The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Information Sources and Search Strategy
2.3. Selection Process and Data Collection Process
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zarow, M.; Kharouf, N.; Mancino, D.; Villares, C.F.; Skaba, D.; Lukomska-Szymanska, M. The Bond Strength and Anti-bacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021, 9, 1230. [Google Scholar] [CrossRef]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification Review of Dental Adhesive Systems: From the IV Generation to the Universal Type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar]
- Kameyama, A.; Haruyama, A.; Abo, H.; Kojima, M.; Nakazawa, Y.; Muramatsu, T. Influence of Solvent Evaporation on Ultimate Tensile Strength of Contemporary Dental Adhesives. Appl. Adhes. Sci. 2019, 7, 4. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Pires, P.T.; Azevedo, A.F.; Oliveira, S.A.; Melo, P.R.; Silva, M.J. Influence of Solvents and Composition of Etch-and-Rinse and Self-Etch Adhesive Systems on the Nanoleakage within the Hybrid Layer. J. Contemp. Dent. Pract. 2013, 14, 691. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- El-Din, A. Effect of Changing Application Times on Adhesive Systems Bond Strengths. Am. J. Dent. 2002, 15, 321–324. [Google Scholar] [PubMed]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Devoto, W.; Zarow, M.; Monteiro, P.; Jakubowicz, N.; Zoghbi, A.E.; Skaba, D.; Mancino, D.; et al. Effect of Different Application Modalities on the Bonding Performance of Adhesive Systems to Dentin: A Systematic Review and Meta-Analysis. Cells 2023, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Pellizzaro, A.; Dal-Bianco, K.; Gomes, O.; Patzlaff, R.; Loguercio, A.D. Impact of Adhesive Application to Wet and Dry Dentin on Long-Term Resin-Dentin Bond Strengths. Oper. Dent. 2007, 32, 380–387. [Google Scholar] [CrossRef]
- Hardan, L.; Orsini, G.; Bourgi, R.; Cuevas-Suárez, C.E.; Nicastro, M.; Lazarescu, F.; Filtchev, D.; Cornejo-Ríos, E.; Zamarripa-Calderón, J.E.; Sokolowski, K. Effect of Active Bonding Application after Selective Dentin Etching on the Immediate and Long-Term Bond Strength of Two Universal Adhesives to Dentin. Polymers 2022, 14, 1129. [Google Scholar] [CrossRef]
- Cadenaro, M.; Antoniolli, F.; Sauro, S.; Tay, F.R.; Di Lenarda, R.; Prati, C.; Biasotto, M.; Contardo, L.; Breschi, L. Degree of Conversion and Permeability of Dental Adhesives. Eur. J. Oral Sci. 2005, 113, 525–530. [Google Scholar] [CrossRef]
- Carvalho, C.N.; Lanza, M.D.S.; Dourado, L.G.; Carvalho, E.M.; Bauer, J. Impact of Solvent Evaporation and Curing Protocol on Degree of Conversion of Etch-and-Rinse and Multimode Adhesives Systems. Int. J. Dent. 2019, 2019, 5496784. [Google Scholar] [CrossRef]
- Reis, A.; Klein-Junior, C.A.; de Souza, F.C.; Stanislawczuk, R.; Loguercio, A.D. The Use of Warm Air Stream for Solvent Evaporation: Effects on the Durability of Resin-Dentin Bonds. Oper. Dent. 2010, 35, 29–36. [Google Scholar] [CrossRef]
- Klein-Junior, C.A.; Zander-Grande, C.; Amaral, R.; Stanislawczuk, R.; Garcia, E.J.; Baumhardt-Neto, R.; Meier, M.M.; Loguercio, A.D.; Reis, A. Evaporating Solvents with a Warm Air-Stream: Effects on Adhesive Layer Properties and Resin–Dentin Bond Strengths. J. Dent. 2008, 36, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Hosaka, K.; Ikeda, M.; Kishikawa, R.; Foxton, R.; Nakajima, M.; Tagami, J. The Effect of Warm Air-Blowing on the Microtensile Bond Strength of One-Step Self-Etch Adhesives to Root Canal Dentin. J. Prosthodont. Res. 2018, 62, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of Near-IR to Monitor the Influence of External Heating on Dental Composite Photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef]
- Moura, S.K.; Murad, C.G.; Reis, A.; Klein-Júnior, C.A.; Grande, R.H.M.; Loguercio, A.D. The Influence of Air Temperature for Solvent Evaporation on Bonding of Self-Etch Adhesives to Dentin. Eur. J. Dent. 2014, 8, 205–210. [Google Scholar] [CrossRef]
- Reis, A.; Klein-Júnior, C.A.; Accorinte, M.d.L.R.; Grande, R.H.M.; dos Santos, C.B.; Loguercio, A.D. Effects of Adhesive Temperature on the Early and 6-Month Dentin Bonding. J. Dent. 2009, 37, 791–798. [Google Scholar] [CrossRef]
- Klein-Junior, C.A.; Sobieray, K.; Zimmer, R.; Portella, F.F.; Reston, E.G.; Marinowic, D.; Hosaka, K. Effect of Heat Treatment on Cytotoxicity and Polymerization of Universal Adhesives. Dent. Mater. J. 2020, 39, 970–975. [Google Scholar] [CrossRef]
- Malekipour, M.R.; Shirani, F.; Ebrahimi, M. The Effect of Washing Water Temperature on Resin-Dentin Micro-Shear Bond Strength. Dent. Res. J. 2016, 13, 174. [Google Scholar]
