Influence of the Application Time of Silane for the Bonding Performance between Feldspar or Lithium Disilicate Ceramics and Luting Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Shear Bond Strength (SBS)
2.3. Surface Texture
2.4. Contact Angle and Surface Free Energy (SFE)
2.5. Chemical Bonding
2.6. Statistics
3. Results
3.1. Surface Texture after Etching with Hydrofluoric Acid
3.2. Application Times of Silane
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Wave Number /cm−1 | Silane Coupling Agent | Ceramic | Ref. |
---|---|---|---|
Silane Coupling Agent Vibrations in MBP and CCP | |||
2924 | ν(C-H) in -CH2-/-CH3 | [51,52] | |
2852 | ν(C-H) in -OCH3 | [51,52] | |
1717 | ν(C=O) | [51,52,53] | |
1638 | ν(C=C) | [51,52] | |
1455 | δ(C-H) | [52,53] | |
1324 | ν(C-O) in C-O-C | [51,53] | |
1297 | ν(C-O) in C-O-C | [51,53] | |
Lithium disilicate ceramic and potential overlapping silane vibration modes | |||
1256–1185 (shoulder) | P=O [MBP] | ν(Si-O-Si) | [54,55] |
1171 | ν(P-O), ν(Si-O-CH3) [MBP, CCP] | ν(Si-O-X) (X=Zr/Ti) | [47,55,56] |
1107 | ν(P-O) [MBP] | ν(Si-O), ν(Si-O-C) | [52,57,58] |
1001 | ν(P-O) [MBP] | ν(Si-O-Si) | [53,59] |
959 | Si-O strong bonds | [47] | |
910 | Si-OH [MBP, CCP] | ν(Si-O) | [51,60] |
785 | ν(Si-O-Si) in lithium disilicate | [61] | |
754 | ν(Si-O-Si) in lithium disilicate | [61] | |
631 | ν(Si-O-Si) in lithium disilicate | [61] | |
552 | δ(O-Si-O) in lithium disilicate | [61] | |
Feldspar ceramic and potential overlapping silane vibration modes | |||
1273–995 (overlapping shoulders) | Si-O-Si, ν(Si-O-C), P-O-C [MBP, CCP] | ν(Si-O), ν(Al-O) | [51,58,59,60] |
924 | ν(Si-O), ν(Al-O) | [47,58,60] | |
908 (shoulder) | Si-OH [MBP, CCP] | ν(Si-O), ν(Al-O) | [51,56,58,60] |
766 | ν(Si-O-Si), ν(Al-O-Si), δ(Si-O-Si) | [62] | |
718 | Aluminium and silicon rings | [58] | |
648 | Aluminium and silicon rings | [58] | |
602 | ν(Si-O-Si) | [61] | |
576 | Aluminium and silicon rings | [58,60] | |
538 | δ(O-Si-O), δ(Si-O-Si) | [61,62] |
References
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.J. Seating nonmetal crowns or fixed partial dentures with resin cement. J. Am. Dent. Assoc. 1998, 129, 239–241. [Google Scholar] [CrossRef]
- Tian, T.; Tsoi, J.K.-H.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef] [PubMed]
- Karl, M. Outcome of bonded vs all-ceramic and metal- ceramic fixed prostheses for single tooth replacement. Eur. J. Oral Implantol. 2016, 9 (Suppl. S1), S25–S44. [Google Scholar]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef]
- Vargas, M.A.; Bergeron, C.; Diaz-Arnold, A. Cementing all-ceramic restorations: Recommendations for success. J. Am. Dent. Assoc. 2011, 142 (Suppl. S2), 20S–24S. [Google Scholar] [CrossRef]
- Gundogdu, M.; Aladag, L.I. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin. Niger. J. Clin. Pract. 2018, 21, 367–374. [Google Scholar]
- van den Breemer, C.R.G.; Gresnigt, M.M.M.; Cune, M.S. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review. Biomed Res. Int. 2015, 2015, 148954. [Google Scholar] [CrossRef]
- Brentel, A.S.; Özcan, M.; Valandro, L.F.; Alarça, L.G.; Amaral, R.; Bottino, M.A. Microtensile bond strength of a resin cement to feldpathic ceramic after different etching and silanization regimens in dry and aged conditions. Dent. Mater. 2007, 23, 1323–1331. [Google Scholar] [CrossRef]
