS-PHMB Hydrogel
2.5. Water Vapor Permeability Test
2.6. In Vitro Hemolysis Assay of CS and CS-PHMB Hydrogel
2.7. In Vitro Cytocompatibility of CS and CS-PHMB Hydrogel
2.8. In Vitro Drug Release Profile of CS and CS-PHMB Hydrogel
2.9. In Vitro Antibacterial Activity of CS and CS-PHMB Hydrogel
2.10. Antibiofilm Studies of CS-PHMB Hydrogel
2.11. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of CS and CS-PHMB Hydrogel
3.2. Rheological Studies of S and CS-PHMB Hydrogel
3.3. Water Vapor Permeability Test
3.4. In Vitro Hemolysis Assay of CS and CS-PHMB Hydrogel
3.5. In Vitro Cytocompatibility of CS and CS-PHMB Hydrogel
3.6. In Vitro Drug Release Profile of CS and CS-PHMB Hydrogel
3.7. In Vitro Antibacterial Activity of CS and CS-PHMB Hydrogel
3.8. In Vitro Antibiofilm Assay of CS-PHMB Hydrogel
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertesteanu, S.; Triaridis, S.; Stankovic, M.; Lazar, V.; Chifiriuc, M.C.; Vlad, M.; Grigore, R. Polymicrobial wound infections: Pathophysiology and current therapeutic approaches. Int. J. Pharm. 2014, 463, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Loke, W.K.; Lau, S.K.; Yong, L.L.; Khor, E.; Sum, C.K. Wound dressing with sustained anti-microbial capability. J. Biomed. Mater. Res. 2000, 53, 8–17. [Google Scholar] [CrossRef]
- Landis, S.J. Chronic wound infection and antimicrobial use. Adv. Skin Wound Care 2008, 21, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Sowlati-Hashjin, S.; Carbone, P.; Karttunen, M. Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A molecular dynamics study. J. Phys. Chem. B 2020, 24, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Mulder, G.D.; Cavorsi, J.P.; Lee, D.K. Polyhexamethylene biguanide (PHMB): An addendum to current topical antimicrobials. Wounds 2007, 19, 173–182. [Google Scholar] [PubMed]
- Chindera, K.; Mahato, M.; Sharma, A.K.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N.F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T.; et al. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 2016, 6, 23121. [Google Scholar] [CrossRef]
- Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Tex. Res. J. 2008, 78, 60–72. [Google Scholar]
- O’Malley, L.P.; Collins, A.N.; White, G.F. Biodegradability of end-groups of the biocide polyhexamethylene biguanide (PHMB) assessed using model compounds. J. Ind. Microbiol. Biotechnol. 2006, 33, 677–684. [Google Scholar] [CrossRef]
- Napavichayanun, S.; Amornsudthiwat, P.; Pienpinijtham, P.; Aramwit, P. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Mater. Sci. Eng. C 2015, 55, 95–104. [Google Scholar] [CrossRef]
- Gilbert, P.; Das, J.R.; Jones, M.V.; Allison, D.G. Assessment of resistance towards biocides following the attachment of micro-organisms to, and growth on, surfaces. J. Appl. Microbiol. 2001, 91, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Forstner, C.; Leitgeb, J.; Schuster, R.; Dosch, V.; Kramer, A.; Cutting, K.F.; Leaper, D.J.; Assadian, O. Bacterial growth kinetics under a novel flexible methacrylate dressing serving as a drug delivery vehicle for antiseptics. Int. J. Mol. Sci. 2013, 14, 10582–10590. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Pemberton, D.; Wilkinson, D.E. Synergism within polyhexamethylene biguanide biocide formulations. J. Appl. Microbiol. 