- Ogura, Y.; Shimizu, Y.; Shiratsuchi, K.; Tsujimoto, A.; Takamizawa, T.; Ando, S.; Miyazaki, M. Effect of Warm Air-Drying on Dentin Bond Strength of Single-Step Self-Etch Adhesives. Dent. Mater. J. 2012, 31, 507–513. [Google Scholar] [CrossRef]
- Marsiglio, A.A.; Almeida, J.C.F.; Hilgert, L.A.; D’Alpino, P.H.P.; Garcia, F.C.P. Bonding to Dentin as a Function of Air-Stream Temperatures for Solvent Evaporation. Braz. Oral Res. 2012, 26, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of Warm-Air Stream for Solvent Evaporation on Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis of in Vitro Studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Yanakiev, S.; Yordanov, B.; Dikov, V. Influence of Silane Heat Treatment on the Tensile Bond Strength between EX-3 Synthetic Veneering Porcelain and Composite Resin Using Five Different Activation Temperatures. J. IMAB—Annu. Proceeding Sci. Pap. 2017, 23, 1456–1459. [Google Scholar] [CrossRef]
- Ramón-Leonardo, P.-G.; Juan-Norberto, C.-R.; Wahjuningrum, D.A.; Tanzil, M.I.; Alberto-Carlos, C.-G. Effect of a Thermal Treatment of Two Silanes on the Bond Strength between a Lithium Disilicate and a Resin Cement. J. Int. Dent. Med. Res. 2020, 13, 868–872. [Google Scholar]
- Monticelli, F.; Ferrari, M.; Toledano, M. Cement System and Surface Treatment Selection for Fiber Post Luting. Med. Oral Patol. Oral Cir. Bucal 2008, 13, 214. [Google Scholar]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The Adhesion between Prefabricated FRC Posts and Composite Resin Cores: Microtensile Bond Strength with and without Post-Silanization. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef]
- Zakir, M.; Ashraf, U.; Tian, T.; Han, A.; Qiao, W.; Jin, X.; Zhang, M.; Tsoi, J.K.-H.; Matinlinna, J.P. The Role of Silane Coupling Agents and Universal Primers in Durable Adhesion to Dental Restorative Materials-a Review. Curr. Oral Health Rep. 2016, 3, 244–253. [Google Scholar] [CrossRef]
- de Carvalho, R.F.; Martins, M.E.M.N.; de Queiroz, J.R.C.; Leite, F.P.P.; Oezcan, M. Influence of Silane Heat Treatment on Bond Strength of Resin Cement to a Feldspathic Ceramic. Dent. Mater. J. 2011, 30, 392–397. [Google Scholar] [CrossRef]
- Shen, C.; Oh, W.; Williams, J.R. Effect of Post-Silanization Drying on the Bond Strength of Composite to Ceramic. J. Prosthet. Dent. 2004, 91, 453–458. [Google Scholar] [CrossRef]
- Kaykhine, P.; Tichy, A.; Abdou, A.; Hosaka, K.; Foxton, R.M.; Sumi, Y.; Nakajima, M.; Tagami, J. Long-Term Evaluation of Warm-Air Treatment Effect on Adaptation of Silane-Containing Universal Adhesives to Lithium Disilicate Ceramic. Dent. Mater. J. 2021, 40, 379–384. [Google Scholar] [CrossRef]
- Moreno, M.B.P.; Murillo-Gómez, F.; de Goes, M.F. Physicochemical and Morphological Characterization of a Glass Ceramic Treated with Different Ceramic Primers and Post-Silanization Protocols. Dent. Mater. 2019, 35, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Kay Khine, P.P.; Tichy, A.; Abdou, A.; Hosaka, K.; Sumi, Y.; Tagami, J.; Nakajima, M. Influence of Silane Pretreatment and Warm Air-Drying on Long-Term Composite Adaptation to Lithium Disilicate Ceramic. Crystals 2021, 11, 86. [Google Scholar] [CrossRef]
- De Figueiredo, V.M.G.; Corazza, P.H.; Lepesqueur, L.S.S.; Miranda, G.M.; Pagani, C.; De Melo, R.M.; Valandro, L.F. Heat Treatment of Silanized Feldspathic Ceramic: Effect on the Bond Strength to Resin after Thermocycling. Int. J. Adhes. Adhes. 2015, 63, 96–101. [Google Scholar] [CrossRef]
- Dal Piva, A.M.; Carvalho, R.L.; Lima, A.L.; Bottino, M.A.; Melo, R.M.; Valandro, L.F. Silica Coating Followed by Heat-treatment of MDP-primer for Resin Bond Stability to Yttria-stabilized Zirconia Polycrystals. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 104–111. [Google Scholar] [CrossRef]
- Sutil, B.G.d.S.; Susin, A.H. Dentin Pretreatment and Adhesive Temperature as Affecting Factors on Bond Strength of a Universal Adhesive System. J. Appl. Oral Sci. 2017, 25, 533–540. [Google Scholar] [CrossRef]
- Corazza, P.H.; Cavalcanti, S.C.; Queiroz, J.R.; Bottino, M.A.; Valandro, L.F. Effect of Post-Silanization Heat Treatments of Silanized Feldspathic Ceramic on Adhesion to Resin Cement. J. Adhes. Dent. 2013, 15, 473–479. [Google Scholar]
- Papacchini, F. A Study into the Materials and Techniques for Improving the Composite-Repair Bond; University of Siena: Siena, Italy, 2006. [Google Scholar]
- Al-Salamony, H.; Naguibb, E.A.; Hamzac, H.S.; Younisd, S.H. The Effect of Warm Air Solvent Evaporation on Microtensile Bond Strength of Two Different Self-Etch Adhesives to Dentin (In Vitro Study). Sylwan 2020, 5, 479–497. [Google Scholar]