- Moro, A.F.V.; Ramos, A.B.; Rocha, G.M.; Perez, C.D.R. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic. J. Prosthet. Dent. 2017, 118, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhou, L.; Yang, H.; Wang, Y.; Sun, H.; Guo, J.; Huang, C. Effect of silane pretreatment on the immediate bonding of universal adhesives to computer-aided design/computer-aided manufacturing lithium disilicate glass ceramics. Eur. J. Oral Sci. 2017, 125, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Zakir, M.; Ashraf, U.; Tian, T.; Han, A.; Qiao, W. The Role of Silane Coupling Agents and Universal Primers in Durable Adhesion to Dental Restorative Materials—A Review. Dent. Restor. Mater. 2016, 3, 244–253. [Google Scholar] [CrossRef]
- Meng, X.; Yoshida, K.; Taira, Y.; Kamada, K.; Luo, X. Effect of siloxane quantity and ph of silane coupling agents and contact angle of resin bonding agent on bond durability of resin cements to machinable ceramic. J. Adhes. Dent. 2011, 13, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2017, 34, 13–28. [Google Scholar] [CrossRef]
- Hooshmand, T.; van Noort, R.; Keshvad, A. Bond durability of the resin-bonded and silane treated ceramic surface. Dent. Mater. 2002, 18, 179–188. [Google Scholar] [CrossRef]
- Debnath, S.; Wunder, S.L.; McCool, J.I.; Baran, G.R. Silane treatment effects on glass/resin interfacial shear strengths. Dent. Mater. 2003, 19, 441–448. [Google Scholar] [CrossRef]
- Shen, C.; Oh, W.; Williams, J.R. Effect of post-silanization drying on the bond strength of composite to ceramic. J. Prosthet. Dent. 2004, 91, 453–458. [Google Scholar] [CrossRef]
- Roulet, J.F.; Söderholm, K.J.; Longmate, J. Effects of treatment and storage conditions on ceramic/composite bond strength. J. Dent. Res. 1995, 74, 381–387. [Google Scholar] [CrossRef]
- Vivadent, I. Monobond Plus: Brochure EN. Available online: https://downloadcenter.ivoclar.com/#search-text=monobond&details=5873 (accessed on 27 January 2022).
- Clearfil Ceramic Primer Plus—Primer for Cement & Repair Indications. Available online: https://www.kuraraynoritake.eu/en/clearfil-ceramic-primer-plus (accessed on 16 December 2022).
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar] [PubMed]
- Mota, E.G.; Smidt, L.N.; Fracasso, L.M.; Burnett, L.H.; Spohr, A.M. The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials. J. Esthet. Restor. Dent. 2017, 29, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Flury, S.; Peutzfeldt, A.; Lussi, A. Influence of surface roughness on mechanical properties of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. Oper. Dent. 2012, 37, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Lüthy, H.; Loeffel, O.; Hammerle, C.H.F. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dent. Mater. 2006, 22, 195–200. [Google Scholar] [CrossRef]
- Sailer, I.; Oendra, A.E.H.; Stawarczyk, B.; Hämmerle, C.H. The effects of desensitizing resin, resin sealing, and provisional cement on the bond strength of dentin luted with self-adhesive and conventional resincements. J. Prosthet. Dent. 2012, 107, 252–260. [Google Scholar] [CrossRef]
- ISO/TS 11405:2015; Dentistry—Testing of Adhesion to Tooth Structure. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/62898.html (accessed on 16 December 2022).