1990, 69, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chen, Q. Halogenated phenols and polybiguanides as antimicrobial textile finishes. In Antimicrobial Textiles; Sun, G., Ed.; Woodhead Publishing: Sawston, UK, 2016; Volume 79, pp. 141–153. [Google Scholar]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Muthuswamy, S.; Viswanathan, A.; Yegappan, R.; Selvaprithiviraj, V.; Vasudevan, A.K.; Biswas, R.; Jayakumar, R. Antistaphylococcal and neutrophil chemotactic injectable κ-Carrageenan hydrogel for infectious wound healing. ACS Appl. Bio Mater. 2019, 2, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Thanou, M.; Verhoef, J.C.; Junginger, H.E. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv. Rev. 2001, 50, S91–S101. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef]
- Gorbach, V.I.; Krasikova, I.N.; Luk’yanov, P.A.; Loenko, Y.N.; Solov’eva, T.F.; Ovodov, Y.S.; Deev, V.V.; Pimenov, A.A. New glycolipids (chitooligosaccharide derivatives) possessing immunostimulating and antitumor activities. Carbohydr. Res. 1994, 260, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhao, J.; Kempe, K.; Wilson, P.; Wang, J.; Velkov, T.; Li, J.; Davis, T.P.; Whittaker, M.R.; Haddleton, D.M. A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection. Macromol. Biosci. 2017, 17, 1600320. [Google Scholar] [CrossRef] [PubMed]
- Pandian, M.; Kumar, V.A.; Jayakumar, R. Antiseptic chitosan bandage for preventing topical skin infections. Int. J. Biol. Macromol. 2021, 193, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Qian, Z.; Yin, Y.; Yuan, W.; Wu, F.; Jin, T. Polyvinyl alcohol/chitosan/polyhexamethylene biguanide phase separation system: A potential topical antibacterial formulation with enhanced antimicrobial effect. Molecules 2020, 25, 1334. [Google Scholar] [CrossRef] [PubMed]
- Concepts R. E96-93 Standard Test Methods for Water-Vapor Transmission of Materials. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2014. [Google Scholar]
- Chongpian, P.O.; Jantanasakulwong, K.; Rachtanapun, P.; Worajittiphon, P.; Kantrong, N.; Jantrawut, P. Surface-modified carboxylated cellulose nanofiber hydrogels for prolonged release of polyhexamethylene biguanide hydrochloride (PHMB) for antimicrobial applications. Polymers 2023, 15, 3572. [Google Scholar] [CrossRef] [PubMed]
- Fiamingo, A.; Montembault, A.; Boitard, S.; Naemetalla, H.; Agbulut, O.; Delair, T.; Campana, S.; Menasche, P.; David, L. Chitosan hydrogels for the regeneration of infarcted myocardium: Preparation, physicochemical characterization, and biological evaluation. Biomacromolecules 2016, 17, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, Z.; Hu, Q. Difference between chitosan hydrogels via alkaline and acidic solvent systems. Sci. Rep. 2016, 6, 36053. [Google Scholar] [CrossRef]
- Ashok, N.; Pradeep, A.; Jayakumar, R. Synthesis-structure relationship of chitosan based hydrogels. Adv. Polym. Sci. 2021, 287, 105–129. [Google Scholar]
- Pradeep, A.; Ashok, N.; Priya, V.; Pillai, A.V.; Menon, R.R.; Kumar, V.A.; Jayakumar, R. Colistimethate sodium-chitosan hydrogel for treating gram-negative bacterial wound infections. Int. J. Biol. Macromol. 2022, 214, 610–616. [Google Scholar] [CrossRef]
- Ramasamy, S.; Muthusamy, S.; Nagarajan, S.; Nath, A.V.; Savarimuthu, J.S.; Jayaprakash, J.; Gurunadhan, R.M. Fabrication of collagen with polyhexamethylene biguanide: A potential scaffold for infected wounds. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Nithya, S.; Nimal, T.R.; Baranwal, G.; Suresh, M.K.; Anju, C.P.; Kumar, V.A.; Mohan, C.G.; Jayakumar, R.; Biswas, R. Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol. 2018, 110, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, M.N.; Amirthalingam, S.; Mony, U.; Varma, P.K.; Jayakumar, R. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int. J. Biol. Macromol. 2019, 129, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, Y.; Li, S.; Deng, L.; Zhang, J.; Huang, P.; Feng, Z.; Kong, D.; Wang, W.; Dong, A. Skin-adaptable; long-lasting moisture, and temperature-tolerant hydrogel dressings for accelerating burn wound healing without secondary damage. ACS Appl. Bio Mater. 2021, 13, 59695–59707. [Google Scholar] [CrossRef] [PubMed]