- Baratto, S.S.P.; Spina, D.R.F.; Gonzaga, C.C.; da Cunha, L.F.; Furuse, A.Y.; Baratto Filho, F.; Correr, G.M. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic. Braz. Dent. J. 2015, 26, 474–477. [Google Scholar] [CrossRef]
- Carvalho, R.F.; Cotes, C.; Kimpara, E.T.; Leite, F.P.P. Heat Treatment of Pre-Hydrolyzed Silane Increases Adhesion of Phosphate Monomer-Based Resin Cement to Glass Ceramic. Braz. Dent. J. 2015, 26, 44–49. [Google Scholar] [CrossRef]
- Carvalho, M.P.M.; Rocha, R.d.O.; Krejci, I.; Bortolotto, T.; Bisogno, F.E.; Susin, A.H. Influence of a Heating Device and Adhesive Temperature on Bond Strength of a Simplified Ethanol-Based Adhesive System. Rev. Odontol. UNESP 2016, 45, 97–102. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, X.; Li, K.; Zheng, S.; Sano, H.; Zhan, D.; Fu, J. Effect of Air-Blowing Temperature and Water Storage Time on the Bond Strength of Five Universal Adhesive Systems to Dentin. Dent. Mater. J. 2021, 40, 116–122. [Google Scholar] [CrossRef]
- Colares, R.C.R.; Neri, J.R.; de Souza, A.M.B.; Pontes, K.M.d.F.; Mendonca, J.S.; Santiago, S.L. Effect of Surface Pretreatments on the Microtensile Bond Strength of Lithium-Disilicate Ceramic Repaired with Composite Resin. Braz. Dent. J. 2013, 24, 349–352. [Google Scholar] [CrossRef]
- Cotes, C.; de Carvalho, R.F.; Kimpara, E.T.; Leite, F.P.; Ozcan, M. Can Heat Treatment Procedures of Pre-Hydrolyzed Silane Replace Hydrofluoric Acid in the Adhesion of Resin Cement to Feldspathic Ceramic. J. Adhes. Dent. 2013, 15, 569–574. [Google Scholar] [PubMed]
- de Rosatto, C.M.P.; Roscoe, M.G.; Novais, V.R.; Menezes, M.d.S.; Soares, C.J. Effect of Silane Type and Air-Drying Temperature on Bonding Fiber Post to Composite Core and Resin Cement. Braz. Dent. J. 2014, 25, 217–224. [Google Scholar] [CrossRef]
- Fabianelli, A.; Pollington, S.; Papacchini, F.; Goracci, C.; Cantoro, A.; Ferrari, M.; van Noort, R. The Effect of Different Surface Treatments on Bond Strength between Leucite Reinforced Feldspathic Ceramic and Composite Resin. J. Dent. 2010, 38, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.C.; Almeida, J.C.; Osorio, R.; Carvalho, R.M.; Toledano, M. Influence of Drying Time and Temperature on Bond Strength of Contemporary Adhesives to Dentine. J. Dent. 2009, 37, 315–320. [Google Scholar] [CrossRef]
- Kim, H.-D.; Lee, J.-H.; Ahn, K.-M.; Kim, H.-S.; Cha, H.-S. Effect of Silane Activation on Shear Bond Strength of Fiber-Reinforced Composite Post to Resin Cement. J. Adv. Prosthodont. 2013, 5, 104–109. [Google Scholar] [CrossRef]
- Melo-Silva, C.L.; de Carvalho, C.F.; Santos, C.; Lins, J.F.C. Evaluation of the Influence of the Silane Drying Temperature on the Feldspar and Zirconia-Based Ceramics Surfaces. Trans Tech Publ. 2012, 2012, 826–830. [Google Scholar] [CrossRef]
- Monticelli, F.; Toledano, M.; Osorio, R.; Ferrari, M. Effect of Temperature on the Silane Coupling Agents When Bonding Core Resin to Quartz Fiber Posts. Dent. Mater. 2006, 22, 1024–1028. [Google Scholar] [CrossRef]
- Novais, V.R.; Simamotos Júnior, P.C.; Rontani, R.M.P.; Correr-Sobrinho, L.; Soares, C.J. Bond Strength between Fiber Posts and Composite Resin Core: Influence of Temperature on Silane Coupling Agents. Braz. Dent. J. 2012, 23, 08–14. [Google Scholar] [CrossRef]
- Riad, M.; Othman, H.I.; Mohamed, H.R. Influence of Diode Laser and Warm Air Drying on the Shear Bond Strength of Lithium Di-Silicate to Dentin. An in-Vitro Study. Braz. Dent. Sci. 2022, 25, e2782. [Google Scholar] [CrossRef]
- Shiratsuchi, K.; Tsujimoto, A.; Takamizawa, T.; Furuichi, T.; Tsubota, K.; Kurokawa, H.; Miyazaki, M. Influence of Warm Air-drying on Enamel Bond Strength and Surface Free-energy of Self-etch Adhesives. Eur. J. Oral Sci. 2013, 121, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.A.; Trindade, F.Z.; Reskalla, H.N.J.F.; de Queiroz, J.R.C. Heat Treatment Following Surface Silanization in Rebonded Tribochemical Silica-Coated Ceramic Brackets: Shear Bond Strength Analysis. J. Appl. Oral Sci. 2013, 21, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, K.; Hosaka, K.; Tichy, A.; Taguchi, K.; Ikeda, M.; Thanatvarakorn, O.; Prasansuttiporn, T.; Nakajima, M.; Tagami, J. Air-Blowing Strategies for Improving the Microtensile Bond Strength of One-Step Self-Etch Adhesives to Root Canal Dentin. Dent. Mater. J. 2020, 39, 892–899. [Google Scholar] [CrossRef]
- Zimmer, R.; Leite, M.; de Souza Costa, C.; Hebling, J.; Anovazzi, G.; Klein, C.; Hosaka, K.; Reston, E. Effect of Time and Temperature of Air Jet on the Mechanical and Biological Behavior of a Universal Adhesive System. Oper. Dent. 2022, 47, 87–96. [Google Scholar] [CrossRef]