- Shinohara, A.; Taira, Y.; Sakihara, M.; Sawase, T. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system. J. Appl. Oral Sci. 2018, 26, e20170342. [Google Scholar] [CrossRef]
- Mokhtarpour, F.; Alaghehmand, H.; Khafri, S. Effect of hydrofluoric acid surface treatments on micro-shear bond strength of CAD/CAM ceramics. Electron. Physician 2017, 9, 5487–5493. [Google Scholar] [CrossRef]
- Kitahara, N.; Itoh, K.; Kusunoki, M.; Oikawa, M.; Miyazaki, T. One-bottle silane coupling agent containing 4-META. Dent. Mater. J. 2013, 32, 409–412. [Google Scholar] [CrossRef]
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Aksakalli, S.; Ileri, Z.; Yavuz, T.; Malkoc, M.A.; Ozturk, N. Porcelain laminate veneer conditioning for orthodontic bonding: SEM-EDX analysis. Lasers Med. Sci. 2015, 30, 1829–1834. [Google Scholar] [CrossRef]
- Miersch, S.; König, A.; Mehlhorn, S.; Fuchs, F.; Hahnel, S.; Rauch, A. Adhesive luting of orthodontic devices to silica-based ceramic crowns-comparison of shear bond strength and surface properties. Clin. Oral Investig. 2020, 24, 3009–3016. [Google Scholar] [CrossRef] [PubMed]
- Brauchli, L.; Zeller, M.; Wichelhaus, A. Shear bond strengths of seven self-etching primers after thermo-cycling. J. Orofac. Orthop. 2011, 72, 371–380. [Google Scholar] [CrossRef] [PubMed]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/74591.html (accessed on 16 December 2022).
- Schubert, A.; Wassmann, T.; Holtappels, M.; Kurbad, O.; Krohn, S.; Bürgers, R. Predictability of Microbial Adhesion to Dental Materials by Roughness Parameters. Coatings 2019, 9, 456. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Straface, A.; Rupp, L.; Gintaute, A.; Fischer, J.; Zitzmann, N.U.; Rohr, N. HF etching of CAD/CAM materials: Influence of HF concentration and etching time on shear bond strength. Head Face Med. 2019, 15, 21. [Google Scholar] [CrossRef]
- Kamada, K.; Yoshida, K.; Taira, Y.; Sawase, T.; Atsuta, M. Shear bond strengths of four resin bonding systems to two silica-based machinable ceramic materials. Dent. Mater. J. 2006, 25, 621–625. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Hu, M.; Weiger, R.; Fischer, J. Comparison of two test designs for evaluating the shear bond strength of resin composite cements. Dent. Mater. 2016, 32, 223–232. [Google Scholar] [CrossRef]
- El Mourad, A.M. Assessment of Bonding Effectiveness of Adhesive Materials to Tooth Structure using Bond Strength Test Methods: A Review of Literature. Open Dent. J. 2018, 12, 664–678. [Google Scholar] [CrossRef]
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef]
- Shen, D.; Wang, H.; Shi, Y.; Su, Z.; Hannig, M.; Fu, B. The Effect of Surface Treatments on Zirconia Bond Strength and Durability. J. Funct. Biomater. 2023, 14, 89. [Google Scholar] [CrossRef]
