Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis and Characterization of Boron Nitride Nanoparticles
2.3. Red Blood Cell Membrane Isolation
2.4. Surface Modification of BNNPs
2.5. Experimental Animals
2.6. Acute Toxicity Experiment
2.7. Subacute Toxicity Experiment
2.8. Histopathological Analysis
2.9. Statistical Analysis
3. Results
3.1. Characterization of BN@RBCM
3.2. Acute Toxicity of BN@RBCM in Mice
3.3. Subacute Toxicity of BN@RBCM in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Rahman, M.M.; Ahmed, F.; Lopa, N.S.; Ge, C.; Ryu, T.; Yoon, S.; Jin, L.; Jang, H.; Kim, W. A two-step approach for improved exfoliation and cutting of boron nitride into boron nitride nanodisks with covalent functionalizations. Nanotechnology 2020, 31, 425604. [Google Scholar] [CrossRef] [PubMed]
- Mateti, S.; Wong, C.S.; Liu, Z.; Yang, W.; Li, Y.; Li, L.H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2017, 11, 334–342. [Google Scholar] [CrossRef]
- Örnek, M.; Hwang, C.; Xiang, S.; Xie, K.Y.; Etzold, A.; Yang, B.; Haber, R.A. Effect of synthesis conditions of BCNO on the formation and structural ordering of boron nitride at high temperatures. J. Solid State Chem. 2019, 269, 212–219. [Google Scholar] [CrossRef]
- Ondes, B.; Evli, S.; Uygun, M.; Aktas Uygun, D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens. Bioelectron. 2021, 191, 113454. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.; Ye, X.; Ye, W.; Hu, J.; Xu, C.; Qiu, X. Stable colloidal boron nitride nanosheet dispersion and its potential application in catalysis. J. Mater. Chem. A 2013, 39, 12192–12197. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Shi, Y.; Du, P.; Zhang, Z.; Liu, T.; Zhang, R.; Liu, Z. On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. Acs Nano 2019, 13, 13843–13852. [Google Scholar] [CrossRef] [PubMed]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Fukumitsu, N.; Ishikawa, H.; Nakai, K.; Sakurai, H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J. Pers. Med. 2021, 11, 825. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, P.; Singh, K.; Gaharwar, U.S.; Meena, R.; Kumar, M.; Nakagawa, F.; Wu, S.; Suzuki, M.; Nakamura, H.; et al. Boron nitride ((BN)-B-10) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Mater. Lett. 2020, 259, 126832. [Google Scholar] [CrossRef]
- Chiang, C.W.; Chien, Y.C.; Yu, W.J.; Ho, C.Y.; Wang, C.Y.; Wang, T.W.; Chiang, C.S.; Keng, P.Y. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-B-10 Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021, 11, 2936. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, J.; Hanagata, N.; Wang, X.; Weng, Q.; Ito, A.; Bando, Y.; Golberg, D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun. 2017, 8, 13936. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Zhang, C.; Bi, R.; Qiu, Y.; Li, Y.; Hu, B. Cell-Membrane-Coated Nanoparticles for Targeted Drug Delivery to the Brain for the Treatment of Neurological Diseases. Pharmaceutics 2023, 15, 621. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, L.; Liu, G. Cell membrane-coated nanoparticles for the treatment of bacterial infection. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 2022, 14, e1825. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, N.A.; Jitta, S.R.; Salwa; Cheruku, S.; Kumar, N.; Kumar, L. Orally delivered solid lipid nanoparticles of irinotecan coupled with chitosan surface modification to treat colon cancer: Preparation, in-vitro and in-vivo evaluations. Int. J. Biol. Macromol. 2022, 211, 301–315. [Google Scholar] [CrossRef]
- Chouke, P.B.; Shrirame, T.; Potbhare, A.K.; Mondal, A.; Chaudhary, A.R.; Mondal, S.; Thakare, S.R.; Nepovimova, E.; Valis, M.; Kuca, K.; et al. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv. 2022, 16, 100314. [Google Scholar] [CrossRef]
- Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; et al. Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Adv. Mater. 2016, 28, 3460–3466. [Google Scholar] [CrossRef]
- Yang, F.; Sun, X.; Zhang, X.; Yao, Z. Polyethylene glycol covalently modified the corroded hexagonal boron nitride to improve the thermal conductivity of epoxy composites. Appl. Surf. Sci. 2021, 569, 151094. [Google Scholar] [CrossRef]
- Rodriguez, C.; Carpano, M.; Curotto, P.; Thorp, S.; Casal, M.; Juvenal, G.; Pisarev, M.; Dagrosa, M.A. In vitro studies of DNA damage and repair mechanisms induced by BNCT in a poorly differentiated thyroid carcinoma cell line. Radiat. Environ. Biophys. 2018, 57, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Marcos, R. Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 2018, 12, 868–884. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D.; Yap, Y.K. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Molecules 2016, 21, 922. [Google Scholar] [CrossRef]
- Ciofani, G.; Danti, S.; Nitti, S.; Mazzolai, B.; Mattoli, V.; Giorgi, M. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation. Int. J. Pharm. 2013, 444, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Li, H.; Ren, Y.; Zhi, C.; Huang, Y.; Chen, F.; Zhang, H. RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids Surf. B 2020, 190, 110964. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kong, J.; Ma, S.; Li, J.; Mao, M.; Chen, K.; Chen, Z.; Zhang, J.; Chang, Y.; Yuan, H.; et al. Exosome-Coated B-10 Carbon Dots for Precise Boron Neutron Capture Therapy in a Mouse Model of Glioma In Situ. Adv. Funct. Mater. 2021, 31, 2100969. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater. Sci. Eng. C. 2020, 106, 110298. [Google Scholar] [CrossRef]