- Fu, J.; Pan, F.; Kakuda, S.; Sidhu, S.K.; Ikeda, T.; Nakaoki, Y.; Selimovic, D.; Sano, H. The Effect of Air-Blowing Duration on All-in-One Systems. Dent. Mater. J. 2012, 31, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.F.; Oliveira, M.T.; Giannini, M.; De Goes, M.F.; Rueggeberg, F.A. The Effect of Organic Solvents on One-Bottle Adhesives’ Bond Strength to Enamel and Dentin. Oper. Dent. 2003, 28, 700–706. [Google Scholar]
- Hardan, L.; Lukomska-Szymanska, M.; Zarow, M.; Cuevas-Suárez, C.E.; Bourgi, R.; Jakubowicz, N.; Sokolowski, K.; D’Arcangelo, C. One-Year Clinical Aging of Low Stress Bulk-Fill Flowable Composite in Class II Restorations: A Case Report and Literature Review. Coatings 2021, 11, 504. [Google Scholar] [CrossRef]
- Fu, J.; Saikaew, P.; Kawano, S.; Carvalho, R.M.; Hannig, M.; Sano, H.; Selimovic, D. Effect of Air-Blowing Duration on the Bond Strength of Current One-Step Adhesives to Dentin. Dent. Mater. 2017, 33, 895–903. [Google Scholar] [CrossRef]
- Yiu, C.K.; Pashley, E.L.; Hiraishi, N.; King, N.M.; Goracci, C.; Ferrari, M.; Carvalho, R.M.; Pashley, D.H.; Tay, F.R. Solvent and Water Retention in Dental Adhesive Blends after Evaporation. Biomaterials 2005, 26, 6863–6872. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Manso, A.P.; Geraldeli, S.; Tay, F.R.; Pashley, D.H. Durability of Bonds and Clinical Success of Adhesive Restorations. Dent. Mater. 2012, 28, 72–86. [Google Scholar] [CrossRef]
- Pashley, D.H.; Agee, K.; Nakajima, M.; Tay, F.; Carvalho, R.; Terada, R.; Harmon, F.; Lee, W.; Rueggeberg, F. Solvent-induced Dimensional Changes in EDTA-demineralized Dentin Matrix. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2001, 56, 273–281. [Google Scholar] [CrossRef]
- Pashley, D.H.; Carvalho, R.M.; Tay, F.R.; Agee, K.A.; Lee, K.W. Solvation of Dried Dentin Matrix by Water and Other Polar Solvents. Am. J. Dent. 2002, 15, 97–102. [Google Scholar]
- Moszner, N.; Salz, U.; Zimmermann, J. Chemical Aspects of Self-Etching Enamel–Dentin Adhesives: A Systematic Review. Dent. Mater. 2005, 21, 895–910. [Google Scholar] [CrossRef]
- Nihi, F.M.; Fabre, H.S.C.; Garcia, G.; Fernandes, K.B.P.; Ferreira, F.B.d.A.; Wang, L. In Vitro Assessment of Solvent Evaporation from Commercial Adhesive Systems Compared to Experimental Systems. Braz. Dent. J. 2009, 20, 396–402. [Google Scholar] [CrossRef]
- Miyazaki, M.; Tsujimoto, A.; Tsubota, K.; Takamizawa, T.; Kurokawa, H.; Platt, J.A. Important Compositional Characteristics in the Clinical Use of Adhesive Systems. J. Oral Sci. 2014, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boeira, P.O.; Meereis, C.T.W.; Suárez, C.E.C.; de Almeida, S.M.; Piva, E.; da Silveira Lima, G. Coumarin-Based Iodonium Hexafluoroantimonate as an Alternative Photoinitiator for Experimental Dental Adhesives Resin. Appl. Adhes. Sci. 2017, 5, 2. [Google Scholar] [CrossRef]
- Bail, M.; Malacarne-Zanon, J.; Silva, S.; Anauate-Netto, A.; Nascimento, F.; Amore, R.; Lewgoy, H.; Pashley, D.H.; Carrilho, M. Effect of Air-Drying on the Solvent Evaporation, Degree of Conversion and Water Sorption/Solubility of Dental Adhesive Models. J. Mater. Sci. Mater. Med. 2012, 23, 629–638. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.; Giudici, R. Polymerization Kinetics of Pre-Heated Composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, P.; Fu, J.; Chowdhury, A.A.; Carvalho, R.M.; Sano, H. Effect of Air-Blowing Time and Long-Term Storage on Bond Strength of Universal Adhesives to Dentin. Clin. Oral Investig. 2019, 23, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Leach, M.; Rueggeberg, F.; Pashley, D.H. Effect of Water Content on the Physical Properties of Model Dentine Primer and Bonding Resins. J. Dent. 1999, 27, 209–214. [Google Scholar] [CrossRef]
- Miyazaki, M.; Platt, J.; Onose, H.; Moore, B. Influence of Dentin Primer Application Methods on Dentin Bond Strength. Oper. Dent. 1996, 21, 167–172. [Google Scholar] [PubMed]
- Jacobsen, T.; Söderholm, K. Effect of Primer Solvent, Primer Agitation, and Dentin Dryness on Shear Bond Strength to Dentin. Am. J. Dent. 1998, 11, 225–228. [Google Scholar] [PubMed]
- Cadenaro, M.; Breschi, L.; Antoniolli, F.; Navarra, C.O.; Mazzoni, A.; Tay, F.R.; Di Lenarda, R.; Pashley, D.H. Degree of Conversion of Resin Blends in Relation to Ethanol Content and Hydrophilicity. Dent. Mater. 2008, 24, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.; Stanislawczuk, R.; Zander-Grande, C.; Gagler, D.; Reis, A.; Loguercio, A.D. Bond Strength and Quality of the Hybrid Layer of One-Step Self-Etch Adhesives Applied with Agitation on Dentin. Oper. Dent. 2010, 35, 211–219. [Google Scholar] [CrossRef]