- Queiroz, J.R.C.; Benetti, P.; Özcan, M.; de Oliveira, L.F.C.; Della Bona, A.; Takahashi, F.E.; Bottino, M.A. Surface characterization of feldspathic ceramic using ATR FT-IR and ellipsometry after various silanization protocols. Dent. Mater. 2012, 28, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; van Noort, R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J. Dent. Res. 1995, 74, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Comba, A.; Baldi, A.; Carossa, M.; Michelotto Tempesta, R.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-Fatigue Fracture Resistance of Lithium Disilicate and Polymer-Infiltrated Ceramic Network Indirect Restorations over Endodontically-Treated Molars with Different Preparation Designs: An In-Vitro Study. Polymers 2022, 14, 5084. [Google Scholar] [CrossRef]
- Ye, S.; Lin, J.-C.; Kang, L.-L.; Li, C.-L.; Hou, S.-S.; Lee, T.-L.; Chuang, S.-F. Investigations of silane-MDP interaction in universal adhesives: A ToF-SIMS analysis. Dent. Mater. 2022, 38, 183–193. [Google Scholar] [CrossRef]
- Pantoja, M.; Velasco, F.; Broekema, D.; Abenojar, J.; Real, J.C.D. The Influence of pH on the Hydrolysis Process of γ-Methacryloxypropyltrimethoxysilane, Analyzed by FT-IR, and the Silanization of Electrogalvanized Steel. J. Adhes. Sci. Technol. 2010, 24, 1131–1143. [Google Scholar] [CrossRef]
- Yuan, W.; van Ooij, W.J. Characterization of Organofunctional Silane Films on Zinc Substrates. J. Colloid Interface Sci. 1997, 185, 197–209. [Google Scholar] [CrossRef]
- Delgado, A.H.; Young, A.M. Modelling ATR-FTIR Spectra of Dental Bonding Systems to Investigate Composition and Polymerisation Kinetics. Materials 2021, 14, 760. [Google Scholar] [CrossRef]
- Bellamy, L.J.; Beecher, L. 315. The infra-red spectra of organo-phosphorus compounds. Part II. Esters, acids, and amines. J. Chem. Soc. 1952, 1701–1706. [Google Scholar] [CrossRef]
- Ariane, K.; Tamayo, A.; Chorfa, A.; Rubio, F.; Rubio, J. Effect of P2O5 and Al2O3 on crystallization, structure, microstructure and properties of Li2O–MgO–Al2O3–SiO2–TiO2–ZrO2 glass ceramics. Boletín Soc. Española Cerámica Vidr. 2020, 61, 146–159. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Z.; Meng, H.; Chen, Y.; Yang, L.; Zhang, H.; Xie, H.; Chen, C. Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: Chemical and in vitro evidences. Dent. Mater. 2019, 35, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tay, F.R.; Lu, Z.; Chen, C.; Qian, M.; Zhang, H.; Tian, F.; Xie, H. Dipentaerythritol penta-acrylate phosphate—An alternative phosphate ester monomer for bonding of methacrylates to zirconia. Sci. Rep. 2016, 6, 39542. [Google Scholar] [CrossRef] [PubMed]
- Pasiut, K.; Partyka, J.; Lesniak, M.; Jelen, P.; Olejniczak, Z. Raw glass-ceramics glazes from SiO2–Al2O3–CaO–MgO–Na2O–K2O system modified by ZrO2 addition—Changes of structure, microstructure and surface properties. Open Ceram. 2021, 8, 100188. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Zafiropoulou, M.; Zinelis, S.; Silikas, N.; Eliades, G. Silane reactivity and resin bond strength to lithium disilicate ceramic surfaces. Dent. Mater. 2019, 35, 1082–1094. [Google Scholar] [CrossRef]