- Yang, X.; Qin, L.; Wang, L.; Ding, R.; Shi, L.; Lv, B. Scalable synthesis of quasi-monodispersed BN colloidal nanocrystals by “solvent cutting” and their anti-electrochemical corrosion coating. Chem. Eng. J. 2018, 333, 191–199. [Google Scholar] [CrossRef]
- Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. Adv. Mater. 2017, 29, 1701429. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano 2018, 12, 5241–5252. [Google Scholar] [CrossRef]
- Ragab, T.I.M.; Zoheir, K.M.A.; Mohamed, N.A.; El Gendy, A.E.G.; Abd-ElGawad, A.M.; Abdelhameed, M.F.; Farrag, A.R.H.; Elshamy, A.I. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: Development of nano-encasulation form. Heliyon 2022, 8, e09198. [Google Scholar] [CrossRef]
Groups | Mean Diameter (nm) | Polydispersity Index |
---|---|---|
BNNPs | 125.81 ± 0.86 | 0.31 ± 0.01 |
BN@RBCM | 137.71 ± 3.36 | 0.29 ± 0.04 |
Formulation | Dose (mg/kg) | Animals (N) | Death (n) | Mortality (%) | LD50 (mg/kg) |
---|---|---|---|---|---|
82.35 | 7 | 0 | 0 | ||
117.65 | 7 | 0 | 0 | ||
168.07 | 7 | 1 | 14.3 | ||
BN@RBCM | 240.1 | 7 | 3 | 42.9 | 258.94 |
343 | 7 | 5 | 71.4 | ||
490 | 7 | 7 | 100 | ||
700 | 7 | 7 | 100 |
Group | Dose (mg/kg) | n | Organ Weight to Body Weight Ratio | ||||
---|---|---|---|---|---|---|---|
Heart | Liver | Spleen | Lung | Kidney | |||
Control | (-) | 6 | 4.511 ± 1.34 | 49.995 ± 12.94 | 3.529 ± 1.20 | 8.171 ± 4.76 | 14.388 ± 6.33 |
BN@RBCM | 82.35 | 7 | 5.238 ± 1.05 | 58.207 ± 20.43 | 3.915 ± 1.53 | 9.155 ± 4.06 | 16.781 ± 5.15 |
117.65 | 7 | 4.737 ± 0.76 | 49.773 ± 10.19 | 2.837 ± 1.11 | 7.602 ± 3.24 | 14.154 ± 3.40 | |
168.07 | 6 | 4.328 ± 0.70 | 44.533 ± 5.71 | 2.666 ± 0.61 | 5.262 ± 0.86 | 12.740 ± 2.03 | |
240.1 | 4 | 4.563 ± 0.65 | 49.852 ± 4.73 | 2.272 ± 0.11 | 6.332 ± 0.95 | 13.296 ± 2.29 |
Hematological Parameters | Control Group | BN@RBCM | Normal Range |
---|---|---|---|
WBC (×109/L) | 4.1 ± 1.73 | 3.54 ± 2.07 | 0.8–6.8 |
LYM (×109/L) | 2.97 ± 1.17 | 2.82 ± 1.64 | 0.7–5.7 |
Mon# (×109/L) | 0.17 ± 0.06 | 0.06 ± 0.05 | 0.0–0.3 |
Gran# (×109/L) | 0.97 ± 0.51 | 0.66 ± 0.42 | 0.1–1.8 |
Lymph (%) | 73.57 ± 4.79 | 78.94 ± 3.35 | 55.8–90.6 |
Mon (%) | 3.90 ± 0.17 | 2.96 ± 0.18 | 1.8–6.0 |
Gran (%) | 22.53 ± 4.62 | 18.10 ± 3.18 | 8.6–38.9 |
RBC (×1012/L) | 8.77 ± 1.51 | 8.97 ± 0.54 | 6.36–9.42 |
HGB (g/L) | 136.00 ± 19.92 | 130.20 ± 8.20 | 110–143 |
HCT (%) | 42.97 ± 8.96 | 44.02 ± 1.80 | 34.6–44.6 |
MCV (fL) | 48.87 ± 1.99 | 49.22 ± 2.20 | 48.2–58.3 |
MCH (pg) | 15.53 ± 1.17 | 14.46 ± 0.23 | 15.8–19 |
MCHC(g/L) | 319.00 ± 26.29 | 295.20 ± 9.98 | 302–353 |
RDW (%) | 16.27 ± 0.51 | 15.70 ± 0.43 | 13–17 |
PLT (×109/L) | 674.67 ± 444.02 | 688.00 ± 230.93 | 450–1590 |
MPV (fL) | 6.40 ± 0.69 | 5.50 ± 0.51 | 3.8–6.0 |
PDW | 16.97 ± 0.57 | 16.72 ± 0.40 | 15–17 |
PCT (%) | 0.41 ± 0.24 | 0.37 ± 0.10 | 0–0.5 |