- Irmak, Ö.; Baltacıoğlu, İ.H.; Ulusoy, N.; Bağış, Y.H. Solvent Type Influences Bond Strength to Air or Blot-Dried Dentin. BMC Oral Health 2016, 16, 77. [Google Scholar] [CrossRef]
- Abate, P.; Rodriguez, V.; Macchi, R. Evaporation of Solvent in One-Bottle Adhesives. J. Dent. 2000, 28, 437–440. [Google Scholar] [CrossRef]
- Iliev, G.; Hardan, L.; Kassis, C.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Mancino, D.; Haikel, Y.; Kharouf, N. Shelf Life and Storage Conditions of Universal Adhesives: A Literature Review. Polymers 2021, 13, 2708. [Google Scholar] [CrossRef]
- Cuevas-Suárez, C.E.; Ramos, T.S.; Rodrigues, S.B.; Collares, F.M.; Zanchi, C.H.; Lund, R.G.; da Silva, A.F.; Piva, E. Impact of Shelf-Life Simulation on Bonding Performance of Universal Adhesive Systems. Dent. Mater. 2019, 35, e204–e219. [Google Scholar] [CrossRef]
- Özcan, M.; Vallittu, P.K. Effect of Surface Conditioning Methods on the Bond Strength of Luting Cement to Ceramics. Dent. Mater. 2003, 19, 725–731. [Google Scholar] [CrossRef]
- Davidson, C.L. Luting Cement, the Stronghold or the Weak Link in Ceramic Restorations? Adv. Eng. Mater. 2001, 3, 763–767. [Google Scholar] [CrossRef]
- Canay, Ş.; Hersek, N.; Ertan, A. Effect of Different Acid Treatments on a Porcelain Surface 1. J. Oral Rehabil. 2001, 28, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zarow, M.; Hardan, L.; Szczeklik, K.; Bourgi, R.; Cuevas-Suárez, C.E.; Jakubowicz, N.; Nicastro, M.; Devoto, W.; Dominiak, M.; Pytko-Polończyk, J.; et al. Porcelain Veneers in Vital vs. Non-Vital Teeth: A Retrospective Clinical Evaluation. Bioengineering 2023, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Harouny, R.; Hardan, L.; Harouny, E.; Kassis, C.; Bourgi, R.; Lukomska-Szymanska, M.; Kharouf, N.; Ball, V.; Khairallah, C. Adhesion of Resin to Lithium Disilicate with Different Surface Treatments before and after Salivary Contamination—An In-Vitro Study. Bioengineering 2022, 9, 286. [Google Scholar] [CrossRef]
- Hardan, L.; Devoto, W.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Fernández-Barrera, M.á.; CornejoRíos, E.; Monteiro, P.; Zarow, M.; Jakubowicz, N.; et al. Immediate Dentin Sealing for Adhesive Cementation of Indirect Restorations: A Systematic Review and Meta-Analysis. Gels 2022, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Al Edris, A.; Al Jabr, A.; Cooley, R.L.; Barghi, N. SEM Evaluation of Etch Patterns by Three Etchants on Three Porcelains. J. Prosthet. Dent. 1990, 64, 734–739. [Google Scholar] [CrossRef]
- Roulet, J.; Söderholm, K.; Longmate, J. Effects of Treatment and Storage Conditions on Ceramic/Composite Bond Strength. J. Dent. Res. 1995, 74, 381–387. [Google Scholar] [CrossRef]
- Hooshmand, T.; van Noort, R.; Keshvad, A. Bond Durability of the Resin-Bonded and Silane Treated Ceramic Surface. Dent. Mater. 2002, 18, 179–188. [Google Scholar] [CrossRef]
- Bertolotti, R.L. Adhesion to Porcelain and Metal. Dent. Clin. N. Am. 2007, 51, 433–451. [Google Scholar] [CrossRef]
- Moon, J.H.; Shul, Y.G.; Hong, S.Y.; Choi, Y.S.; Kim, H.T. A Study on UV-Curable Adhesives for Optical Pick-Up: II. Silane Coupling Agent Effect. Int. J. Adhes. Adhes. 2005, 25, 534–542. [Google Scholar] [CrossRef]
- Barghi, N. To Silanate or Not to Silanate: Making a Clinical Decision. Compend. Contin. Educ. Dent. 2000, 21, 659–662. [Google Scholar]
- Bertolini, J.C. Hydrofluoric Acid: A Review of Toxicity. J. Emerg. Med. 1992, 10, 163–168. [Google Scholar] [CrossRef]
- Shimada, Y.; Yamaguchi, S.; Tagami, J. Micro-Shear Bond Strength of Dual-Cured Resin Cement to Glass Ceramics. Dent. Mater. 2002, 18, 380–388. [Google Scholar] [CrossRef]
- Valandro, L.F.; Della Bona, A.; Bottino, M.A.; Neisser, M.P. The Effect of Ceramic Surface Treatment on Bonding to Densely Sintered Alumina Ceramic. J. Prosthet. Dent. 2005, 93, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Moharamzadeh, K.; Hooshmand, T.; Keshvad, A.; Van Noort, R. Fracture Toughness of a Ceramic–Resin Interface. Dent. Mater. 2008, 24, 172–177. [Google Scholar] [CrossRef]
- Abduljabbar, T.; AlQahtani, M.A.; Al Jeaidi, Z.; Vohra, F. Influence of silane and heated silane on the bond strength of lithium disilicate ceramics-An in vitro study. Pak. J. Med. Sci. 2016, 32, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S.; Robbins, J.W. Post Placement and Restoration of Endodontically Treated Teeth: A Literature Review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Grandini, S.; Goracci, C.; Tay, F.R.; Grandini, R.; Ferrari, M. Clinical Evaluation of the Use of Fiber Posts and Direct Resin Restorations for Endodontically Treated Teeth. Int. J. Prosthodont. 2005, 18, 399–404. [Google Scholar]