- Nevin, K.G.; Rajamohan, T. Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats. Skin Pharmacol. Physiol. 2010, 23, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Bakar, A.J.A.; Azam, N.S.M.; Sevakumaran, V.; Ismail, W.I.W.; Razali, M.H.; Razak, S.I.A.; Amin, K.A.M. Effectiveness of collagen and gatifloxacin in improving the healing and antibacterial activities of gellan gum hydrogel films as dressing materials. Int. J. Biol. Macromol. 2023, 245, 125494. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Zhou, J.; Li, L. An investigation of chitosan and its derivatives on red blood cell agglutination. RSC Adv. 2017, 7, 12247–12254. [Google Scholar] [CrossRef]
- Yabes, J.M.; White, B.K.; Murray, C.K.; Beckius, M.L.; Zera, W.C.; Wenke, J.C. In Vitro activity of Manuka Honey and polyhexamethylene biguanide on filamentous fungi and toxicity to human cell lines. Med. Mycol. 2017, 55, 334–343. [Google Scholar]
- Liang, A.; Zhang, M.; Luo, H.; Niu, L.; Feng, Y.; Li, M. Porous Poly(Hexamethylene Biguanide) Hydrochloride Loaded Silk Fibroin Sponges with Antibacterial Function. Materials 2020, 13, 285. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, L.; Xu, W.; Li, L.; Tang, Y.; Shi, C.; Li, X.; Niu, Y.; Sun, C.; Ren, C. Electrostatic induced peptide hydrogel containing PHMB for sustained antibacterial activity. J. Drug. Deliv. Sci. Technol. 2022, 75, 103717. [Google Scholar] [CrossRef]
- Diao, W.-R.; Hu, Q.-P.; Zhang, H.; Xu, J.-G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Rothbard, J.B.; Jessop, T.C.; Lewis, R.S.; Murray, B.A.; Wender, P.A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 2004, 126, 9506–9507. [Google Scholar] [CrossRef]
- Okshevsky, M.; Meyer, R.L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 2015, 41, 341–352. [Google Scholar] [CrossRef]
- Firdessa, R.; Good, L.; Amstalden, M.C.; Chindera, K.; Kamaruzzaman, N.F.; Schultheis, M.; Röger, B.; Hecht, N.; Oelschlaeger, T.A.; Meinel, L.; et al. Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB). PLoS Negl. Trop. Dis. 2015, 9, e0004041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antony, I.R.; Pradeep, A.; Pillai, A.V.; Menon, R.R.; Kumar, V.A.; Jayakumar, R. Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds. J. Funct. Biomater. 2023, 14, 528. https://doi.org/10.3390/jfb14100528
Antony IR, Pradeep A, Pillai AV, Menon RR, Kumar VA, Jayakumar R. Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds. Journal of Functional Biomaterials. 2023; 14(10):528. https://doi.org/10.3390/jfb14100528
Chicago/Turabian StyleAntony, Irine Rose, Aathira Pradeep, Anoop Vasudevan Pillai, Riju Ramachandran Menon, Vasudevan Anil Kumar, and Rangasamy Jayakumar. 2023. "Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds" Journal of Functional Biomaterials 14, no. 10: 528. https://doi.org/10.3390/jfb14100528
APA StyleAntony, I. R., Pradeep, A., Pillai, A. V., Menon, R. R., Kumar, V. A., & Jayakumar, R. (2023). Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds. Journal of Functional Biomaterials, 14(10), 528. https://doi.org/10.3390/jfb14100528