- Akyuz, T.; Akyuz, S.; Basaran, S.; Cakan, B. EDXRF and FTIR Analysis of Some Glass Fragments Belong to Ottoman Period, Excavated in Ancient Ainos (Enez) Turkey. Asian J. Chem. 2013, 25, 10397–10400. [Google Scholar] [CrossRef]
- Fuss, T.; Moguš-Milanković, A.; Ray, C.S.; Lesher, C.E.; Youngman, R.; Day, D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. J. Non-Cryst. Solids 2006, 352, 4101–4111. [Google Scholar] [CrossRef]
- Deshpande, A.V.; Satyanarayana, P. Study of Lithium Disilicate Based Nano Glass Ceramics Containing P2O5. Silicon 2022, 14, 9973–9986. [Google Scholar] [CrossRef]
Material/Ident. | Product | Manufacturer | LOT | |
---|---|---|---|---|
Ceramics | Feldspar FSC | Vitablocs Mark II A2C, I-14 | Vita Zahnfabrik Bad Säckingen, Germany | 79391 73530 |
Lithium disilicate LDS | IPS e.max CAD LT A2, C14 | Ivoclar Vivadent Schaan, Liechtenstein | W86607 Z00S50 | |
Silanes | MBP | Monobond Plus | Ivoclar Vivadent Schaan, Liechtenstein | X30882 Y39578 |
CCP | Clearfil Ceramic Primer Plus | Kuraray Noritake Dental Inc. Chiyoda, Japan | 6K0036 9R0056 | |
Surface Conditioning | Hydrofluoric acid 5% | IPS Ceramic Etching Gel | Ivoclar Vivadent Schaan, Liechtenstein | X39271 Y37000 |
Luting resin composite | For MBP Specimen | Calibra translucent | Dentsply DeTrey GmbH Konstanz, Germany | 00041643 00023656 |
For CCP Specimen | Panavia V5 Automix (Intro Kit) clear | Kuraray Noritake Dental Inc. Chiyoda, Japan | 000098 |
Score | Adhesive Remnant Index (ARI) [32] | Crack/Tear-Out Index [33] |
---|---|---|
0 | No resin composite on the ceramic surface | No cracks or tear-outs visible in ceramic surface |
1 | <50% resin composite on the ceramic surface | Cracks visible in ceramic surface |
2 | >50% resin composite on the ceramic surface | Tear-outs visible in ceramic surface |
3 | Ceramic surface largely covered with resin composite | Cracks and tear-outs visible in ceramic surface |
Material and Silanization | SBS/MPa | Crack/Tear-Out/% | ARI/% | ||||
---|---|---|---|---|---|---|---|
Group | Silanization Time | Code | Mean ± SD | 95%-CI | p < 0.05 | 0; 1; 2; 3 | 0; 1; 2; 3 |
LDS-MBP | 0 | 0 | 4.4 ± 3.2 | (1.2; 7.7) | BCDE | 100; 0; 0; 0 | 43; 57; 0; 0 |
5 | A | 8.2 ± 2.4 | (5.8; 10.6) | BCD | 100; 0; 0; 0 | 0; 57; 14; 29 | |
15 | B | 16.3 ± 2.4 | (13.9; 18.7) | 0AE | 100; 0; 0; 0 | 0; 100; 0; 0 | |
30 | C | 13.4 ± 2.4 | (11.1; 15.8) | 0A | 100; 0; 0; 0 | 0; 71; 29; 0 | |
60 | D | 13.5 ± 1.9 | (11.6; 15.4) | 0A | 100; 0; 0; 0 | 0; 57; 43; 0 | |
180 | E | 11.6 ± 1.1 | (10.5; 12.8) | 0B | 100; 0; 0; 0 | 0; 57; 43; 0 | |
LDS-CCP | 0 | 0 | 1.7 ± 1.4 | (0.3; 3.1) | ABCDE | 100; 0; 0; 0 | 100; 0; 0; 0 |
5 | A | 18.0 ± 4.5 | (13.5; 22.4) | 0 | 100; 0; 0; 0 | 0; 100; 0; 0 | |
15 | B | 22.7 ± 6.6 | (18.9; 34.0) | 0D | 100; 0; 0; 0 | 0; 100; 0; 0 | |
30 | C | 16.7 ± 6.6 | (11.8; 27.1) | 0 | 100; 0; 0; 0 | 0; 100; 0; 0 | |
60 | D | 12.6 ± 4.3 | (9.7; 20.0) | 0B | 100; 0; 0; 0 | 0; 100; 0; 0 | |
180 | E | 21.6 ± 6.0 | (15.1; 28.0) | 0 | 100; 0; 0; 0 | 14; 86; 0; 0 | |
FSC-MBP | 0 | 0 | 6.2 ± 2.5 | (3.8; 8.7) | - | 0; 0; 100; 0 | 71; 29; 0; 0 |