- Cagidiaco, M.C.; Goracci, C.; Garcia-Godoy, F.; Ferrari, M. Clinical Studies of Fiber Posts: A Literature Review. Int. J. Prosthodont. 2008, 21, 328–336. [Google Scholar]
- Vano, M.; Goracci, C.; Monticelli, F.; Tognini, F.; Gabriele, M.; Tay, F.; Ferrari, M. The Adhesion between Fibre Posts and Composite Resin Cores: The Evaluation of Microtensile Bond Strength Following Various Surface Chemical Treatments to Posts. Int. Endod. J. 2006, 39, 31–39. [Google Scholar] [CrossRef]
- Abel, M.-L.; Allington, R.; Digby, R.; Porritt, N.; Shaw, S.; Watts, J. Understanding the Relationship between Silane Application Conditions, Bond Durability and Locus of Failure. Int. J. Adhes. Adhes. 2006, 26, 2–15. [Google Scholar] [CrossRef]
- Madruga, E.L.; Fernández-García, M. A Kinetic Study of Free-radical Copolymerization of Butyl Acrylate with Methyl Methacrylate in Solution. Macromol. Chem. Phys. 1996, 197, 3743–3755. [Google Scholar] [CrossRef]
- Luthardt, R.; Holzhüter, M.; Sandkuhl, O.; Herold, V.; Schnapp, J.; Kuhlisch, E.; Walter, M. Reliability and Properties of Ground Y-TZP-Zirconia Ceramics. J. Dent. Res. 2002, 81, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.N.; Pilecki, P.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Gianinni, M.; Marchi, G.M. Evaluation of the Surface Roughness and Morphologic Features of Y-TZP Ceramics after Different Surface Treatments. Photomed. Laser Surg. 2009, 27, 473–479. [Google Scholar] [CrossRef] [PubMed]
Search | Keywords |
---|---|
# 1 | Dental Bonding OR Self-Cured Dental Bonding OR Chemical-Curing of Dental Adhesives OR Chemical Curing of Dental Adhesives OR Dentin-Bonding Agents OR dental primer OR Dental Materials OR Dental Material OR dental resin OR Dental Resins OR bonding interface OR adhesive OR Dentin-Bonding Agents OR Dentin Bonding Agents |
# 2 | warm air OR temperature air OR air-blowing OR air-drying OR air-stream |
# 3 | # 1 and # 2 |
Study | Year | Material Tested and Category of the Material | Solvent Contained within the Material | Temperature of Warm Air Stream | Substrate Tested | Bond Strength Test |
---|---|---|---|---|---|---|
Al-Salamony [38] | 2020 | Optibond XTR (Kerr Co., Orange, CA, USA): Two step self-etch adhesive | Water, ethanol, and acetone | 39 and 50 °C | Human dentin (Permanent) | Microtensile bond strength (μTBS) |
Optibond All-In-One (Kerr Co., Orange, CA, USA): One step self-etch adhesive | Water, ethanol, and acetone | |||||
Carvalho [41] | 2016 | Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA): Two-step total-etch adhesive system | Ethanol, water | 50 °C | Human dentin (Permanent) | μTBS |
Chen [42] | 2021 | Adhese Universal Vivapen (Ivoclar Vivadent, Schaan, Liechtenstein) | Ethanol, water | 60 ± 2 °C | Human dentin (Permanent) | μTBS |
Gluma Bond Universal (Heraeus Kulzer, Hanau, Germany) | Acetone, water | |||||
All Bond Universal® (Bisco, Schaumburg, USA) | Ethanol, water | |||||
Single Bond Universal (3M ESPE, St. Paul, MN, USA) | Ethanol, water | |||||
Clearfil Universal Bond (Kuraray Noritake Dental Inc., Osaka, Japan) | Ethanol, water | |||||
Garcia [47] | 2009 | Clearfil SE Bond (Kuraray Co. Inc., Osaka, Japan): Two-step self-etch | Ethanol, water | 38 °C | Human dentin (Permanent) | μTBS |
Clearfil SE Protect (Kuraray Noritake Dental Inc.). Two-step self-etch | Water | |||||
Adper Prompt-L-Pop (3M ESPE, St. Paul, MN, USA): One-step self-etch | Water | |||||
Xeno III (Dentsply, Konstanz, Germany): Two-step self-etch | Ethanol, water | |||||
Klein-Júnior [13] | 2008 | Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA): Two-step etch-and-rinse | Ethanol, water | 60 ± 2 °C | Human dentin (Permanent) | μTBS |
Prime & Bond 2.1 (Dentsply, Konstanz, Germany): Two-step etch-and-rinse | Acetone | |||||
Marsiglio [21] | 2012 | Adper Scotchbond Multi-Purpose (3M ESPE, St. Paul, MN, USA): Three- step etch- and-rinse | Water | 38 °C | Human dentin (Permanent) | μTBS |
Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA): Two-step etch-and-rinse | Ethanol, water | |||||
Prime & Bond 2.1 (Dentsply, Mildford, Germany): Two-step etch-and-rinse | Acetone | |||||
Moura [16] | 2014 | Adper SE Plus (3M ESPE; St. Paul, MN, USA): Two-step self-etch | Water | 60 ± 2 °C | Human dentin (Permanent) | μTBS |
Clearfil 3S Bond (Kuraray Medical Inc, Tokyo, Japan): One-step self-etch | Water, ethanol | |||||
OptiBond All in-one (Kerr Co., Orange, CA, USA): One-step self-etch | Water, ethanol, and acetone | |||||
Silorane (3M ESPE; St. Paul, MN, USA): Two-step self-etch | Water, ethanol | |||||
Ogura [20] | 2012 | Adper Easy Bond (3M ESPE, St. Paul, MN, USA): One-step self-etch | Ethanol, water | 37 °C | Bovine dentin | Shear bond strength (SBS) |