Organ | Control | Dose (mg/kg) | |||
---|---|---|---|---|---|
25.89 | 64.74 | 129.47 | |||
♀ female | Heart | 4.559 ± 0.004 | 4.887 ± 0.41 | 5.316 ± 0.50 | 4.854 ± 0.17 |
Liver | 48.830 ± 2.85 | 50.906 ± 1.64 | 62.788 ± 2.16 | 54.847 ± 1.25 | |
Spleen | 3.907 ± 0.34 | 5.749 ± 2.91 | 7.418 ± 1.09 | 6.964 ± 0.05 | |
Lung | 7.749 ± 0.37 | 7.419 ± 0.16 | 8.596 ± 0.67 | 5.774 ± 1.52 | |
Kidney | 15.326 ± 1.74 | 13.632 ± 0.35 | 14.732 ± 0.93 | 11.994 ± 1.25 | |
♂ male | Heart | 4.644 ± 0.70 | 5.153 ± 0.44 | 4.582 ± 0.35 | 5.440 ± 0.65 |
Liver | 52.619 ± 4.51 | 49.03 ± 2.56 | 54.622 ± 2.45 | 61.065 ± 5.96 | |
Spleen | 3.715 ± 0.41 | 4.117 ± 1.61 | 5.480 ± 1.41 | 5.970 ± 1.48 | |
Lung | 6.495 ± 0.34 | 6.431 ± 0.10 | 6.866 ± 0.10 | 7.271 ± 0.42 | |
Kidney | 14.426 ± 1.52 | 15.356 ± 1.18 | 16.220 ± 2.21 | 15.326 ± 1.74 |
Hematological Parameters | Control Group | Normal Range | BN@RBCM |
---|---|---|---|
WBC (×109/L) | 3.97 ± 0.74 | 0.8–6.8 | 5.24 ± 1.96 |
LYM (×109/L) | 3.12 ± 0.63 | 0.7–5.7 | 4.18 ± 1.89 |
Mon# (×109/L) | 0.12 ± 0.04 | 0.0–0.3 | 0.16 ± 0.09 |
Gran# (×109/L) | 0.73 ± 0.19 | 0.1–1.8 | 0.90 ± 0.20 |
Lymph (%) | 78.50 ± 4.12 | 55.8–90.6 | 77.82 ± 6.08 |
Mon (%) | 3.22 ± 0.87 | 1.8–6.0 | 3.58 ± 0.73 |
Gran (%) | 18.28 ± 3.28 | 8.6–38.9 | 18.60 ± 5.58 |
RBC (×1012/L) | 8.92 ± 0.26 | 6.36–9.42 | 9.26 ± 0.58 |
HGB (g/L) | 130.83 ± 3.71 | 110–143 | 132.60 ± 7.80 |
HCT (%) | 49.42 ± 1.52 | 34.6–44.6 | 51.04 ± 3.28 |
MCV (fL) | 55.45 ± 1.58 | 48.2–58.3 | 55.16 ± 1.33 |
MCH (pg) | 14.60 ± 0.43 | 15.8–19 | 14.28 ± 0.28 |
MCHC(g/L) | 264.33 ± 6.06 | 302–353 | 259.20 ± 3.27 |
RDW (%) | 16.38 ± 0.69 | 13–17 | 16.80 ± 0.58 |
PLT (×109/L) | 1098.83 ± 278.60 | 450–1590 | 1129.20 ± 483.97 |
MPV (fL) | 5.82 ± 0.56 | 3.8–6.0 | 5.10 ± 0.37 |
PDW | 16.90 ± 0.46 | 15–17 | 16.26 ± 0.36 |
PCT (%) | 0.64 ± 0.17 | 0–0.5 | 0.56 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhang, X.; Liu, L.; Wang, Y.; Liu, R.; Li, M.; Gao, F. Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles. J. Funct. Biomater. 2023, 14, 181. https://doi.org/10.3390/jfb14040181
He J, Zhang X, Liu L, Wang Y, Liu R, Li M, Gao F. Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles. Journal of Functional Biomaterials. 2023; 14(4):181. https://doi.org/10.3390/jfb14040181
Chicago/Turabian StyleHe, Jinfeng, Xuanping Zhang, Linhong Liu, Yufei Wang, Renyu Liu, Min Li, and Fuping Gao. 2023. "Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles" Journal of Functional Biomaterials 14, no. 4: 181. https://doi.org/10.3390/jfb14040181
APA StyleHe, J., Zhang, X., Liu, L., Wang, Y., Liu, R., Li, M., & Gao, F. (2023). Acute and Subacute Toxicity Evaluation of Erythrocyte Membrane-Coated Boron Nitride Nanoparticles. Journal of Functional Biomaterials, 14(4), 181. https://doi.org/10.3390/jfb14040181