5 | A | 9.1 ± 2.3 | (6.7; 11.4) | - | 14; 0; 43; 43 | 57; 29; 14; 0 | |
15 | B | 8.1 ± 1.5 | (6.6; 9.5) | - | 0; 0; 100; 0 | 0; 100; 0; 0 | |
30 | C | 6.9 ± 1.3 | (6.7; 9.5) | - | 0; 0; 100; 0 | 0; 100; 0; 0 | |
60 | D | 6.4 ± 1.5 | (4.8; 7.9) | - | 57; 0; 43; 0 | 43; 57; 0; 0 | |
180 | E | 7.7 ± 2.3 | (5.2; 10.2) | - | 14; 0; 86; 0 | 14; 57; 14; 0 | |
FSC-CCP | 0 | 0 | 11.1 ± 3.4 | (7.7; 14.5) | - | 14; 0; 29; 57 | 100; 0; 0; 0 |
5 | A | 17.4 ± 8.9 | (8.5; 26.3) | - | 0; 0; 71; 29 | 100; 0; 0; 0 | |
15 | B | 19.7 ± 10.1 | (9.6; 29.8) | - | 0; 0; 57; 43 | 100; 0; 0; 0 | |
30 | C | 19.4 ± 10.5 | (8.9; 29.9) | - | 14; 0; 57; 29 | 57; 14; 14; 0 | |
60 | D | 19.3 ± 6.9 | (12.4; 26.2) | - | 29; 29; 29; 14 | 29; 43; 14; 14 | |
180 | E | 21.3 ± 5.8 | (15.0; 27.4) | - | 0; 0; 57; 43 | 43; 57; 0; 0 |
Application Time | t-Value | p-Value | Outcome |
---|---|---|---|
0 | 1.891 | 0.083 | |
5 | −4.721 | 0.000 | SBS(MBP) < SBS(CCP) |
15 | −3.473 | 0.005 | SBS(MBP) < SBS(CCP) |
30 | −1.933 | 0.101 | |
60 | −0.561 | 0.593 | |
180 | −3.727 | 0.009 | SBS(MBP) < SBS(CCP) |
Group | Application Time | Total SFE | Polar Component | Dispersive Component | ||
---|---|---|---|---|---|---|
LDS | MBP | r | −0.06 | −0.56 | −0.63 | 0.09 |
p-Value | 0.724 | <0.001 | <0.001 | 0.592 | ||
CCP | r | 0.03 | 0.18 | 0.17 | 0.10 | |
p-Value | 0.857 | 0.315 | 0.348 | 0.574 | ||
FSC | MBP | r | −0.15 | −0.29 | −0.24 | −0.01 |
p-Value | 0.406 | 0.096 | 0.171 | 0.584 | ||
CCP | r | 0.11 | 0.04 | 0.04 | −0.00 | |
p-Value | 0.514 | 0.836 | 0.842 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, F.; Westerhove, S.M.; Schmohl, L.; Koenig, A.; Suharbiansah, R.S.R.; Hahnel, S.; Rauch, A. Influence of the Application Time of Silane for the Bonding Performance between Feldspar or Lithium Disilicate Ceramics and Luting Resin Composites. J. Funct. Biomater. 2023, 14, 231. https://doi.org/10.3390/jfb14040231
Fuchs F, Westerhove SM, Schmohl L, Koenig A, Suharbiansah RSR, Hahnel S, Rauch A. Influence of the Application Time of Silane for the Bonding Performance between Feldspar or Lithium Disilicate Ceramics and Luting Resin Composites. Journal of Functional Biomaterials. 2023; 14(4):231. https://doi.org/10.3390/jfb14040231
Chicago/Turabian StyleFuchs, Florian, Sina Maria Westerhove, Leonie Schmohl, Andreas Koenig, Rujito Sesariojiwandono Ridho Suharbiansah, Sebastian Hahnel, and Angelika Rauch. 2023. "Influence of the Application Time of Silane for the Bonding Performance between Feldspar or Lithium Disilicate Ceramics and Luting Resin Composites" Journal of Functional Biomaterials 14, no. 4: 231. https://doi.org/10.3390/jfb14040231
APA StyleFuchs, F., Westerhove, S. M., Schmohl, L., Koenig, A., Suharbiansah, R. S. R., Hahnel, S., & Rauch, A. (2023). Influence of the Application Time of Silane for the Bonding Performance between Feldspar or Lithium Disilicate Ceramics and Luting Resin Composites. Journal of Functional Biomaterials, 14(4), 231. https://doi.org/10.3390/jfb14040231