Clearfil tri-S Bond (Kuraray Medical Inc., Tokyo, Japan): One-step self-etch | Ethanol, water | |||||
G-Bond Plus (GC Corp., Tokyo, Japan): One-step self-etch | Acetone, water | |||||
Reis [12] | 2010 | Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA): Two-step etch-and-rinse | Ethanol, water | 60 ± 2 °C | Human dentin (Permanent) | μTBS |
Prime & Bond 2.1 (Dentsply, Mildford, Germany): Two-step etch-and-rinse | Acetone | |||||
Riad [52] | 2022 | Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA): Two-step etch-and-rinse | Ethanol, water | 50 °C | Human dentin (Permanent) | SBS |
Single Bond Universal (3M ESPE, St. Paul, MN, USA): Universal adhesive applied in a self-etch mode | Ethanol, water | |||||
Shiratsuchi [53] | 2013 | Bond Force (Tokuyama Dental, Tokyo, Japan): One-step self-etch | Isopropanol, water | 37 °C | Bovine enamel | SBS |
Clearfil tri-S Bond (Kuraray Medical Inc., Tokyo, Japan): One-step self-etch | Ethanol, water | |||||
G-Bond Plus (GC Corp., Tokyo, Japan): One-step self-etch | Acetone, water | |||||
Taguchi [14] | 2018 | Clearfil Bond SE ONE (Kuraray Noritake Dental Inc., Tokyo, Japan): One-step self-etch | Water, ethanol | 80 ± 1 °C | Human dentin (Permanent) | μTBS |
Unifil Core EM Self-etch Bond (GC Corp., Tokyo, Japan): One-step self-etch | Water, ethanol | |||||
Estelink (Tokuyama Dental Corp., Tokyo, Japan): One-step self-etch | Water, ethanol, and acetone | |||||
Beauti Dual bond EX (Shofu Inc., Kyoto, Japan): One-step self-etch | Water, ethanol, and acetone | |||||
Yonekura [55] | 2020 | Scotchbond Universal (3M ESPE, St. Paul, MN, USA): Universal adhesive used in a self-etch mode | Water, ethanol | 60 ± 1 °C | Human dentin (Permanent) | μTBS |
Clearfil Bond SE ONE (Kuraray Noritake Dental Inc., Tokyo, Japan): One-step self-etch | Water, ethanol | |||||
Unifil Core EM Self-etch Bond (GC Corp. Tokyo, Japan): One-step self-etch | Water, acetone | |||||
Estelink (Tokuyama Dental Corp., Tokyo, Japan): One-step self-etch | Water, ethanol, and acetone | |||||
Zimmer [56] | 2022 | Single Bond Universal (3M Oral Care, St. Paul, MN, USA): Universal adhesive system | Ethanol, water | 50 °C | Human dentin (Permanent) | μTBS |
Study | Year | Material Tested and Category of the Material | Solvent Contained within the Material | Temperature of Warm Air Stream | Substrate Tested | Bond Strength Test |
---|---|---|---|---|---|---|
Baratto [39] | 2015 | Silano (Dentsply, Santiago, Chile) Silane (DMG, Hamburg, Germany): Silanes | Ethanol | 50 ± 5 °C, 80 °C | Heat-pressed lithium disilicate glass-ceramic discs (IPS e.max Press; Ivoclar Vivadent AG, Schaan, Liechtenstein) | SBS |
Carvalho [40] | 2015 | Clearfil Ceramic Primer (Kuraray Medical Inc., Tokyo, Japan): Silane | Ethanol | 50 ± 5 °C | Ceramic (Vacumat, Vita Zahnfabrik) | μTBS |
Colares [43] | 2013 | RelyX Ceramic Primer (3M ESPE, St. Paul, MN, USA): Silane | Ethyl alcohol, water | 45 ± 5 °C | Crystallized lithium-disilicate-based glass blocks (IPSe.max CAD; Ivoclar Vivadent) | μTBS |
Cotes [44] | 2013 | RelyX Ceramic Primer (3M ESPE; St. Paul, MN, USA): Silane | Ethyl alcohol, water | 50 ± 5 °C | Ceramic block (VITA Zahnfabrik; Bad Säckingen, Germany) | μTBS |
Fabianelli [46] | 2010 | Monobond-S (Ivoclar-Vivadent, Schaan, Liechtenstein): Pre-hydrolyzed silane coupling agent | Ethanol | 100 °C | Leucite-reinforced ceramic blocks IPS Empress (Ivoclar Vivadent, Schaan, Liechtenstein) | μTBS |
Kim [48] | 2013 | Porcelain Liner M (Sun Medical, Moriyama City, Japan): Two-component silane coupling agent | Ethanol | 38 °C | Glass-fiber post (FRC Postec Plus (Ivoclar Vivadent AG, Schaan, Liechtenstein; and D.T. Light Post, BISCO Inc., Schaumburg, IL, USA) | SBS |
Melo-Silva [49] | 2012 | Silane (3M ESPE, St. Paul, MN, USA) | Ethanol | 70 °C | Ceramic-type (Y- TZP and feldspar) | SBS |
Monticelli [50] | 2006 | Monobond-S (Ivoclar-Vivadent, Schaan, Liechtenstein): Pre-hydrolyzed silane coupling agent | Ethanol | 38 °C | Quartz fiber posts (DT Light Post #2, RTD, St.Egéve, France) | μTBS |
Porcelain Liner M (Sun Medical Co., Ltd., Japan): Two-component silane coupling agent | Ethanol | |||||
Porcelain Silane (BJM Lab, Or-Yenuda, Israel): Pre-hydrolyzed silane coupling agent | Ethanol | |||||
Novais [51] | 2012 | Silano (Angelus, Petrópolis, RJ, Brazil) | Ethanol | 60 °C | Glass fiber posts (Exacto; Angelus, Londrina, PR, Brazil; size 2, 17.0 mm long × 1.50 mm diameter) | Push-out testing |
Prosil (FGM, Joinville, SC, Brazil) | Ethanol, water | |||||
RelyX Ceramic Primer (3M ESPE, St. Paul, MN, USA) | Ethyl alcohol, water | |||||
Silane coupling agent (Dentsply, Petrópolis, RJ, Brazil): Silanes | Ethanol, acetic acid | |||||
Ramón-Leonardo [24] | 2020 | RelyX Ceramic Primer (3M ESPE, St. Paul, MN, USA) | Ethyl alcohol, water | 100 °C | Lithium-disilicate-r-inforced glass ceramic (e.max CAD Ivoclar Vivadent, Schaan, Liechtenstein) | μSBS |
Monobond N (Ivoclar Vivadent, Schaan, Liechtenstein): Silanes | Ethanol | |||||
de Rosatto [45] | 2014 | Silano (Angelus, Petrópolis, RJ, Brazil) | Ethanol | 60 °C | Fiberglass posts (Exacto, Angelus) | Push-out testing |
Prosil (FGM, Joinville, SC, Brazil) | Ethanol, water | |||||
RelyX Ceramic Primer (3M ESPE, St. Paul, MN, USA) | Ethyl alcohol, water | |||||
Silane coupling agent (Dentsply, Petrópolis, RJ, Brazil): Silanes | Ethanol, acetic acid | |||||
Shen [29] | 2004 | Monobond-S (Ivoclar-Vivadent, Schaan, Liechtenstein): Pre-hydrolyzed silane coupling agent | Ethanol | 45 ±5 °C | Eris (Ivoclar Vivadent, Schaan, Liechtenstein) IPS Empress (Ivoclar Vivadent) | μTBS |
Silva [54] | 2013 | Monobond-S (Ivoclar Vivadent AG, Schaan, Linchtenstein): Pre-hydrolyzed silane coupling agent | Ethanol | 100 °C | Monocrystalline alumina premolar brackets (Pure®, OrthoTechnology, Tampa, FL, USA) | SBS |
Yanakiev [23] | 2017 | Monobond Plus (Ivoclar Vivadent, Schaan, Lichtenstein): Silane coupling agent | Ethanol | 38 °C, 50 °C, 100 °C, 120 °C | EX-3 veneering ceramic (Kuraray Noritake Dental, Japan) | Tensile bond strength (TBS) |
Study | Specimen Randomization | Single Operator | Operator Blinded | Control Group | Standardized Specimens | Failure Mode | Manufacturer’s Instructions | Sample Size Calculation | Coefficient of Variation | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|---|
Al-Salamony [38] | Yes | Yes | No | Yes | Yes | No | Yes | No | Yes | Medium |
Baratto [39] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Carvalho [40] | Yes | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Carvalho [41] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Chen [42] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Colares [43] | Yes | No | No | Yes | No | Yes | Yes | No | Yes | Medium |
Cotes [44] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Fabianelli [46] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Garcia [47] | Yes | No | No | Yes | Yes | No | Yes | No | Yes | Medium |
Klein-Júnior [13] | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Low |
Kim [48] | No | No | No | Yes | Yes | No | Yes | No | Yes | Medium |
Marsiglio [21] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Melo-Silva [49] | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Medium |
Monticelli [50] | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Medium |
Moura [16] | No | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Novais [51] | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Ogura [20] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Ramón-Leonardo [24] | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Low |
Reis [12] | No | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Riad [52] | Yes | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
de Rosatto [45] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Shen [29] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Shiratsuchi [53] | Yes | No | No | Yes | No | Yes | Yes | No | Yes | Medium |
Silva [54] | Yes | Yes | No | Yes | Yes | No | Yes | No | Yes | Medium |
Taguchi [14] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Yanakiev [23] | No | No | No | Yes | Yes | No | Yes | No | Yes | Medium |
Yonekura [55] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Zimmer [56] | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgi, R.; Hardan, L.; Cuevas-Suárez, C.E.; Scavello, F.; Mancino, D.; Kharouf, N.; Haikel, Y. The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies. J. Funct. Biomater. 2023, 14, 285. https://doi.org/10.3390/jfb14050285
Bourgi R, Hardan L, Cuevas-Suárez CE, Scavello F, Mancino D, Kharouf N, Haikel Y. The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies. Journal of Functional Biomaterials. 2023; 14(5):285. https://doi.org/10.3390/jfb14050285
Chicago/Turabian StyleBourgi, Rim, Louis Hardan, Carlos Enrique Cuevas-Suárez, Francesco Scavello, Davide Mancino, Naji Kharouf, and Youssef Haikel. 2023. "The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies" Journal of Functional Biomaterials 14, no. 5: 285. https://doi.org/10.3390/jfb14050285
APA StyleBourgi, R., Hardan, L., Cuevas-Suárez, C. E., Scavello, F., Mancino, D., Kharouf, N., & Haikel, Y. (2023). The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies. Journal of Functional Biomaterials, 14(5), 285. https://doi.org/10.3390/jfb14050285